教案吧 > 学科教案 > 数学教案 >

万能的数学教案

时间: 新华 数学教案

通过教案,教师可以了解学生的学习情况和需求,从而更好地满足学生的学习需求,提高学生的学习效果和自信心。优秀的万能的数学教案应该是怎样的?快来学习万能的数学教案的撰写技巧,跟着小编一起来参考!

万能的数学教案

万能的数学教案篇1

教学目标:

1、理解和掌握整十数加减整十数的口算方法,并能比较熟练的口算。

2、经历探索整十数加、减整十数计算方法的过程,体会新旧知识间的联系,获得可以根据已有知识、方法学习新内容的初步经验。

3、在学习过程中能积极思考、交流、倾听,体会学习的成功,提升学习数学的自信心。

教学重点:

重点掌握整十数加减整十数的口算方法

教学难点:

理解整十数加、减整十数的算理

教学准备:

卡片

教学过程:

一、创设情景

1、谈话:今天,老师给你们带来了礼物,看!(出示实物糖球,左手三串,右手两串)。

2、教师举起左手的糖球,提问:老师左手拿着多少个糖球,你是怎么知道的?右手呢?

小结:一串糖球有10个,三串糖球就是3个十,是30,两串糖球是2个十,是20。

二、自主探索

1、教学例题。

)提问:看着这些糖球,你能提出哪些数学问题?

(2)求一共有多少个糖球用什么方法计算?怎么列式?

学生回答,教师板书:30+20=?

(3)提问:为什么用加法计算?你想怎样算?

(4)可以用学具摆一摆,可以结合以前学过的知识来想一想,也可以和周围的同学讨论,然后说给全班同学听。

小组内讨论后,组长汇报讨论结果,

(5)全班交流,教师板书算式的得数。

(学生可能会说3个十加2个十得5个十,5个十是50也可能会说因为3+2=5,所以30+20=50。)

(6)谈话:我们学习了整十数加整十数,(板书课题)同学们的算法都很好,我们的好朋友也来了,看看他们是怎么算的?

2、教学试一试。

提问:刚才,我们提的那个问题可以用减法来计算?你会列式计算吗?

教师根据学生的回答板书;30-20=10。

提问:计算时你是怎样想的?谁愿意说给大家听。

3、小结:同学们自己动脑思考并与同学合作,学会了一些整十数加、减整十数的计算方法,以后做题时你喜欢用哪种方法就用哪种。

三、巩固应用

1、想想做做第1题。

学生独立列式计算,说说每道算式的意思以及计算时是怎样想的。

2、想想做做第2题。

出示第一组、第二组题让学生按组计算。

让学生自己出一组这样的题并进行计算。全班交流自己的出题情况。

4、想想做做第3题。

谈话:请看第3题,我们来做开火车的游戏。仔细看图,你知道火车怎么开吗,说给大家听听。学生在方框里填数后,一人报得数,全班学生一起订正。

5想想做做第4题。

学生直接写得数。

四、全课总结

这节课同学们积极思考,并与小伙伴讨论,学到了很多知识,你有哪些收获?说给大家听听。

万能的数学教案篇2

(一)教学内容

本节课选自《普通高中课程标准实验教科书》人教A版必修3第三章第二节《古典概型》,教学安排是2课时,本节课是第一课时。

(二)教学目标

1.知识与技能:

(1)通过试验理解基本事件的概念和特点;

(2)通过具体实例分析,抽离出古典概型的两个基本特征,并推导出古典概型下的概率计算公式;

(3)会求一些简单的古典概率问题。

2.过程与方法:经历探究古典概型的过程,体验由特殊到一般的数学思想方法。

3.情感与价值:用具有现实意义的实例,激发学生的学习兴趣,培养学生勇于探索,善于发现的创新思想。

(三)教学重、难点

重点:理解古典概型的概念,利用古典概型求解随机事件的概率。

难点:如何判断一个试验是否为古典概型,弄清在一个古典概型中基本事件的总数和某随机事件包含的基本事件的个数。

(四)学情分析

[知识储备]

初中:了解频率与概率的关系,会计算一些简单等可能事件发生的概率;

高中:进一步学习概率的意义,概率的基本性质。

[学生特点]

我所带班级的学生思维活跃,但对基本概念重视不足,对知识深入理解不够。善于发现具体事件中的共同点及区别,但从感性认识上升到理性认识有待提高。

(五)教学策略

由身边实例出发,让学生在不断的矛盾冲突中,通过“老师引导”,“小组讨论”,“自主探究”等多种方式逐渐形成发现问题,解决问题的思想。

(六)教学用具

多媒体课件,投影仪,硬币,骰子。

(七)教学过程

[情景设置]

有一本好书,两位同学都想看。甲同学提议掷硬币:正面向上甲先看,反面向上乙先看。乙同学提议掷骰子:三点以下甲先看,三点以上乙先看。这两种方法是否公平?

☆处理:通过生活实例,快速地将学生的注意力引入课堂。提出公平与否实质上是概率大小问题,切入本堂课主题。

[温故知新]

(1)回顾前几节课对概率求取的方法:大量重复试验。

(2)由随机试验方法的不足之处引发矛盾冲突:我们需要寻求另外一种更为简单易行的方式,提出建立概率模型的必要性。

[探究新知]

一、基本事件

思考:试验1:掷一枚质地均匀的硬币,观察可能出现哪几种结果?

试验2:掷一枚质地均匀的骰子,观察可能出现的点数有哪几种结果?

定义:一次试验中可能出现的每一个结果称为一个基本事件。

☆处理:围绕对两个试验的分析,提出基本事件的概念。类比生物学中对细胞的研究,过渡到研究基本事件对建立概率模型的必要性。

思考:掷一枚质地均匀的骰子

(1)在一次试验中,会同时出现“1点”和“2点”这两个基本事件吗

(2)随机事件“出现点数小于3”与“出现点数大于3”包含哪几个基本事件?

掷一枚质地均匀的硬币

(1)在一次试验中,会同时出现“正面向上”和“反面向上”这两个基本事件吗

(2)“必然事件”包含哪几个基本事件?

基本事件的特点:(1)任何两个基本事件是互斥的;

(2)任何事件(除不可能事件)都可以表示成基本事件的和。

☆处理:引导学生从个性中寻找共性,提升学生发现、归纳、总结的能力。设计随机事件“出现点数小于3”与“出现点数大于3”与课堂引入相呼应,也为后面随机事件概率的求取打下伏笔。

二、古典概型

思考:从基本事件角度来看,上述两个试验有何共同特征?

古典概型的特征:(1)试验中所有可能出现的基本事件的个数有限;

(2)每个基本事件出现的可能性相等。

☆处理:引导学生观察、分析、总结这两个试验的共同点,培养他们从具体到抽象、从特殊到一般的数学思维能力。在提问时明确思考的角度,让学生的思维直指概念的本质,避免不必要的发散。

师生互动:由学生和老师各自举出一些生活实例并分析是否具备古典概型的两个特征。

(1)向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这一试验能用古典概型来描述吗?为什么?

(2)08年北京奥运会上我国选手张娟娟以出色的成绩为我国赢得了射箭项目的第一枚奥运金牌。你认为打靶这一试验能用古典概型来描述吗?为什么?

设计意图:让学生通过身边实例更加形象、准确的把握古典概型的两个特点,突破如何判断一个试验是否是古典概型这一教学难点。

三、求解古典概型

思考:古典概型下,每个基本事件出现的概率是多少?随机事件出现的概率又如何计算?

