教案吧 > 学科教案 > 数学教案 >

高中数学教案ppt模板

时间: 新华 数学教案

写教案时,需要注重教学策略和教学方法的设计,选择合适的教学手段,以便提高教学效果。高中数学教案ppt模板规范是怎样的?下面给大家整理了一些高中数学教案ppt模板,供大家参考。

高中数学教案ppt模板篇1

教学准备

教学目标

掌握三角函数模型应用基本步骤:

(1)根据图象建立解析式;

(2)根据解析式作出图象;

(3)将实际问题抽象为与三角函数有关的简单函数模型·

教学重难点

·利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型·

教学过程

一、练习讲解:《习案》作业十三的第3、4题

3、一根为Lcm的线,一端固定,另一端悬挂一个小球,组成一个单摆,小球摆动时,离开平衡位置的位移s(单位:cm)与时间t(单位:s)的函数关系是

(1)求小球摆动的周期和频率;(2)已知g=24500px/s2,要使小球摆动的周期恰好是1秒,线的长度l应当是多少?

(1)选用一个函数来近似描述这个港口的水深与时间的函数关系,并给出整点时的`水深的近似数值

(精确到0·001)·

(2)一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1·5米的安全间隙(船底与洋底的距离),该船何时能进入港口?在港口能呆多久?

(3)若某船的吃水深度为4米,安全间隙为1·5米,该船在2:00开始卸货,吃水深度以每小时0·3

米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?

本题的解答中,给出货船的进、出港时间,一方面要注意利用周期性以及问题的条件,另一方面还要注意考虑实际意义。关于课本第64页的“思考”问题,实际上,在货船的安全水深正好与港口水深相等时停止卸货将船驶向较深的水域是不行的,因为这样不能保证船有足够的时间发动螺旋桨。

练习:教材P65面3题

三、小结:1、三角函数模型应用基本步骤:

(1)根据图象建立解析式;

(2)根据解析式作出图象;

(3)将实际问题抽象为与三角函数有关的简单函数模型·

2、利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型·

四、作业《习案》作业十四及十五。

高中数学教案ppt模板篇2

教学目标:

1、椭圆是圆锥曲线的一种,是高中数学教学中的重点和难点,所以这部分内容中的知识点学生必须达到理解、应用的水平;

2、利用投影、计算机模拟动点的运动,增强直观性,激励学生的学习动机,培养学生的数学想象和抽象思维能力。

教学重点:对椭圆定义的理解,其中a>c容易出错。

教学难点:方程的推导过程。

教学过程(www.fwsir.com):

(1)复习

提问:动点轨迹的一般求法?

(通过回忆性质的提问,明示这节课所要学的内 容与原来所学知识之间的内在联系。并为后面椭圆的标准方程的推导作好准备。)

(2)引入

举例:椭圆是常见的图形,如:汽车油罐的横截面,立体几何中圆的直观图,天体中,行星绕太阳运行的轨道等等;

计算机:动态演示行星运行的轨道。

(进一步使学生明确学习椭圆的重要性和必要性,借计算机形成生动的直观,使学生印象加深,以便更好地掌握椭圆的形状。)

(3)教学实施

投影:椭圆的定义:

平面内与两个定点F1、F2的距离的和等于常数(大于F1F2)的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距(一般用2c表示)

常数一般用2表示。(讲解定义时要注意条件:)

计算机:动态模拟动点轨迹的形成过程。

提问:如何求轨迹的方程?

(引导学生推导椭圆的标准方程)

板书:椭圆的标准方程的推导过程。(略)

(推导中注意:1)结合已画出的图形建立坐标系,容易为学生所接受;2)在推导过程中,要抓住“怎样消去方程中的根式”这一关键问题,演算虽较繁,也能迎刃而解;3)其中焦点为F1(,0)、F2(c,0),;4)如果焦点在轴上,焦点为F1(0,)、F2(0,c),只要将方程中,互换就可得到它的`方程)

投影:椭圆的标准方程:

()

()    

投影:例1平面内两个定点的距离是8,写出到这两个定点的距离的和是10的点的轨迹方程

(由椭圆的定义可知:所求轨迹为椭圆;则只要求出、、即可)

形成性练习:课本P74:2,3

(4)小结    本节课学习了椭圆的定义及标准方程,应注意以下几点:

①椭圆的定义中,

②椭圆的标准方程中,焦点的位置看,的分母大小来确定

③、、的几何意义

(5)作业

P80:2,4(1)(3)

高中数学教案ppt模板篇3

教学目标

(1)正确理解排列的意义。能利用树形图写出简单问题的所有排列;

(2)了解排列和排列数的意义,能根据具体的问题,写出符合要求的排列;

(3)掌握排列数公式,并能根据具体的问题,写出符合要求的排列数;

(4)会分析与数字有关的排列问题,培养学生的抽象能力和逻辑思维能力;

(5)通过对排列应用问题的学习,让学生通过对具体事例的观察、归纳中找出规律,得出结论,以培养学生严谨的学习态度。

教学建议

一、知识结构

二、重点难点分析

本小节的重点是排列的定义、排列数及排列数的公式,并运用这个公式去解决有关排列数的应用问题。难点是导出排列数的公式和解有关排列的应用题。突破重点、难点的关键是对加法原理和乘法原理的掌握和运用,并将这两个原理的基本思想方法贯穿在解决排列应用问题当中。

从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排成一列,称为从n个不同元素中任取m个元素的一个排列。因此,两个相同排列,当且仅当他们的元素完全相同,并且元素的排列顺序也完全相同。排列数是指从n个不同元素中任取m(m≤n)个元素的所有不同排列的种数,只要弄清相同排列、不同排列,才有可能计算相应的排列数。排列与排列数是两个概念,前者是具有m个元素的排列,后者是这种排列的不同种数。从集合的角度看,从n个元素的有限集中取出m个组成的有序集,相当于一个排列,而这种有序集的个数,就是相应的排列数。