(1)基本事件的概率

试验1:掷硬币

P(“正面向上”)=P(“反面向上”)=

试验2:掷骰子

P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”)=

结论:古典概型中,若基本事件总数有n个,则每一个基本事件出现的概率为

☆处理:提出“如果不做试验,如何利用古典概型的特征求取概率?”

先由学生分小组讨论掷硬币试验中基本事件的概率如何求取并规范学生解答,同时点出甲同学提出的“掷硬币方案”的公平性;再由学生分析掷骰子试验中基本事件概率的求解过程并得出一般性结论。

(2)随机事件的概率

掷骰子试验中,记事件A为“出现点数小于3”,事件B为“出现点数大于3”,如何求解P(A)与P(B)?

万能的数学教案篇3

一、创设情境,激趣导入

师:前段时间老师去了黄河附近旅游,祖国山川的美景,让我留连忘返。给我留下印象最深的是黄河边上一个以摆渡为生的老人。他生活在黄河边,工作在黄河边,他那勤劳勇敢的精神,让我难以忘怀。同学们,知道什么是“摆渡”吗?(生看课件,理解“摆渡”一词。)

(做“你说我猜”的游戏,摆渡船开始状态在南岸。学生说数,教师猜测船在哪一岸?)

师:其实老师掌握了数的奇偶性的规律。(师板书:数的奇偶性。)这节课我们就来研究数的奇偶性的规律,等你们把它的规律找出来了,你猜得会比我还要准、还要快!

【设计意图:通过试讲发现:学生虽然已经上5年级了,但对“摆渡”一词还是理解不透。为了解决这个问题,创设了去黄河旅游的情境,使学生在不知不觉中理解了“摆渡”一词的词义,也为继续学习扫清了障碍。从学生熟悉的生活情境中提出数学问题,在学生理解“摆渡”一词后,教师引导学生做“你说我猜”的游戏,学生由此产生疑问。这大大地激发了他们的学习兴趣,为后面的学习探究奠定了坚实的基础。】

二、观察思考,发现规律

(同桌研讨:用什么方法可以知道船在哪岸呢?)

【设计意图:根据学生的年龄特征以及学生的需要,应着重引导学生掌握学习方法,会运用恰当的方法解决数学问题。】

学生汇报:1.数数的方法。随着学生的回答,师适时演示课件。2.列表方法。师演示列表方法,生完成手中的表。

让学生观察“画示意图”、“列表”两种解题方法,引导他们从中发现规律。

学生总结:船摆渡奇数次,船在北岸。船摆渡偶数次,船在南岸。

师:老师就是用这个规律,很快判断出小船在哪侧岸边。现在你们也想试一试吗?(教师说数,学生猜船在哪侧的岸边。)

师:你们猜得可真快,如果有人说小船开始状态在南岸,摆渡100次,小船在北岸,这种说法对吗?为什么?(指生说理由。)

师:通过解决这些问题,观察板书,你有什么发现?

(学生尝试总结出规律:开始状态在南岸,奇数次与开始状态相反,偶数次与开始状态相同。)

师:像这样的规律在我们生活中随处可见。下面我们来看翻杯子游戏。请看大屏幕:有一个杯子开始状态是杯口朝上,那么翻动1次杯口朝下,翻动2次杯口朝上,用你自己喜欢的方法,想一想、做一做,翻动10次后,杯口的方向朝哪个地方?19次呢?(生回答并说明理由。)

师:你还能提出其他问题吗?(生提问题并互相解决。)

【设计意图:在此环节,只让学生看演示并没有动手去翻杯子。目的在于让学生内化体会,学会运用解决问题的方法。5年级学生不应只停留在动手操作上,更多的应该是训练思维的发展。另外,在此环节设计提问题,目的为下一环节的提问作铺垫。】

师:生活中有许多这样具有奇偶性规律的事物,你能举几个例子吗?你还能提出类似的数学问题吗?

【设计意图:在有趣的互动活动中反馈所学知识,让学生明白数学是服务于生活的。学生兴趣盎然,积极参与探究活动。在数学活动中探索数的特征,体验研究方法,提高学生的推理能力。】

师:我们今天利用数的奇偶解决了身边的许多问题,老师很高兴,所以,想送给你们一些礼物。不过,这些礼物需要你们用智慧才能获得,大家有信心获得礼物吗?

(师出示两个盒子,让学生观察两个盒子里的数有什么特点。)

师:从两个盒子里各抽一张卡片,然后把它们加起来,结果是多少,礼物图中相应数字的礼物就是你的。(礼物兑奖表略。)

(在抽奖过程中学生发现:偶数加奇数都得奇数,奖品都在偶数上,所以怎么抽也抽不到奖品。)

师:是不是所有的偶数加奇数都得奇数,大家来验证一下。(小组讨论,并交流。)

(生寻找原因,总结发现:奇数+偶数=奇数。)

师:老师,现在想让每个前来抽奖的同学都能获得奖品,让你们改变规则,会怎样改?

(学生积极想办法,得出结论:偶数+偶数=偶数、奇数+奇数=偶数。)

【设计意图:通过此游戏激发学生的学习兴趣,让学生带着愉悦的心情探索新知,使枯燥的数学课注入了新鲜的活力,调动了学生兴奋的神经,数学探究将事半功倍。】

三、运用规律,拓展延伸

(课件出示:不用计算,判断算式的结果是奇数还是偶数?)

10389+20__11387+131

268+102438946+3405

学生判断算式的结果是奇数还是偶数?说明理由。

(课件出示:不用计算,判断算式的结果是奇数还是偶数?)

3721-20__22280-10238800-345

学生先判断结果是奇数还是偶数,再根据上面减法算式找出减法中数的奇偶性的变化规律。(小组研讨,寻找规律。)

学生汇报后,课件出示:

奇数-奇数=偶数偶数-偶数=偶数

奇数-偶数=奇数偶数-奇数=奇数

【设计意图:在已有知识的基础上,根据学生的实际情况,进行拓展。目的在于开发学生的潜能,提高和训练学生的思维能力。】

万能的数学教案篇4

教学内容:教科书第8183页,练习十八的第24题。

教学目的:

1.使学生能比较熟练地读、写数。

2.使学生能比较熟练地进行数的改写。

3.使学生能比较熟练地进行数的大小比较。

教学过程:

一、数的读写

1.整数的读法和写法。

(1)指名说整数的读法。对说得不完整的,让其他同学补充。学生说时,不必要求与书上的叙述完全一致,只要意思正确就可以了。

出示:52000803100

先让两名学生试读,然后问他们是怎么读的。如这个数有几级?哪些0是在数级末尾不必读出来,哪些0要读出来?8前面为什么只读一个零?教师根据学生的回答,对数进行分级,并用彩色粉笔把不同0区分开。

(2)指名说整数的写法。要求与整数读法一样。

出示:四十亿六干零六十万零五十

全班学生在练习本上写数。集体订正时,指名说一说是怎样写的。

2.小数和分数的读写法。

指名分别说一说小数、分数的读法和写法。并让学生比较小数、分数的读法和写法与整数的读法和写法有什么联系和区别。

3.课堂练习。

完成教科书第82页中间做一做的第1、2题。

第1题,指名读数。可以有意识地让学习有困难的学生说一说。

第2题,学生独立写数,集体订正。

二、数的改写

1.较大的多位数改写成用万、亿作单位的数。

教师:我们已经学过,一个较大的多位数,为了读写方便,常常把它进行改写。

想想,有几种改写的方法?指名回答,使学生明确一般有两种方法:(1)改写成用万或亿作单位的数;(2)省略这个数某一位后面的尾数,写成近似数。然后,教师用书上的例子进行说明。如果班里学生掌握的比较好,也可以让学生自己举例说明。

在说明第(2)种情况时,要使学生明确是用什么方法省略的。还可以进一步提问:如果根据需要省略干位后面的尾数,求得的近似数的单位应该是多少?

接着让学生独立完成教科书第82页下面做一做的练习题。

2.求小数的近似数。

出示例题,让学生独立解答。集体订正时,让学生说一说是怎么求一个小数的近似数的。对于4.629754.630,要特别提问:4.630末尾的0为什么不能去掉?

3.假分数与带分数或整数相互改写(互化)。

教师:我们在进行分数四则运算时,经常要根据需要把假分数与带分数或整数相互改写。大家还记得改的方法吗?指名说一说。如果学生说得不清楚,教师可以适当提示:

什么样的假分数可以改写成带分数?

什么样的假分数可以改写成整数?

带分数怎样改写成假分数?

整数怎样改写成假分数?要使学生明确,整数可以根据需要化成不同分母的假分数。

出示教科书中例题,让学生独立改写,集体订正。

4.分数、小数与百分数的互化。

(1)分数和小数的互化。

教师:根据小数和分数的关系.怎样把小数化成分数:(小数化成分数,原来有见位小数.就在1后面写几个0作分母.把原来的小数去掉小数点作分子;化成分数后,能约分的要约分。)学生回答进时。只要把意思说正确就可以了。关键是使学生明。确,小数化成分数,要先把小数改写成分母是10、100、1000的分数,再约分。教师按教科上的图解分步画图。

改写成分母是10、100、1000的分数,再约分:

教师可以根据分数化成小数的两种情况,先引导学生分别回忆,再概括总结。

分母是10、100、1000的分数怎样化成小数?(可以直接去掉分母,看分母中有见个0.就从分子的最后一位起向左数出几位。点上小数点。)这实际上是应用了什么知识?(分数与除法的关系。)

分母不是10、100、1000朗分数怎样化成小数?(要用分母去除分子:除不尽时,可以根据需要按四舍五入法。保留几位小数。)

通过分析上面两种情况.谁能概括出分数化成小数的一般方法?(用分母去除分子。)教师板书。

改写成分母是10、100、1000的分数。再约分。

用分母去除分子

什么样的分数可以化成有限小数,什么样的分数不能化成有限小数?

把下面的分数化成小数,并且记住这些结果。

1 1 3 1 2 3 4 1 1 1

2 4 4 5 5 5 5 8 20 25

(2)小数和百分数的互化。

指名说一说小数和百分数互化的方法。教师根据学生的回答,按照教科书的图解进行板书。

(3)分数和百分数的互化。

指名说一说分数和百分数互化的方法。教师板书完成图解。

(4)课堂练习。

完成练习十八的第3题的第(2)、(3)小题,学生独立计算,教师巡视,对学习有困难的学生进行个别辅导,集体订正。可以让做得比较快的学生说一说是怎样做的,有没有比较简便的方法。

三、数的大小比较

先让学生独立做教科书第83页做一做的第l、2题。然后,教师引导学生归纳数的大小比较的方法。

教师:怎样比较整数、小数的大小?

比较分数的大小有几种情况?(三种:分子相同,分母相同,分子和分母都不相同。)

分母相同的分数,怎样比较它们的大小?

分子相同的分数,怎样比较它们的大小?

分母、分子都不相同的分数,怎样比较它们的大小?

四、小结(略)

五、作业

练习十八的第2题,第3题的第(1)小题,第4题。

对学有余力的学生可以让他们思考练习十八的第5题和第6题。

万能的数学教案篇5

教学内容:义务教育课程标准实验教科书三年级上册106页例3及“做一做”,练习二十的第4、6、10题。

教学目标:

1、知识目标:经历可能性的试验过程,知道事件发生的可能性是有大小的。

2、能力目标:培养学生通过实验获取数据、利用数据进行猜测与推理的能力;并能列出简单试验所有可能发生的结果。

3、情感目标:在活动交流中培养合作学习的意识和能力。

教学重点:学生通过试验、收集和分析试验数据知道事件发生的可能性是有大小的。

教学难点:利用可能性的知识解决实际问题。

教具准备:两个转盘、盒子、红球24个、蓝球6个、漂亮的卡通人物、硬币、多媒体课件。

学具准备:颜色笔。

教学过程:

一、创设情境,激趣猜测

1、听故事,激发学习兴趣

(1)老师知道同学们最喜欢听故事,特意准备了一个《小猴子下山》的故事,想听吗?

(动画播放)

2、猜测:请同学们想一想,小猴去追小兔,结果会是怎样呢?

学生猜测:它有可能追到小兔,也有可能追不到小兔。

师:那追到的可能性会……很小。

3、有些同学认为小猴不可能捉到小兔,有些同学认为小猴还有可能捉到小兔,只是可能性很小,看来,事情的发生不仅有可能性,而且发生的可能性还有大、有小。今天这节课我们就继续来学习有关可能性的问题。

(板书课题:可能性的大小)

实践是的老师,下面我们就通过摸球试验来研究,好吗?

二、探究、验证

1、试验准备。

(1)介绍试验材料。

师:每个小组准备了一个盒子,盒子里都装有红球和蓝球。

(2)说明试验要求。

(多媒体出示小组合作要求。)

师:请同学们根据屏幕上的要求进行摸球试验,摸球20次,根据摸球的情况完成好摸球情况统计表和统计图,然后观察统计图思考以下两个问题。

(3)提出注意事项。

师:最后还请同学们特别注意:摸球时不能用眼晴看,摸球试验结束后不要打开盒子,能做到吗?下面请小组长拿出记录表和统计图,就可以开始试验了。

2、合作试验、初步推测。

(1)各小组试验,教师巡视。

(2)观察、汇报。

师:谁把你们组的试验结果给大家汇报一下?

学生汇报。

3、推测、验证、归纳。

(1)观察。

(集中展示各小组的摸球情况统计图。)

师:这是我们6个小组的摸球情况统计图,请同学们仔细观察,你发现什么呢?(学生汇报)

师:(疑惑地)咦!每个盒子里都有红球和蓝球,为什么每个小组都是摸出红球的可能性大,摸出蓝球的可能性小呢?

(2)思考。

师:这都是你们的推测,到底对不对呢?有什么方法可以知道?

(打开盒子看看。)

师:好!莫老师数三声,我们就一起把盒子打开吧!

师:请同学们数一数,盒子里有几个红球?有几个蓝球?知道了这两种色球的数量,再联系刚才的试验结果,你知道了什么?

师:也就说,在摸球试验中,可能性的大小和什么有关系呢?

(与球的数量有关。)

师:如果让你在自己小组的盒子里再摸一次,你觉得摸到什么颜色的球可能性大?为什么?好,请6个小组长一起来摸摸看。

(3)归纳。

师:同学们通过刚才的摸球试验发现了可能性的大小与不同颜色的球的数量有关。哪种颜色球数量多,它的可能性就……(大);哪种颜色球数量少,它的可能性就……(小)。那可能性小是不是就代表没有可能摸到呢?

三、应用、拓展

师:其实生活中还有不少事情的出现与可能性的大小有关,你们能运用今天学习的可能性大小的知识来解决一些生活中的实际问题吗?

1、转转盘。(课本106页的“做一做”。)

师:看,这里有个大转盘,想来转转吗?莫老师手里有许多漂亮的图片,你来选一种颜色格,如果你真的转到那种颜色格的话,我就送你一个图片,谁想来试试?还有谁想来?