公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解。要重点分析好的推导。

排列的应用题是本节教材的难点,通过本节例题的分析,应注意培养学生解决应用问题的能力。

在分析应用题的`解法时,教材上先画出框图,然后分析逐次填入时的种数,这样解释比较直观,教学上要充分利用,要求学生作题时也应尽量采用。

在教学排列应用题时,开始应要求学生写解法要有简要的文字说明,防止单纯的只写一个排列数,这样可以培养学生的分析问题的能力,在基本掌握之后,可以逐渐地不作这方面的要求。

三、教法建议

①在讲解排列数的概念时,要注意区分“排列数”与“一个排列”这两个概念。一个排列是指“从n个不同元素中,任取出m个元素,按照一定的顺序摆成一排”,它不是一个数,而是具体的一件事;排列数是指“从n个不同元素中取出m个元素的所有排列的个数”,它是一个数。例如,从3个元素a,b,c中每次取出2个元素,按照一定的顺序排成一排,有如下几种:

ab,ac,ba,bc,ca,cb,

其中每一种都叫一个排列,共有6种,而数字6就是排列数,符号表示排列数。

②排列的定义中包含两个基本内容,一是“取出元素”,二是“按一定顺序排列”。

从定义知,只有当元素完全相同,并且元素排列的顺序也完全相同时,才是同一个排列,元素完全不同,或元素部分相同或元素完全相同而顺序不同的排列,都不是同一排列。叫不同排列。

在定义中“一定顺序”就是说与位置有关,在实际问题中,要由具体问题的性质和条件来决定,这一点要特别注意,这也是与后面学习的组合的根本区别。

在排列的定义中,如果有的书上叫选排列,如果,此时叫全排列。

要特别注意,不加特殊说明,本章不研究重复排列问题。

③关于排列数公式的推导的教学。公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解。课本上用的是不完全归纳法,先推导,,…,再推广到,这样由特殊到一般,由具体到抽象的讲法,学生是不难理解的。

导出公式后要分析这个公式的构成特点,以便帮助学生正确地记忆公式,防止学生在“n”、“m”比较复杂的时候把公式写错。这个公式的特点可见课本第229页的一段话:“其中,公式右边第一个因数是n,后面每个因数都比它前面一个因数少1,最后一个因数是,共m个因数相乘。”这实际是讲三个特点:第一个因数是什么?最后一个因数是什么?一共有多少个连续的自然数相乘。

公式是在引出全排列数公式后,将排列数公式变形后得到的公式。对这个公式指出两点:

(1)在一般情况下,要计算具体的排列数的值,常用前一个公式,而要对含有字母的排列数的式子进行变形或作有关的论证,要用到这个公式,教材中第230页例2就是用这个公式证明的问题;

(2)为使这个公式在时也能成立,规定,如同时一样,是一种规定,因此,不能按阶乘数的原意作解释。

④建议应充分利用树形图对问题进行分析,这样比较直观,便于理解。

⑤学生在开始做排列应用题的作业时,应要求他们写出解法的简要说明,而不能只列出算式、得出答数,这样有利于学生得更加扎实。随着学生解题熟练程度的提高,可以逐步降低这种要求。

高中数学教案ppt模板篇4

教学目标

知识与技能目标:

本节的中心任务是研究导数的几何意义及其应用,概念的形成分为三个层次:

(1) 通过复习旧知“求导数的两个步骤”以及“平均变化率与割线斜率的关系”,解决了平均变化率的几何意义后,明确探究导数的几何意义可以依据导数概念的形成寻求解决问题的途径。

(2) 从圆中割线和切线的变化联系,推广到一般曲线中用割线逼近的方法直观定义切线。

(3) 依据割线与切线的变化联系,数形结合探究函数导数的几何意义教案在导数的几何意义教案处的导数导数的几何意义教案的几何意义,使学生认识到导数导数的几何意义教案就是函数导数的几何意义教案的图象在导数的几何意义教案处的切线的斜率。即:

导数的几何意义教案=曲线在导数的几何意义教案处切线的斜率k

在此基础上,通过例题和练习使学生学会利用导数的几何意义解释实际生活问题,加深对导数内涵的理解。在学习过程中感受逼近的思想方法,了解“以直代曲”的数学思想方法。

过程与方法目标:

(1) 学生通过观察感知、动手探究,培养学生的动手和感知发现的能力。

(2) 学生通过对圆的切线和割线联系的认识,再类比探索一般曲线的情况,完善对切线的认知,感受逼近的思想,体会相切是种局部性质的本质,有助于数学思维能力的提高。

(3) 结合分层的探究问题和分层练习,期望各种层次的学生都可以凭借自己的能力尽力走在教师的前面,独立解决问题和发现新知、应用新知。

情感、态度、价值观:

(1) 通过在探究过程中渗透逼近和以直代曲思想,使学生了解近似与精确间的辨证关系;通过有限来认识无限,体验数学中转化思想的意义和价值;

(2) 在教学中向他们提供充分的从事数学活动的机会,如:探究活动,让学生自主探究新知,例题则采用练在讲之前,讲在关键处。在活动中激发学生的学习潜能,促进他们真正理解和掌握基本的数学知识技能、数学思想方法,获得广泛的数学活动经验,提高综合能力,学会学习,进一步在意志力、自信心、理性精神等情感与态度方面得到良好的发展。

教学重点与难点

重点:理解和掌握切线的新定义、导数的几何意义及应用于解决实际问题,体会数形结合、以直代曲的思想方法。

难点:发现、理解及应用导数的几何意义。

教学过程

一、复习提问

1.导数的定义是什么?求导数的三个步骤是什么?求函数y=x2在x=2处的导数.