(生可能会选黄色)你为什么会选黄色格呢?

转转试试看?

不行,每次都是你们赢,我得换个转盘,这次如果你还是转到黄色格的话,我就送你一张更漂亮的图案,谁来转?(指名3名学生上台转)

师:为什么只有()个同学拿到图案?

真聪明!那就把这张图案送给你吧?

3、拓展。

师:老师这里还有一个有趣的转盘(出示幸运转盘)。

商场为了吸引顾客购物,经常让顾客参与购物转奖的游戏。他们为什么把一等奖的部分这样设计呀?

师:你们能用学到的数学知识解释生活中的。问题,真是棒极了!

2、设计转盘。(练习二十第4题。)

师:看了这个转盘,你们想不想也来设计这样有趣的转盘?

(1)课件出示设计要求。

转盘由蓝色和红色两种颜色组成。

要求一:指针指在红色的可能性大;

要求二:指针指在蓝色的可能性大。

请同学们在书本109页上涂一涂。

(2)谁想上来展示一下自己的作品?(用实物投影仪投影学生作品)

问:在设计转盘时你是怎样想的呢?你们也是这样想的吗?

(3)小结。

师:在设计第一个转盘时我们只要使得红色格的数量比蓝色格多就行了,在设计第二个转盘时只要使得蓝色格的数量比红色格多就可以了,你们都设计出了符合要求的转盘了吗?

4、解决问题。

师:今天还有一位我们非常熟悉的朋友来到了我们的课堂,看谁来了?(课件出示小猫扑蝴蝶)

师:小精灵明明带着他的魔棒来了,还有谁来了?(小猫)

师:听,小精灵有问题要问了:天空中有7只黄蝴蝶,3只红蝴蝶,小猫随意扑一只,扑到哪种蝴蝶的可能性大呢?

师:那我们就来看看小猫是不是扑到黄色蝴蝶的可能性大。(课件演示小猫扑到了一只黄色的蝴蝶。)

师:看来确实是扑到黄蝴蝶的可能大。现在天空中还有几只黄蝴蝶和几只红蝴蝶?小猫再随意扑一只,扑到哪种蝴蝶的可能性大呢?

师:我们一起来看一看。(课件演示小猫扑到了一只红蝴蝶。)

师:(疑惑地)咦!不是说小猫扑到黄蝴蝶的可能性大吗?怎么会扑到一只红蝴蝶呀?

师:扑到红蝴蝶的可能性小并不是说不可能扑到红蝴蝶。

听!小猫又有问题想问了:你能想办法让我扑到红蝴蝶的可能性大吗?(增加红蝴蝶的只数,让它的只数比黄蝴蝶多。)

(师用课件演示:小精灵用它的魔棒增加了7只红蝴蝶。)

5、猜一猜。(练习二十第10题。)

师:下面我们来做个游戏怎么样?这里有四个盒子,其中只有一个盒子里面放着一个硬币,你来猜一猜,可能会在哪个盒子里?下面我们来统计一下,注意:每个同学只能选择一次;认为在一号盒子里的举手,认为在二号盒子的,三号盒子,四号盒子。

师:下面我们来揭晓,哦!原来在2号盒子里。也就说只有X个同学猜对了。现在请同学们想想,为什么猜对的人少,而猜错的人多呢?

汇报:因为硬币只能在四个盒子中的一个,有三个盒子中没有,所以猜错的人数多,猜错的可能性就大。

师补充:虽然猜对的可能性小,但我们也是有可能猜对的。

四、总结、延伸

1、延伸。

师:其实,关于可能性的问题,在很久以前就有不少的数学家做过研究,最典型的是掷硬币的试验。同学们看一看,这是一枚1元的硬币,将硬币掷出,结果会怎样?掷到哪一面的可能性大呢?今天的作业是回家后,请你和爸爸、妈妈一起来做一做这个掷硬币的小试验,自定试验次数,但老师建议次数多一点,这样试验结果才准确;并将硬币正、反面朝上的情况做好统计,明天把你的试验结果记录表拿回来全班一起交流,好吗?

2、小结。

(1)今天这节课你学会了什么?兴的是什么?对自己的学习满意吗?你觉得老师表现得怎样?

(3)师:刚才《小猴子下山》的故事还没讲完,想听完吗?

出示录音:小兔子看到小猴追上来,马上窜进草丛里不见了,这时太阳快下山了,小猴只好空着手回家去了。

师:看了这个故事结果后,你们有话要跟小猴子说吗?

小朋友们,我们可不要像小猴那样喜新厌旧哦!

万能的数学教案篇6

一、说活动教材

区分左右是大班这学期所开展的有关空间方位感认知方面的内容。其重点在于引导幼儿能以自身为中心来辨别左右关系。《纲要》中所说:“幼儿园数学应以游戏为主要向导,孩子在游戏中得以不同的发展和提高。”于是我在活动中设计了多个小游戏,让小朋友在游戏中轻松的掌握左右概念。以自身为中心正确的判断左右,发展幼儿的空间知觉能力。

二、说活动目标

活动目标的制定应体现它的教育性、价值性和实际性,活动目标既是整个教育活动的起点和归宿,同时对活动也起着导向作用,因此,从满足幼儿认知、情感、能力的发展需要,我拟订了以下目标:

1、感知“左”“右”的空间方位,发展空间方位的知觉和判断力;

2、激发幼儿与同伴交流的兴趣,能比较准确地说出物体所在的“左”“右”方位;

三、说活动的重难点:发展幼儿空间方位的知觉和判断力;

四、说活动准备:1、场地布置:在活动室的左右挂上一些东西;

2、蓝绿带子40条,课前绑在幼儿手上;

3、幼儿用书《数学》第十二页、剪刀、胶水;

五、说活动过程:

环节一:区分左右手

我开始以导入,今天老师给大家带来了一个谜语,想来考考你:“一棵小树五个杈,不长树叶不开花,能算会写还会画,天天干活不说话。幼儿回答后引出答案:手。师:每个人都有两只手,一只是左手,一只是右手,那么你们能分清自己的左手和右手吗?幼儿交流。

(现在你知道哪只左手哪只右手了吗?我来考考你吧,看你能不能照我说的做)

1、教师发出指令,幼儿按指令举起相应方位的手并做出动作。

如:请举起右手并招招手、竖起大拇指、做把剪刀;请举起左手握个拳头、眨眨眼;(教师看幼儿是否举对,纠正个别不对的)

2那我们的两只手是左手帮我们事情做得多,还是右手做得多,请幼儿说说你的右手都会做什么事情,你能表演一下是怎么做的吗?

3、游戏:你说我做

-----游戏前,请幼儿将蓝绿两种不同颜色的带子绑在手上。

-----教师发出指令,幼儿听指令举起左手或右手(如:请右手是蓝带子的小朋友举手,请左手是绿带子的小朋友举手)

环节一的设计意图:大班幼儿对左右有一定了解,但确了解不多,所以环节一中我从左右手入手,因为孩子知道右手会帮我们做很多事,如:写字、画画、拿筷子、提东西等,对左右手的掌握概念会比较好,为下一环节认识身体上的左右部位做好铺垫。

环节二、区别左右脚

1、刚才我们知道了左手和右手,那么老师还想考考你,你的身体上,除了左手和右手之外,还有什么部位也可以分左右呢?(耳朵、眼睛、脚、腿、肩、)

2、教师发出指令,幼儿听指令完成相应动作。

如:请你抬起左脚,请你抬起右脚;(教师看幼儿是否举队,纠正个别不对的)进行数次后可提高难度,要求幼儿做出与指令相反的动作;(我说左脚,你抬有右脚)

设计意图:通过游戏激发幼儿学习的兴趣并在游戏中感知左右的空间方位;

环节三感知左边、右边

1、幼儿交流自己的左边有什么,右边有什么?