定义:函数在导数的几何意义教案处的导数导数的几何意义教案就是函数在该点处的瞬时变化率。

求导数的步骤:

第一步:求平均变化率导数的几何意义教案;

第二步:求瞬时变化率导数的几何意义教案.

(即导数的几何意义教案,平均变化率趋近于的确定常数就是该点导数)

2.观察函数导数的几何意义教案的图象,平均变化率导数的几何意义教案 在图形中表示什么?

生:平均变化率表示的是割线PQ的斜率.导数的几何意义教案

师:这就是平均变化率(导数的几何意义教案)的几何意义,

3.瞬时变化率(导数的几何意义教案)在图中又表示什么呢?

如图2-1,设曲线C是函数y=f(x)的图象,点P(x0,y0)是曲线C上一点.点Q(x0+Δx,y0+Δy)是曲线C上与点P邻近的任一点,作割线PQ,当点Q沿着曲线C无限地趋近于点P,割线PQ便无限地趋近于某一极限位置PT,我们就把极限位置上的直线PT,叫做曲线C在点P处的切线.

导数的几何意义教案

追问:怎样确定曲线C在点P的切线呢?因为P是给定的,根据平面解析几何中直线的点斜式方程的知识,只要求出切线的斜率就够了.设割线PQ的倾斜角为导数的几何意义教案,切线PT的倾斜角为导数的几何意义教案,易知割线PQ的斜率为导数的几何意义教案。既然割线PQ的极限位置上的直线PT是切线,所以割线PQ斜率的极限就是切线PT的斜率导数的几何意义教案,即导数的几何意义教案。

由导数的定义知导数的几何意义教案 导数的几何意义教案。

导数的几何意义教案

由上式可知:曲线f(x)在点(x0,f(x0))处的切线的斜率就是y=f(x)在点x0处的导数f'(x0).今天我们就来探究导数的几何意义。

C类学生回答第1题,A,B类学生回答第2题在学生回答基础上教师重点讲评第3题,然后逐步引入导数的几何意义.

二、新课

1、导数的几何意义:

函数y=f(x)在点x0处的导数f'(x0)的几何意义,就是曲线y=f(x)在点(x0,f(x0))处切线的斜率.

即:导数的几何意义教案

口答练习:

(1)如果函数y=f(x)在已知点x0处的导数分别为下列情况f'(x0)=1,f'(x0)=1,f'(x0)=-1,f'(x0)=2.试求函数图像在对应点的切线的倾斜角,并说明切线各有什么特征。

(C层学生做)

(2)已知函数y=f(x)的图象(如图2-2),分别为以下三种情况的直线,通过观察确定函数在各点的导数.(A、B层学生做)

导数的几何意义教案

2、如何用导数研究函数的增减?

小结:附近:瞬时,增减:变化率,即研究函数在该点处的瞬时变化率,也就是导数。导数的正负即对应函数的增减。作出该点处的切线,可由切线的升降趋势,得切线斜率的正负即导数的正负,就可以判断函数的增减性,体会导数是研究函数增减、变化快慢的有效工具。

同时,结合以直代曲的思想,在某点附近的切线的变化情况与曲线的变化情况一样,也可以判断函数的增减性。都反应了导数是研究函数增减、变化快慢的有效工具。

例1 函数导数的几何意义教案上有一点导数的几何意义教案,求该点处的导数导数的几何意义教案,并由此解释函数的增减情况。

导数的几何意义教案

函数在定义域上任意点处的瞬时变化率都是3,函数在定义域内单调递增。(此时任意点处的切线就是直线本身,斜率就是变化率)

3、利用导数求曲线y=f(x)在点(x0,f(x0))处的切线方程.

例2 求曲线y=x2在点M(2,4)处的切线方程.

解:导数的几何意义教案

∴y'|x=2=2×2=4.

∴点M(2,4)处的切线方程为y-4=4(x-2),即4x-y-4=0.

由上例可归纳出求切线方程的两个步骤:

(1)先求出函数y=f(x)在点x0处的导数f'(x0).

(2)根据直线方程的点斜式,得切线方程为 y-y0=f'(x0)(x-x0).

提问:若在点(x0,f(x0))处切线PT的倾斜角为导数的几何意义教案导数的几何意义教案,求切线方程。(因为这时切线平行于y轴,而导数不存在,不能用上面方法求切线方程。根据切线定义可直接得切线方程导数的几何意义教案)

(先由C类学生来回答,再由A,B补充.)

例3 已知曲线导数的几何意义教案上一点导数的几何意义教案,求:(1)过P点的切线的斜率;

(2)过P点的切线的方程。

解:(1)导数的几何意义教案,

导数的几何意义教案

y'|x=2=22=4. ∴ 在点P处的切线的斜率等于4.

(2)在点P处的切线方程为导数的几何意义教案 即 12x-3y-16=0.

练习:求抛物线y=x2+2在点M(2,6)处的切线方程.

(答案:y'=2x,y'|x=2=4切线方程为4x-y-2=0).

B类学生做题,A类学生纠错。

三、小结

1.导数的几何意义.(C组学生回答)

2.利用导数求曲线y=f(x)在点(x0,f(x0))处的切线方程的步骤.

(B组学生回答)

四、布置作业

1. 求抛物线导数的几何意义教案在点(1,1)处的切线方程。

2.求抛物线y=4x-x2在点A(4,0)和点B(2,4)处的切线的斜率,切线的方程.