2、幼儿改变方位后再说说自己的两边各有什么?

3、游戏:小熊搬家:完成幼儿用书12页,请小朋友帮小熊把一些家具贴在相应的位置上!

设计意图:激发幼儿与同伴交流的兴趣,能比较准确地说出物体所在的“左右“方位,从而更好的掌握所学的知识。

万能的数学教案篇7

教学目标:

1、 借助天平明白等式的含义,并在分类的基础上充分感受、认识什么是方程。

2、 会用方程表示数量关系。

3、 培养学生观察、描述、分类、抽象、概括、应用等能力。

4、 感受方程与现实生活的密切联系,体验数学活动的探索性。

重点:理解方程是含有未知数的等式;

难点:方程的意义抽象的过程。

课前谈话:渗透平衡和等量(谈体验)

教学过程:

一、激情导入

出示天平,(见过天平吗?在那里见过?有什么作用啊?)根据天平的状态列出不同的式子,(不平衡让学生想办法得出让天平两边平衡)。

二、探究新知

1.对不同的式子进行分类(不要有任何要求)

让学生先独立思考,然后小组合作交流自己的想法。

2.小组汇报分类的想法。小组之间在倾听的过程中逐渐完善自己本组的想法。

让小组的代表说说自己组是怎样分类的?为什么这样分类?

3.教师根据各小组的分类进行小结:像这样的用等号连接左右两边的叫做等式。像这样的这一类叫方程。板书课题。(在学生分类的基础上)

4.小组探究“什么是方程?”(先观察式子,独立思考,后小组交流)

5.小组汇报各组的想法。在各组倾听的基础上逐渐完善自己的想法。

6.教师在学生小组汇报的基础上进行小结:像这样,含有未知数的等式叫方程。

7.生举例。

8、师举例,让学生说哪些是方程哪些不是方程,并说明理由。

9、通过刚才的几道算式,让学生说说对方程又有了哪些新的认识?

10、判断两句话:所有的方程都是等式,所有的等式都是方程。

11、画图表示方程与等式之间的关系。

三、应用练习

1.判断下列式子是不是方程。

2.看图列方程。

3.根据题意列方程。

四、拓展延伸

1、谈谈自己在知识和情感上的收获。

2、送给同学们一个方程:天才+X=成功。

万能的数学教案篇8

教学目标:

1、初步掌握圆的特征,会用各种方法画圆;体验数学与日常生活密切相关,能用圆的知识来解释生活中的现象或用生活中的现象来解释圆的特征;

2、使学生通过想象与验证、观察与分析、动手操作、合作交流等活动,获得基本的数学知识和技能,进一步发展学生思维能力和初步的空间观念。

3、让学生在知识的主动建构过程中掌握一些数学的思想方法,发挥学生学习的主动性、独立性、合作性,培养学生的问题意识和创新意识。

教学重点:认识圆、掌握圆的特征,会画圆

教学难点:准确认识、掌握圆的特征并理解其在生活中的运用

教具学具:圆规、直尺、课件、圆纸片、学生自带一个轮廓为圆的物体

教学过程:

课前谈话:

认识我吗?了解我吗?能给同学们介绍一下我这个人有什么特点吗?看来认识一个人、一件事物,都应通过“观察——接触——研究——归纳”,才能达到真正认识!

讨论“套圈儿”游戏的规则引出“圆”

(宣布上课!)

一.情景引入、激发探究兴趣

圆在生活中太常见了!许多物体的形状与圆有关。你能举个例子吗?

古人最早是从日月的形状认识圆的,直到现在人们仍然喜欢用日月来形容一些圆的东西,古今中外的建筑设计以及各种平面图案的设计中,由于用到了圆而格外漂亮!请同学们看大屏幕,我们一起来欣赏、感受一下生活中的圆!

课件演示——最后抽象出数学的“圆”。

万能的数学教案篇9

古典概型

一、目标引领

1.理解随机事件和古典概率的概念?.

2.会用列举法计算一些随机事件所含的基本事件数及事件发生的概率.

?重点及难点

重点是求随机事件的概率,难点是如何判断一个随机事件是否是古典概型,搞清随机事件所包含的基本事件的个数及其总数.

?二、自学探究

在课前,教师布置任务,以数学小组为单位,完成下面两个模拟试验,

试验一:抛掷一枚质地均匀的硬币,分别记录“正面朝上”和“反面朝上”的次数,要求每个数学小组至少完成30次(最好是整十数),最后由课代表汇总.

试验二:抛掷一枚质地均匀的骰子,分别记录“1点”、“2点”、“3点”、“4点”、“5点”和“6点”的次数,要求每个数学小组至少完成30次,最后由课代表汇总.

三、合作交流

在我们所做的每个实验中,有几个结果,每个结果出现的概率是多少?

学生回答:

在试验一中结果只有两个,即“正面朝上”和“反面朝上”,并且他们都是相互独立的,由于硬币质地是均匀的,因此出现两种结果的可能性相等,即它们的概率都是.

在试验二中结果有六个,即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”,并且他们都是相互独立的,由于骰子质地是均匀的,因此出现六种结果可能性相等,即它们的概率都是.

引入新的概念:

基本事件:我们把试验可能出现的结果叫做基本事件.

古典概率:把具有以下两个特点的概率模型叫做古典概率.

(1)一次试验所有的基本事件只有有限个.

例如试验一中只有“正面朝上”和“反面朝上”两种结果,即有两个基本事件.试验二中结果有六个,即有六个基本事件.

(2)每个基本事件出现的可能性相等.

试验一和试验二其基本事件出现的可能性均相同.

随机现象:对于在一定条件下可能出现也可能不能出现,且有统计规律性的现象叫做随机现象.试验一抛掷硬币的游戏中,可能出现“正面朝上”也可能出现“反面朝上”,这就是随机现象.

随机事件:在概率论中,掷骰子、转硬币……都叫做试验,试验的结果叫做随机事件.例如掷骰子的结果中“是偶数”、“是奇数”、“大于2”等等都是随机事件.随机事件“是偶数”就是由基本事件“2点”、“4点”、“6点”构成.随机事件一般用大写英文字母A、B等来表示.

必然事件:试验后必定出现的事件叫做必然事件,记作.例如掷骰子的结果中“都是整数”、“都大于0”等都是必然事件.

不可能事件:实验中不可能出现的事件叫做不可能事件,

基本事件有如下的两个特点:

(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.

四、精讲点拨

例1:从字母a、b、c、d任意取出两个不同字母的试验中,有哪些基本事件?

解:有ab,ac,ad,bc,bd,cd.

例2:(1)向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概率吗?为什么?

答:不是古典概型,因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概率的第一个条件.