3. 求曲线y=2x-x3在点(-1,-1)处的切线的倾斜角

4.已知抛物线y=x2-4及直线y=x+2,求:(1)直线与抛物线交点的坐标; (2)抛物线在交点处的切线方程;

(C组学生完成1,2题;B组学生完成1,2,3题;A组学生完成2,3,4题)

教学反思:

本节内容是在学习了“变化率问题、导数的概念”等知识的基础上,研究导数的几何意义,由于新教材未设计极限,于是我尽量采用形象直观的方式,让学生通过动手作图,自我感受整个逼近的过程,让学生更加深刻地体会导数的几何意义及“以直代曲”的思想。

本节课主要围绕着“利用函数图象直观理解导数的几何意义”和“利用导数 的几何意义解释实际问题”两个教学重心展开。 先回忆导数的实际意义、数值意义,由数到形,自然引出从图形的角度研究导数的几何意义;然后,类比“平均变化率——瞬时变化率”的研究思路,运用逼近的思想定义了曲线上某点的切线,再引导学生从数形结合的角度思考,获得导数的几何意义——“导数是曲线上某点处切线的斜率”。

完成本节课第一阶段的内容学习后,教师点明,利用导数的几何意义,在研究实际问题时,某点附近的曲线可以用过此点的切线近似代替,即“以直代曲”,从而达到“以简单的对象刻画复杂对象”的目的,并通过两个例题的研究,让学生从不同的角度完整地体验导数与切线斜率的关系,并感受导数应用的广泛性。 本节课注重以学生为主体,每一个知识、每一个发现,总设法由学生自己得出,课堂上给予学生充足的思考时间和空间,让学生在动手操作、动笔演算等活动后,再组织讨论,本教师只是在关键处加以引导。从学生的作业看来,效果较好。

高中数学教案ppt模板篇5

教学目标

1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单的求最值问题;理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;培养学生探究能力以及分析问题解决问题的能力。

2、过程与方法目标:按照创设情景,提出问题→剖析归纳证明→几何解释→应用(最值的求法、实际问题的解决)的过程呈现。启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律的方法,体验成功的乐趣。

3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。

教学重难点

1、基本不等式成立时的三个限制条件(简称一正、二定、三相等);

2、利用基本不等式求解实际问题中的.最大值和最小值。

教学过程

一、创设情景,提出问题;

设计意图:数学教育必须基于学生的“数学现实”,现实情境问题是数学教学的平台,数学教师的任务之一就是帮助学生构造数学现实,并在此基础上发展他们的数学现实.基于此,设置如下情境:

上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。

[问]你能在这个图中找出一些相等关系或不等关系吗?

本背景意图在于利用图中相关面积间存在的数量关系,抽象出不等式

在此基础上,引导学生认识基本不等式。

三、理解升华:

1、文字语言叙述:

两个正数的算术平均数不小于它们的几何平均数。

2、联想数列的知识理解基本不等式

已知a,b是正数,A是a,b的等差中项,G是a,b的正的等比中项,A与G有无确定的大小关系?

两个正数的等差中项不小于它们正的等比中项。

3、符号语言叙述:

4、探究基本不等式证明方法:

[问]如何证明基本不等式?

(意图在于引领学生从感性认识基本不等式到理性证明,实现从感性认识到理性认识的升华,前面是从几何图形中的面积关系获得不等式的,下面用代数的思想,利用不等式的性质直接推导这个不等式。)

方法一:作差比较或由

展开证明。

方法二:分析法(完成课本填空)

设计依据:课本是学生了解世界的窗口和工具,所以,课本必须成为学生赖以学会学习的文本.在教学中要让学生学会认真看书、用心思考,养成讲讲议议、

动手动笔、仔细观察、用心体会的好习惯,真正学会读“数学书”。

点评:证明方法叫做分析法,实际上是寻找结论的充分条件,执果索因的一种思维方法.

5、探究基本不等式的几何意义:

借助初中阶段学生熟知的几何图形,引导学生

几何解释实质可认为是:在同一半圆中,半径不小于半弦(直径是最长的弦);或者认为是,直角三角形斜边的一半不小于斜边上的高。

四、探究归纳

下列命题中正确的是

结论:

若两正数的乘积为定值,则当且仅当两数相等时,它们的和有最小值;

若两正数的和为定值,则当且仅当两数相等时,它们的乘积有最大值。

简记为:“一正、二定、三相等”。

五、领悟练习:

公式应用之二:(最优化问题)

设计意图:新颖有趣、简单易懂、贴近生活的问题,不仅极大地增强学生的兴趣,拓宽学生的视野,更重要的是调动学生探究钻研的兴趣,引导学生加强对生活的关注,让学生体会:数学就在我们身边的生活中

(1)在学农期间,生态园中有一块面积为100m2的矩形茶地,为了保护茶叶的健康生长,学校决定用篱笆围起来,问这个矩形的长、宽各为多少时,所用篱笆最短。最短的篱笆是多少?

(2)现在学校仓库有一段长为36m的篱笆,要围成一个矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大。最大面积是多少?

六、反思总结,整合新知:

通过本节课的学习你有什么收获?取得了哪些经验教训?还有哪些问题需要

请教?

设计意图:通过反思、归纳,培养概括能力;帮助学生总结经验教训,巩固知识技能,提高认知水平.

老师根据情况完善如下:

两种思想:数形结合思想、归纳类比思想。

三个注意:基本不等式求函数的最大(小)值是注意:“一正二定三相等”

高中数学教案ppt模板篇6

如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的`公比,公比通常用字母q表示。

(1)等比数列的通项公式是:An=A1×q^(n-1)

若通项公式变形为an=a1/q-q^n(n∈N-),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q-q^x上的一群孤立的点。

(2)任意两项am,an的关系为an=am·q^(n-m)

(3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

(4)等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。

(5)等比求和:Sn=a1+a2+a3+.......+an

①当q≠1时,Sn=a1(1-q^n)/(1-q)或Sn=(a1-an×q)÷(1-q)

②当q=1时,Sn=n×a1(q=1)

记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。

高中数学教案ppt模板篇7

1.1.1任意角

教学目标

(一)知识与技能目标

理解任意角的概念(包括正角、负角、零角)与区间角的概念.

(二)过程与能力目标

会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.

(三)情感与态度目标

1.提高学生的推理能力;

2.培养学生应用意识.教学重点

任意角概念的理解;区间角的集合的书写.教学难点

终边相同角的集合的表示;区间角的集合的书写.

教学过程

一、引入:

1.回顾角的定义

①角的第一种定义是有公共端点的两条射线组成的图形叫做角.

②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.

二、新课:

1.角的有关概念:

①角的定义:

角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.

②角的名称:

③角的分类:A

正角:按逆时针方向旋转形成的角零角:射线没有任何旋转形成的角

负角:按顺时针方向旋转形成的角

④注意:

⑴在不引起混淆的情况下,“角α”或“∠α”可以简化成“α”;

⑵零角的终边与始边重合,如果α是零角α=0°;

⑶角的概念经过推广后,已包括正角、负角和零角.

⑤练习:请说出角α、β、γ各是多少度?

2.象限角的概念:

①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.

例1.在直角坐标系中,作出下列各角,并指出它们是第几象限的角.

⑴60°;⑵120°;⑶240°;⑷300°;⑸420°;⑹480°;

答:分别为1、2、3、4、1、2象限角.

3.探究:教材P3面

终边相同的角的表示:

所有与角α终边相同的角,连同α在内,可构成一个集合S={ββ=α+

k·360°,

k∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和.注意:⑴k∈Z

⑵α是任一角;

⑶终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差

360°的整数倍;

⑷角α+k·720°与角α终边相同,但不能表示与角α终边相同的所有角.

例2.在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角.

⑴-120°;

⑵640°;

⑶-950°12’.

答:⑴240°,第三象限角;

⑵280°,第四象限角;

⑶129°48’,第二象限角;

例4.写出终边在y轴上的角的集合(用0°到360°的角表示).解:{αα=90°+n·180°,n∈Z}.

例5.写出终边在y?x上的角的集合S,并把S中适合不等式-360°≤β<720°的元素β写出来.

4.课堂小结

①角的定义;

②角的分类:

正角:按逆时针方向旋转形成的角零角:射线没有任何旋转形成的角

负角:按顺时针方向旋转形成的角

③象限角;

④终边相同的角的表示法.

5.课后作业:

①阅读教材P2-P5;

②教材P5练习第1-5题;

③教材P.9习题1.1第1、2、3题思考题:已知α角是第三象限角,则2α,

解:??角属于第三象限,

?k·360°+180°<α<k·360°+270°(k∈Z)

因此,2k·360°+360°<2α<2k·360°+540°(k∈Z)即(2k+1)360°<2α<(2k+1)360°+180°(k∈Z)

故2α是第一、二象限或终边在y轴的非负半轴上的角.又k·180°+90°<

各是第几象限角?

<k·180°+135°(k∈Z).

<n·360°+135°(n∈Z),

当k为偶数时,令k=2n(n∈Z),则n·360°+90°<此时,

属于第二象限角

<n·360°+315°(n∈Z),

当k为奇数时,令k=2n+1(n∈Z),则n·360°+270°<此时,

属于第四象限角

因此

属于第二或第四象限角.

1.1.2弧度制

(一)

教学目标

(二)知识与技能目标

理解弧度的意义;了解角的集合与实数集R之间的可建立起一一对应的关系;熟记特殊角的弧度数.

(三)过程与能力目标

能正确地进行弧度与角度之间的换算,能推导弧度制下的弧长公式及扇形的面积公式,并能运用公式解决一些实际问题

(四)情感与态度目标

通过新的度量角的单位制(弧度制)的引进,培养学生求异创新的精神;通过对弧度制与角度制下弧长公式、扇形面积公式的对比,让学生感受弧长及扇形面积公式在弧度制下的简洁美.教学重点

弧度的概念.弧长公式及扇形的面积公式的推导与证明.教学难点

“角度制”与“弧度制”的区别与联系.

教学过程

一、复习角度制:

初中所学的角度制是怎样规定角的度量的?规定把周角的作为1度的角,用度做单位来度量角的制度叫做角度制.

二、新课:

1.引入:

由角度制的定义我们知道,角度是用来度量角的`,角度制的度量是60进制的,运用起来不太方便.在数学和其他许多科学研究中还要经常用到另一种度量角的制度—弧度制,它是如何定义呢?

2.定义

我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下,1弧度记做1rad.在实际运算中,常常将rad单位省略.

3.思考:

(1)一定大小的圆心角?所对应的弧长与半径的比值是否是确定的?与圆的半径大小有关吗?

(2)引导学生完成P6的探究并归纳:弧度制的性质:

①半圆所对的圆心角为

②整圆所对的圆心角为

③正角的弧度数是一个正数.

④负角的弧度数是一个负数.

⑤零角的弧度数是零.

⑥角α的弧度数的绝对值α=.

4.角度与弧度之间的转换:

①将角度化为弧度:

②将弧度化为角度:

5.常规写法:

①用弧度数表示角时,常常把弧度数写成多少π的形式,不必写成小数.

②弧度与角度不能混用.

弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积.

例1.把67°30’化成弧度.

例2.把?rad化成度.

例3.计算:

(1)sin4

(2)tan1.5.

8.课后作业:

①阅读教材P6–P8;

②教材P9练习第1、2、3、6题;

③教材P10面7、8题及B2、3题.