万能的数学教案篇10

【教学目标】

1、认知目标:在看一看、想一想、折一折、说一说、一系列活动中,理解分数的意义,初步认识几分之一,会读写分数。

2、能力目标:通过小组的合作学习培养学生的观察能力,动手操作能力和语言表达能力。

3、情感目标:在动手操作,观察比较中,培养学生勇于探索和自主学习的精神,使之获得成功的体验。

【教学重点】理解分数的意义,初步认识几分之一,会读写分数

【教学难点】理解分数的实际意义。

【教学准备】多媒体课件和学生用具

【教学过程】

一、谈话,导入新课。

同学们,请看大屏幕,小厨师在干什么?(分食物)那么他是怎样分的?从而体会到半个用我们以前学过的数无法表示,从而引入对新知的学习。

(板书:分数的初步认识)

二、出示学习目标,齐读学习目标

1、结合具体情境,理解几分之一的意义。

2、会读写简单的分数。

3、知道分数各部分的名称。

三、自学指导

认真看课本91页到92页内容,重点看前两个红点内容,思考下面问题:

1、一半可以怎样表示?怎样读、写?

2、二分之一是什么意思?

四、先学后教

1、学生根据自学指导,自学,老师巡视督促学生学习。

2、检测自学效果。

(1)认识

师提问一半怎样表示?(指名回答)那么怎么写呢?课件演示书写顺序,让学生先观察,在指名说一说。最后板书时让学生伸出手和老师一起写,并认识分数各部分的名称。怎么读?指名读。

谁能结合刚才分月饼的过程说一说表示什么意思?

(指导学生说出:表示把一个月饼平均分成两份,每份是它的二分之一。)

师:指名学生再次说说的意思

师:(师指另一份月饼)那这一份呢?(让学生明白另一份也是这个月饼的)

(2)理解

(3)体会分数的实际意义

师:大家想想,半个月饼可以是,生活中还有哪些东西可以是这样分的?

生:一个苹果、一个蛋糕……(用生活实例完整地说一说所表示的具体含义)

(4)动手折一折

师:其实,我们的长方形、正方形、圆形纸片上也都藏着,请同学任选你喜欢的一种图形,折一折,用斜线涂出你想认识的二分之一。想一想:你把这个图形平均分成了几份?涂色部分的是这个图形的几分之一?

师:(巡视指导),做完的同学同桌互相小声说说,你是怎样得到这张纸的的?

展示学生的作品,启发学生想一想:这些图形各不相同,为什么都可以用来表示?

生:都是把这些图形平均分成两份,所以每份都是它的。

师:对!只要把一个图形平均分成两份,每份就是它的。

3、判断,引出

师:老师也折了几种图形,涂色部分是不是它们的呢?请大家用手势判断“对”或“错”,看谁反应快!

4、探索

(1)认识

师:谁来说说表示什么意思?指名回答

师:谁会写?(一生上台板演,全班书空。)

(2)探索

师:拿出你手中的正方形纸片,折出四分之一。小组先讨论一下不同的折法,然后再动手,比一比哪一组的方法又多又好。

生:小组合作,小组交流,

师:抽一个代表看图说说表示的含义。

师:追问,这些图形都相同,折法不同,为什么每份都能用来表示?

生:都是把正方形平均分成了四份,每份都是它的。

师:很正确!只要把一个图形平均分成四份,每份都是它的。

5、猜测创造

师:我们认识了和,猜一猜还会有几分之一?

生:(……)

五、巩固练习、拓展应用

聪明的你们,通过自己的努力,初步认识了分数,相信下面的练习肯定轻松过关。

1、基本练习

说出涂色部分占整个图形的几分之一。

2、巩固练习

看分数涂颜色。

六、回顾总结。

让学生说说都有哪些收获?

万能的数学教案篇11

一、活动目标:

1、感知实物的大小,认识大小标记,能根据大小标记正确的摆放物品。

2、观察实物大小,学会正确匹配大小标记,并乐于和同伴一起探索用身体动作表示大小。

3、正确握笔,要求进行连线操作活动,大胆的用语言讲述。

二、活动描述:

前几天我上了一节园内教研课——小班数学《大大和小小》。本次活动有三个环节,第一个环节是出示两只熊让幼儿用目测的方法说出哪只大,哪只小,然后过渡到让幼儿给两只熊送礼物,最后是游戏找朋友。本次活动难点是区别大小并进行分类,会用语言表达“大的__给大熊,小的__给小熊”。在活动开始时,我首先准备了一大一小两只熊,请小朋友观察比较,哪只熊大,哪只熊小,这一环节结束后,让幼儿把两只熊送到事先准备好的两间房子里,并强调大熊喜欢住大房子,小熊喜欢住小房子,幼儿很快地比较出了房子的大小并把两只熊分别送到他们住的房子里。到了给两只熊送礼物的环节,我说今天是大熊和小熊的生日,我们给他们送些礼物好不好,记住了大熊喜欢用大的东西,小熊喜欢用小的东西,我们送礼物的时候一定要说“大的__给大熊,小的__”给小熊,大多数幼儿的礼物都送对了。可是由于幼儿刚入园不久,语言表达能力还很弱。许多幼儿不会把这句话连贯地表达出来。第三个环节是今天大熊和小熊收到了这么多的礼物非常高兴,想到草地上去玩了,他们邀请小动物们一起玩,大熊和大的动物玩,小熊和小的动物玩,幼儿拿出老师事先准备好的小动物送到草地上,这一环节和第二个环节差不多,幼儿的操作很快地完成了而且兴趣浓厚。

三、活动反思:

“纲要”指出:“提供丰富的可操作材料,为每个幼儿都能运用多种感官、多种方式进行探索提供活动的条件”;数学活动作为探索性活动的形式之一,有益于对幼儿进行思维的训练,而操作材料又是教育目标的载体。在数学活动中优化操作材料,将枯燥抽象的数学知识,用不同形式的操作材料表现出来,才能使幼儿能随机地感知数学、走进数学。

在材料提供时,教师应考虑幼儿的年龄特点,通过观察,发现现阶段孩子的兴趣需要,考虑现阶段的培养目标,与教育目标保持一致,使材料充分满足幼儿的发展需要,为孩子准备的材料尽量具有实用性和生活性原则。

这次活动中老师以大熊和小熊的情节开展活动,这些富有娱乐性的材料能吸引幼儿的注意力,激发幼儿的好奇心,使他们能有兴趣地反复多次地进行练习。尤其是最后的得到礼物,礼物是比较可得,又是孩子很喜欢的,充分调动了孩子的参与积极性,孩子人人都能参与,既巩固了孩子的知识,又获得成功的体验,一举多得。

但是通过上课、反思,我也意识到本次活动有不足之处。在整个活动中,一个环节向下一个环节过渡时,都是由老师提出问题,幼儿操作,老师过多的去牵着幼儿走,应该让他们独立完成,这样才能看出幼儿对本次活动的掌握的`差异,以对个别没掌握的幼儿进行巩固辅导。此外还存在一些问题,比如幼儿在语言表达方面耽误了一些时间,使得整个活动的时间有所延长。在本次活动中,我的语言组织还不够精炼、生动有趣,导致一小部分幼儿注意力分散,与此同时更要对幼儿的常规教育做进一步的强化,这些都是以后教学中不能忽略地方。

万能的数学教案篇12

第10课时确定起跑线

主备人:时间:2014.9课型:实践活动课

教学内容:教材80—81页

教学目标:

1、通过数学活动让学生了解田径跑道的结构,学会确定跑道起跑线的方法。

2、结合具体的实际问题,通过观察、比较、分析、归纳等数学活动,让学生通过独立思考与合作交流等活动提高解决实际问题的能力。

3、在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,感受到数学知识在生活中的广泛应用。

教学重点:通过对跑道周长的计算,了解田径场跑道的结构,能根据所学知识解决确定起跑线的问题。

教学难点:综合运用圆的知识解答生活中遇到的实际问题,探究起跑线位置的设置与什么有关。

教学过程:

一、创设情景,提出问题:

1、播放2009年世界田径锦标赛男子100米决赛场面,博尔特以9秒58创新世界纪录。

师:为什么那么多人为这9秒58而欢呼不停?