高中数学教案ppt模板篇8

第二教时教材:

1、复习

2、《课课练》及《教学与测试》中的有关内容目的:复习集合的概念;巩固已经学过的内容,并加深对集合的理解。

过程:

一、复习:(结合提问)

1.集合的概念含集合三要素

2.集合的表示、符号、常用数集、列举法、描述法

3.集合的分类:有限集、无限集、空集、单元集、二元集

4.关于“属于”的概念

二、例一用适当的方法表示下列集合:

1.平方后仍等于原数的数集解:{x x2=x}={0,1}

2.比2大3的数的集合解:{x x=2+3}={5}

3.不等式x2-x-6<0的整数解集解:{xZx2-x-6<0}={xZ-2<x<3}={-1,0,1,2}

4.过原点的直线的集合解:{(x,y)y=kx}

5.方程4x2+9y2-4x+12y+5=0的解集解:{(x,y)4x2+9y2-4x+12y+5=0}={(x,y)(2x-1)2+(3y+2)2=0}={(x,y)(1/2,-2/3)}

6.使函数y=有意义的实数x的集合解:{x x2+x-60}={x x2且x3,xR}

三、处理苏大《教学与测试》第一课含思考题、备用题

四、处理《课课练》

五、作业《教学与测试》第一课练习题

高中数学教案ppt模板篇9

教学内容

义务教育课程标准实验教科书(人教版)二年级上册第八单元第一课时

教学目标:

知识目标:

使学生通过观察、猜测、实验等活动,找出简单事物的排列数和组合数。

能力目标:

培养学生有顺序地、全面地思考问题的意识。

情感目标:

使学生感受到数学在现实生活中的应用价值,尝试用数学的方法来解决实际生活中的问题。

教学重点:

经历探索简单事物排列与组合规律的过程。教学难点:初步理解简单事物排列与组合的不同。教学环节

一、创设情境,导入新课

今天,我们来上一节数学活动课,大家乐意吗?(板书课题)现在大家来看一下我们的活动目标。(课件出示活动目标)

师:老师给大家带来了一个新朋友,课件出示圣诞老人画面,圣诞老人过生日了,想请大家参加他的生日聚会,但是他有要求。通过圣诞老人提出本节课任务。

二、合作学习,构建模型

(一)初步感知。课件出示:

第一关:摆一摆,猜密码。(用数字卡片

1、2能排成几个两位数自己动手摆一摆)让学生自己动手摆卡片后,指名汇报。

(二)合作探究。课件出示:

第二关:摆一摆,比一比(用数字卡片1、2、3能摆成几个不同的两位数)比比看,哪个组找的最多。

小组探讨,组长把大家的讨论结果记录在练习本上。(活动开始,教师巡视。)

以组为单位派代表汇报。

师:有的组摆出了4个不同的两位数,有的组摆出了6个不同的两位数,你们是怎么摆的?有什么好办法?

(鼓励方法的多样化,对各组的不同方法进行肯定和表扬。)结合发言,引导学生进行评价,选出优胜组。

师生共同归纳:用数字排列组成数,要按照一定的顺序确定十位上的数,然后考虑个位上有哪些数可以与其搭配。

(三)握一握。课件出示:小精灵说的话。

恭喜你们成功的度过了前两关,现在,我们握手祝贺一下。师:每两人握一次手,三人一共握几次手?(小组活动,教师巡视)活动后,小组指名汇报。

师:究竟是几次呢?请大家互相握握看吧!请一个组的同学上台演示,其他同学一起数数。

(四)课件出示:

师:圣诞老人决定奖励你们两件上衣、两条裤子,那么一共有几种搭配方法呢?(课件出示图片。)

学生拿出学具卡片,小组活动解决问题。汇报交流,说说自己为什么这样设计。

三、分层练习,巩固新知

(一)付钱问题。

课件出示:99页做一做2题

小组讨论,小组长统计本组学生答题情况,并由小组代表汇报。

(二)拍照站法。

小丽、小芳、小美在风景如画的郊外游玩,三人想站成一排拍照留念,她们有几种站法?

小组讨论后,由一组学生上台演示,其他学生数一数。

高中数学教案ppt模板篇10

教学目标:

①掌握对数函数的性质。

②应用对数函数的性质可以解决:对数的大小比较,求复合函数的定义域、值 域及单调性。

③ 注重函数思想、等价转化、分类讨论等思想的渗透,提高解题能力。

教学重点与难点:对数函数的性质的应用。

教学过程设计:

⒈复习提问:对数函数的概念及性质。

⒉开始正课

1 比较数的大小

例 1 比较下列各组数的大小。

⑴loga5.1 ,loga5.9 (a>0,a≠1)

⑵log0.50.6 ,logЛ0.5 ,lnЛ

师:请同学们观察一下⑴中这两个对数有何特征?

生:这两个对数底相等。

师:那么对于两个底相等的对数如何比大小?

生:可构造一个以a为底的对数函数,用对数函数的单调性比大小。

师:对,请叙述一下这道题的解题过程。

生:对数函数的单调性取决于底的大小:当0调递减,所以loga5.1>loga5.9 ;当a>1时,函数y=logax单调递增,所以loga5.1

板书:

解:Ⅰ)当0

∵5.1<5.9 ∴loga5.1>loga5.9

Ⅱ)当a>1时,函数y=logax在(0,+∞)上是增函数,

∵5.1<5.9 ∴loga5.1

师:请同学们观察一下⑵中这三个对数有何特征?

生:这三个对数底、真数都不相等。

师:那么对于这三个对数如何比大小?

生:找“中间量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnЛ>1,

log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。

板书:略。

师:比较对数值的大小常用方法:①构造对数函数,直接利用对数函数 的单调性比大小,②借用“中间量”间接比大小,③利用对数函数图象的位置关系来比大小。

2 函数的定义域, 值 域及单调性。

高中数学教案ppt模板篇11

在前一段我讲了30度、45度、60度特殊角的三角函数值,它是北师大版九年级数学下册的一节课,在前一节刚讲过正弦、余弦、正切三角函数的定义和求法。现把我对本节课的做法和想法与大家交流一下,希望能得到同行和专家的指点,以期取得更大的进步。

一、说教学目标

1、经历探索30°、45°、60°角的三角函数值的过程,能够进行有关的推理。进一步体会三角函数的意义;能够进行30°、45°、60°角的三角函数值的计算;能够根据30°、45°、60°的三角函数值说明相应的锐角的大小。

2、发展学生观察、分析、发现的能力;培养学生把实际问题转化为数学问题的能力。

3、积极参与数学活动,对数学产生好奇心。培养学生独立思考问题的习惯。

二、说教学重点

教学重点:探索特殊锐角三角函数值的过程,进行这些三角函数值的计算并会比较不同锐角三角函数值大小

在引入时我采用创设情境法,“为了测量一棵大树的高度,准备了如下测量工具:(1)含30、60度角的直角三角尺(2)皮尺。请你设计一个方案,来测量一棵大树的高度。这样会增强学生的学习欲望,使学生对本节内容更感兴趣。

三、说教学设计:

1、让学生自主研习,独立探究。

(1)观察一副三角尺,其中有几个锐角?他们分别等于多少度?

(2)sin30度等于多少呢?你是怎样得到的?cos30度呢,tan30度呢?

2、让学生合作学习、生生互动

(1)请同学们完成下表:30°、45°、60°角的三角函数值(表格略)

(2)观察表格中函数值的特点。先看第一列30°、45°、60°角的正弦值,你能发现什么规律呢?第二列、第三列呢?

(3)同桌之间可互相检查一下对30°、45°、60°角的三角函数值的记忆情况。

3、精讲细评,师生合作(先由学生独立完成)

(1)计算:sin30°+cos45°;sin260°+cos260°—tan45°。

(2)钟表上的钟摆长度为25Cm,当钟摆向两边摆动时,摆角恰好为60°,且两边的摆动角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差。(结果精确到0。1Cm)

分析:引导学生自己根据题意画出示意图,培养学生把实际问题转化为数学问题的能力

4、延伸迁移,形成技能

(1)计算:sin60°—tan45°;cos60°+tan60°;

(2)某商场有一自动扶梯,其倾斜角为30°。高为7m,扶梯的长度是多少?

自主小结:

讲课后我让学生自主小结本节收获,并给他们提出困惑的时间和机会

在本节课中我感觉学生整体来说收获不小,有百分之八十的学生都会进行计算,只是对这些三角函数值的记忆还有欠缺,课下还需时间加以巩固。课堂中学生积极性也很高,能体会到数学在生活中的应用广泛,学习数学对解决实际生活问题的帮助,体会到学习数学的重要性。

高中数学教案ppt模板篇12

教学目标

掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题。

教学过程

等比数列性质请同学们类比得出。

【方法规律】

1、通项公式与前n项和公式联系着五个基本量,“知三求二”是一类最基本的运算题。方程观点是解决这类问题的基本数学思想和方法。

2、判断一个数列是等差数列或等比数列,常用的方法使用定义。特别地,在判断三个实数

a,b,c成等差(比)数列时,常用(注:若为等比数列,则a,b,c均不为0)

3、在求等差数列前n项和的(小)值时,常用函数的思想和方法加以解决。

【示范举例】

例1:(1)设等差数列的前n项和为30,前2n项和为100,则前3n项和为。

(2)一个等比数列的前三项之和为26,前六项之和为728,则a1=,q=。

例2:四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数。

例3:项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,求该数列的中间项。

高中数学教案ppt模板篇13

一、说教材:

1.地位及作用:

“椭圆及其标准方程”是高中《解析几何》第二章第七节内容,是本书的重点内容之一,也是历年高考、会考的必考内容,是在学完求曲线方程的基础上,进一步研究椭圆的特性,以完成对圆锥曲线的全面研究,为今后的学习打好基础,因此本节内容具有承前启后的作用。

2.教学目标:

根据《教学大纲》,《考试说明》的要求,并根据教材的具体内容和学生的实际情况,确定本节课的教学目标:

(1)知识目标:掌握椭圆的定义和标准方程,以及它们的应用。

(2)能力目标:

(a)培养学生灵活应用知识的能力。

(b)培养学生全面分析问题和解决问题的能力。

(c)培养学生快速准确的运算能力。

(3)德育目标:培养学生数形结合思想,类比、分类讨论的思想以及确立从感性到理性认识的辩证唯物主义观点。

3.重点、难点和关键点:

因为椭圆的定义和标准方程是解决与椭圆有关问题的重要依据,也是研究双曲线和抛物线的基础,因此,它是本节教材的重点;由于学生推理归纳能力较低,在推导椭圆的标准方程时涉及到根式的两次平方,并且运算也较繁,因此它是本节课的难点;坐标系建立的好坏直接影响标准方程的推导和化简,因此建立一个适当的直角坐标系是本节的关键。

二、说教材处理

为了完成本节课的教学目标,突出重点、分散难点、根据教材的内容和学生的实际情况,对教材做以下的处理:

1.学生状况分析及对策:

2.教材内容的组织和安排:

本节教材的处理上按照人们认识事物的规律,遵循由浅入深,循序渐进,层层深入的原则组织和安排如下:

(1)复习提问(2)引入新课(3)新课讲解(4)反馈练习(5)归纳总结(6)布置作业

三、说教法和学法

1.为了充分调动学生学习的积极性,是学生变被动学习为主动而愉快的学习,引导学生自己动手,让学生的思维活动在教师的引导下层层展开。请学生参与课堂。加强方程推导的指导,是传授知识与培养能力有机的溶为一体,为此,本节课采用“引导教学法”。