(与学生聊一聊比赛中公平的话题。)

2、播放2009年世界田径锦标赛男子400米决赛场面。

师:看了两个比赛,你们有什么发现,又有什么想法?

学生交流:①100米跑运动员站在同一条起跑线上,而400米跑运动员为什么要站在不同的起跑线上?

②400米跑的起跑线位置是怎样安排的?外面跑道的运动员站在最前,这样公平吗?

3、今天,我们就带着这些问题走进运动场。(板书课题)

二、观察跑道、探究问题:

(一)观察思考,找出问题关键。

师:观察跑道图,每条跑道一圈的长度相等吗?差别在哪里?比赛的时候,是怎样解决这个问题的?怎样才能做到公平?

(二)分析比较,确定解决问题思路。

1、小组交流:观察跑道图,说一说,每一条跑道具体是由哪几部分组成的?内外跑道的差异是怎样形成的?

学生充分交流得出结论:

①跑道一圈长度=2条直道长度+一个圆的周长

②内外跑道的长度不一样是因为圆的周长不一样。

2、小组讨论:怎样找出相邻两个跑道的差距?

①分别把每条跑道的长度算出来,也就是计算2个直道长度与一个圆周长的总和,再相减,就是相邻两条跑道的差距。

②因为跑道的长度与直道无关,只要计算出各圆的周长,再算出相邻两圆的周长相差多少米,就是相邻跑道的差距。

(三)计算验证,解决问题:

师:计算圆的周长要知道什么?

生:直径

师:第一道的直径为72.6米,第二道是多少?第三道呢?

(让学生选择自己喜欢的方法进行计算)

方法一:计算完成下表。

方法二:

75.1×3.14-72.6×3.14=7.85(m)

77.6×3.14-75.1×3.14=7.85(m)……

师:刚才大家通过计算已经知道了400米跑相邻两个跑道长度大约相差7.85米,也就是相邻跑道的起跑线应该相差7.85米。哪一种方法更快更简便呢?

生:第二种方法更简便。

师:如果我们计算圆的周长时直接用π表示,你有什么发现?

(72.6+1.25×2)π-72.6π

=72.6π-72.6π+1.25×2×π

=1.25×2×π

(75.1+1.25×2)π-75.1π

=75.1π-75.1π+1.25×2×π

=1.25×2×π……

(相邻跑道起跑线相差都是“跑道宽×2×π”)

师:从这里可以看出:起跑线的确定与什么关系最为密切?

生:与跑道的宽度关系最为密切。

小结:同学们经过努力终于找到了确定起跑线的秘密!其实只要知道了跑道的宽度,就能确定起跑线的位置。

三、巩固应用,形成技能:

小学生运动会的跑道宽比成人比赛的跑道宽要窄些,要开小学生运动会,你能帮裁判计算出相邻两条跑道的起跑线又该相差多少米吗?400米的跑步比赛,跑道宽为1米,起跑线该依次提前多少米?如果跑道宽是1.2米呢?

四、回顾小结,体验收获:

谈一谈,这节课你有什么收获?

万能的数学教案篇13

活动目标:

1、引导幼儿初步认识正方形,感知正方形有4个一样大的角和4条一样长的边。

2、能在周围环境中找到正方形物体或正方形物体的某一面。

3、引发幼儿学习的兴趣。

4、培养幼儿边操作边讲述的习惯。

活动准备:

1、学具:4根一样长小棒,图形卡片若干。

2、教具:画有各种图形的图片。

正方形的实物,如手帕、围巾、魔方、积木。

活动过程:

1、幼儿操作,拼搭正方形,感知正方形的特征。

⑴比比4根小棒是否一样长。

⑵请幼儿用4根小棒给小动物搭个四四方方的家。

⑶讨论:小动物的家是什么形状?数一数这个图形有几条边几个角?

⑷教师小结(用正方形彩纸演示):这种四四方方的图形叫正方形。正方形有四条边、四条边一样长;正方形还有四个角、四个角一样大。

2、出示实物,加深对正方形特征的认知。

⑴出示手帕。手帕是什么形状?它有几条边?几个角?

⑵出示正方体积木。积木的什么地方是正方形。

⑶想一想,找一找,教室里或者家里还有哪些东西也是正方形。

⑷出示教具图片,逐幅引导幼儿找出每个物体中哪些是正方形。

3、游戏:练习从众多图形中找到正方形。

游戏名称:

狐狸找家

游戏玩法:

⑴观察场地上哪些圈中是正方形;

⑵教师扮狐狸,幼儿扮小鸡,边念儿歌边做动作,听到“狐狸来了”的信号,小鸡赶紧躲到贴有正方形的圈中。

【活动反思】

运用游戏的形式开展数学活动,符合小班的年龄特点,在整个活动中幼儿始终沉浸在游戏的欢乐中,兴趣很高。

老师针对低年龄的幼儿的特点,以出示神秘袋的方法吸引幼儿仔细观察老师出示的图形,幼儿果然变得专心了,进行对比之后,之后出示孩子们比较喜欢的交通工具火车,让孩子们进一步感知活动内容,继而通过游戏巩固所学知识点,在选饼干的过程中,使活动内容分回归生活。

本次活动的选材十分适合小班幼儿的认知年龄特点,抓住了他们的最近发展区,用多种形式达到了一个目标,逐层推进、逐步提高要求。各环节环环相扣,紧密联系,使幼儿的注意力始终处于集中状态。教师还注重了低年龄幼儿的语言、社会能力的发展。若在最后环节添上一些让幼儿的情绪得到高涨的游戏活动会更贴切小班幼儿的心理。

万能的数学教案篇14

教学目标:

情意目标:培养学生团结协作的精神,体验探究成功的乐趣。

能力目标:能利用等腰梯形的性质解简单的几何计算、证明题;培养学生探究问题、自主学习的能力。

认知目标:了解梯形的概念及其分类;掌握等腰梯形的性质。

教学重点、难点

重点:等腰梯形性质的探索;

难点:梯形中辅助线的添加。

教学课件:PowerPoint演示文稿

教学方法:启发法、

学习方法:讨论法、合作法、练习法

教学过程:

(一)导入

1、出示图片,说出每辆汽车车窗形状(投影)

2、板书课题:5梯形

3、练习:下列图形中哪些图形是梯形?(投影)

结梯形概念:只有4、总结梯形概念:一组对边平行另以组对边不平行的四边形是梯形。

5、指出图形中各部位的名称:上底、下底、腰、高、对角线。(投影)

6、特殊梯形的分类:(投影)

(二)等腰梯形性质的探究

【探究性质一】

思考:在等腰梯形中,如果将一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎样的三角形?(投影)

猜想:由此你能得到等腰梯形的内角有什么样的性质?(学生操作、讨论、作答)

如图,等腰梯形ABCD中,AD∥BC,AB=CD。求证:∠B=∠C

想一想:等腰梯形ABCD中,∠A与∠D是否相等?为什么?

等腰梯形性质:等腰梯形的同一条底边上的两个内角相等。

【操练】

(1)如图,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,则腰AB=cm。(投影)

(2)如图,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延长线于点E,CA平分∠BCD,求证:∠B=2∠E.(投影)

【探究性质二】

如果连接等腰梯形的两条对角线,图中有哪几对全等三角形?哪些线段相等?(学生操作、讨论、作答)

如上图,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求证:AC=BD。(投影)

等腰梯形性质:等腰梯形的两条对角线相等。

【探究性质三】

问题一:延长等腰梯形的两腰,哪些三角形是轴对称图形?为什么?对称轴呢?(学生操作、作答)

问题二:等腰梯是否轴对称图形?为什么?对称轴是什么?(重点讨论)

等腰梯形性质:同以底上的两个内角相等,对角线相等

(三)质疑反思、小结

让学生回顾本课教学内容,并提出尚存问题;

学生小结,教师视具体情况给予提示:性质(从边、角、对角线、对称性等角度总结)、解题方法(化梯形问题为三角形及平行四边形问题)、梯形中辅助线的添加方法。

万能的数学教案篇15

一、学习目标

(一)学习内容

义务教育教科书(人教版)一年级下册第8页~第11页,及练习二的第1--3题。

十几减9是20以内退位减法的第一课时,是今后学习十几减几,多位数计算和其他数学知识最基础的部分。通过创设实际问题的情境,列出减法算式。让学生通过操作活动,理解算理,并形成的算法,形成运算能力。

(二)核心能力

《十几减9》属于数与代数领域内容,通过本单元学习,使学生能熟练地口算20以内的加减法,经历与他人交流各自算法的过程,培养运算能力。

(三)学习目标

1.通过观察和操作,合作探究,会用自己的语言表达与同伴交流15-9的计算方法。

2.在展示交流中,体会15-9算法的多样化,通过对比分析,会选择优化的方法,提升运算能力。

3.在解决问题的过程中,感受数学来源于生活,能运用十几减9正确解决生活中相关的实际问题。

(四)学习重点

掌握十几减9的计算方法。

(五)教学难点

理解“破十法”的计算算理和方法。

(六)配套资源

实施资源:《十几减9》名师教学课件、《十几减9》课时作业。

二、学习设计

(一)复习导入

1.拍手游戏:10的组成。

我拍1,你拍9,1和9组成10。

我拍2,你拍8,2和8组成10。

…………

9和几可以凑成10?看到9想到几?8和几凑成10,看到8想到几?

2.复习十几的组成

师:比一比,看谁抢答的快。16可以分成10和几?12可以分成10和几?19可以分成10和几?

(二)探究新知

1.观察主题图,提出问题

师:这是游园会活动,说一说你看到了什么?发现了哪些数学信息?

指导观察方法:观察图上的信息要有一定的顺序,结合具体的每项活动说说你发现的数学信息,并提出数学问题。

师:咱们一起看小丑卖气球这幅图:你发现了哪些数学信息?能提出一个数学问题吗?

预设:小丑有15个气球,卖出9个,还剩多少个?

师:今天我们就一起来研究十几减9的口算方法。

设计意图:主题图中活动项目很多,数学信息很零碎,教师引导学生有序观察,收集信息和提出与信息相关的问题,初步培养学生有序观察,找与对应信息相关,并提出问题的逻辑分析能力。

2.探究十几减9的计算方法和理解算理

(1)列出算式,自主尝试计算

师:要求“气球还剩多少个”怎样列式?板书:15-9=

(2)操作与思维、表达相结合,理解算理,提升算法

师:15个气球,拿走9个该怎么拿呢?先想一想,再拿一拿,然后和同桌说一说你是怎么拿的。

学生活动汇报预设:

方法一:从15根小棒的下面先拿走5根,再从上面一行拿走4根,还剩6根。

师:刚才这个同学是怎么拿的?谁听清楚了,谁能上来边说边拿?

教师结合情况边说边逐步形成板书:

师:刚才我们是先从下面拿走5根,再从上面拿走4根,实际上是把9分成了5和4,先算15里面的5-5,再算15里面的10-4=6.

师:谁能像老师这样,结合刚才拿的方法来说一说15-9可以怎么算?

(一生照样子说后,同桌相互说一说计算过程)

师:谁还有不同的拿法吗?

方法二:从上面一并拿走9根,还剩1根,和下面的5根合起来是6根。

师:谁能结合他的拿法来说一说15-9可以怎么算?

(同桌相互说一说,找个别学生汇报)

生:先把15分成10和5,从10里去掉9,剩下的1与5合起来是6。

板书:

师:“10”表示哪些小棒?为什么把15分成5和10?“1”表示哪根小棒?“5+1”表示什么意思?

师:你能给这个方法起个名字吗?

动手操作重点理解“破十法”的算法和算理

(1)画出15个圆,左边10个,右边5个。

(2)从中圈出9个,想一想怎么圈。

结合画图过程,用语言表达计算过程。先算什么?再算什么?并完成下面括号的填写。

15-9=()因为()-9=(),()+5=()

师:谁还有不同的方法?

生:想加法算减法,因为9+6=15,所以15-9=6

师:刚才我们在计算15-9=?时想到了不同的方法,有的想加算减,有的是把15分成10和5,先算10-9=1,再算1+5=6,有的是先算5-5=0,再算10-4=6你最喜欢哪种方法?

设计意图:让学生从操作辅助到离开学具操作进行表象操作,从结合操作活动到分析算理,到逐渐脱离操作说明算理,教学过程的展开“扶得合理,放得适度”,思维层次不断提升,知识不断内化。

3.巩固练习

(1)圈一圈,算一算。

师:怎么计算12-9=?先圈一圈,再说一说你是怎么算的,先算什么?再算什么?

生:10-9=11+2=3

师:不操作,你能直接说说怎么计算14-9=?

设计意图:学生通过动手操作、闭眼想象、归纳,将操作、语言和算式充分地联系起来,从而将多种表征方式相结合,帮助学生理解用“破十法”计算15-9的算理。

(2)圈一圈,算一算:独立完成课本第10页“做一做”第2题。

(3)完成练习二第1题。

(三)课堂

全班交流,今天你学会用哪种方法计算十几减9的算式?你更喜欢哪种计算方法?

(四)课时作业

1.练习二第2题送信。

先让学生进行游戏,游戏完之后把信件按顺序:11-9、12-9、13-9、14-9、15-9、16-9、17-9、18-9

师:大家有什么发现?

师:十几减9的差为什么比被减数个位上的数多1呢?

师:你更喜欢用哪种方法计算十几减9?

用你喜欢的方法计算。

11-9=13-9=16-9=18-9=17-9=

师巡视,观察学生选择的计算方法,学生汇报,交流自己的计算方法。

知识点十几减9的计算方法。

答案略

解析通过游戏形式练习,了解学生对十几减9计算方法的掌握情况,接下来按顺序摆放让学生发现规律,并说出十几减9的差为什么比被减数个位上的数多1的道理,提高学生的理解能力和运算能力。

2.结合生活实际,编一道用“16-9”解决的实际问题。

知识点十几减9的应用。

答案略

解析通过学生编题,让学生发现计算和生活的联系,培养学生用数学的眼光观察生活,积累数学素养。

3.看图列式。

(1)(2)

知识点让学生观察分析图中的信息和问题,提高学生看图列式的能力。

答案18-9=915-9=6

解析这两道题都是已知总数和其中一部分,求另一部分的问题,都用减法计算。此题培养学生看图能力的同时,利用所学知识解决生活中的问题。

4.解决问题。

一共有17人排队做操,小红的左边有多少人?

知识点让学生结合生活经验,列出算式。体会所学知识的价值,并提高解决实际问题的能力。

答案17-9-1=7(人)

解析结合生活中排队做操的情境,用总人数减去小红右边的9人,再减去小红1个人,就是小红左边的人数。

43626