2.利用电脑所画图形的动态演示总结规律。同时利用电脑的动态演示激发学生的学习兴趣。

四、教学过程

教学环节

3.设a(-2,0),b(2,0),三角形abp周长为10,动点p轨迹方程。

例1属基础,主要反馈学生掌握基本知识的程度。

例2可强化基本技能训练和基本知识的灵活运用。

小结

为使学生对本节内容有一个完整深刻的认识,教师引导学生从以下几个方面进行小结。

1.椭圆的定义和标准方程及其应用。

2.椭圆标准方程中a,b,c诸关系。

3.求椭圆方程常用方法和基本思路。

通过小结形成知识体系,加深对本节知识的理解培养学生的归纳总结能力,增强学生学好圆锥曲线的信心。

布置作业

(1)77页——78页1,2,3,79页11

(2)预习下节内容

巩固本节所学概念,强化基本技能训练,培养学生良好的学习习惯和品质,发现和弥补教学中的遗漏和不足。

高中数学教案ppt模板篇14

一、教材分析

1.地位及作用

"余弦定理"是人教A版数学必修5主要内容之一,是解决有关斜三角形问题的两个重要定理之一,也是初中"勾股定理"内容的直接延拓,它是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具具有广泛的应用价值,起到承上启下的作用。

2.教学重、难点

重点:余弦定理的证明过程和定理的简单应用。

难点:利用向量的数量积证余弦定理的思路。

二、教学目标

知识目标:能推导余弦定理及其推论,能运用余弦定理解已知"边,角,边"和"边,边,边"两类三角形。

能力目标:培养学生知识的迁移能力;归纳总结的能力;运用所学知识解决实际问题的能力。

情感目标:从实际问题出发运用数学知识解决问题这个过程体验数学在实际生活中的运用,激发学生学习数学的兴趣。通过主动探索,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨。

三、教学方法

数学课堂上首先要重视知识的发生过程,既能展现知识的`获取,又能暴露解决问题的思维。在本节教学中,我将遵循"提出问题、分析问题、解决问题"的步骤逐步推进,以课堂教学的组织者、引导者、合作者的身份,组织学生探究、归纳、推导,引导学生逐个突破难点,师生共同解决问题,使学生在各种数学活动中掌握各种数学基本技能,初步学会从数学角度去观察事物和思考问题,产生学习数学的愿望和兴趣。

四、教学过程

本节教学中通过创设情境,充分调动学生已有的学习经验,让学生经历"现实问题转化为数学问题"的过程,发现新的知识,把学生的潜意识状态的好奇心变为自觉求知的创新意识。又通过实际操作,使刚产生的数学知识得到完善,提高了学生动手动脑的能力和增强了研究探索的综合素质。

帮助学生从平面几何、三角函数、向量知识等方面进行分析讨论,选择简洁的处理工具,引发学生的积极讨论。你能够有更好的具体的量化方法吗?问题可转化为已知三角形两边长和夹角求第三边的问题,即:在其中已知AC=b,AB=c和A,求a.

学生对向量知识可能遗忘,注意复习;在利用数量积时,角度可能出现错误,出现不同的表示形式,让学生从错误中发现问题,巩固向量知识,明确向量工具的作用。同时,让学生明确数学中的转化思想:化未知为已知。将实际问题转化成数学问题,引导学生分析问题。其中已知a=5,b=7,c=8,求B.

学生思考或者讨论,若有同学答则顺势引出推论,若不能作答则由老师引导推出推论,然后返回解决该问题。

让学生观察推论的特征,讨论该推论有什么用。

高中数学教案ppt模板篇15

课题:指数与指数幂的运算

课型:新授课

教学方法:讲授法与探究法

教学媒体选择:多媒体教学

指数与指数幂的运算——学习者分析:

1.需求分析:在研究指数函数前,学生应熟练掌握指数与指数幂的运算,通过本节内容将指数的取值范围扩充到实数,为学习指数函数打基础.

2.学情分析:在中学阶段已经接触过正数指数幂的运算,但是这对我们研究指数函数是远远不够的,通过本节课使学生对指数幂的运算和理解更加深入.

指数与指数幂的运算——学习任务分析:

1.教材分析:本节的内容蕴含了许多重要的数学思想方法,如推广思想,逼近思想,教材充分关注与实际问题的联系,体现了本节内容的重要性和数学的实际应用价值.

2.教学重点:根式的概念及n次方根的性质;分数指数幂的意义及运算性质;分数指数幂与根式的互化.

3.教学难点:n次方根的性质;分数指数幂的意义及分数指数幂的运算.

指数与指数幂的运算——教学目标阐明:

1.知识与技能:理解根式的概念及性质,掌握分数指数幂的运算,能够熟练的进行分数指数幂与根式的互化.

2.过程与方法:通过探究和思考,培养学生推广和逼近的数学思想方法,提高学生的知识迁移能力和主动参与能力.

3.情感态度和价值观:在教学过程中,让学生自主探索来加深对n次方根和分数指数幂的理解,而具有探索能力是学习数学、理解数学、解决数学问题的重要方面.

教学流程图:

指数与指数幂的运算——教学过程设计:

一.新课引入:

(一)本章知识结构介绍

(二)问题引入

1.问题:当生物体死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据此规律,人们获得了生物体内含量P与死亡年数t之间的关系:

(1)当生物死亡了5730年后,它体内的碳14含量P的值为

(2)当生物死亡了5730×2年后,它体内的碳14含量P的值为

(3)当生物死亡了6000年后,它体内的碳14含量P的值为

(4)当生物死亡了10000年后,它体内的碳14含量P的值为

2.回顾整数指数幂的运算性质

整数指数幂的运算性质:

3.思考:这些运算性质对分数指数幂是否适用呢?

【师】这就是我们今天所要学习的内容《指数与指数幂的运算》

【板书】2.1.1指数与指数幂的运算

二.根式的概念:

【师】下面我们来看几个简单的例子.口述平方根,立方根的概念引导学生总结n次方根的概念..

【板书】平方根,立方根,n次方根的符号,并举一些简单的方根运算,以便学生观察总结.

【师】现在我们请同学来总结n次方根的概念..

1.根式的概念

【板书】概念

即如果一个数的n次方等于a(n>1,且n∈N_),那么这个数叫做a的n次方根.

【师】通过刚才所举的例子不难看出n的奇偶以及a的正负都会影响a的n次方根,下面我们来共同完成这样一个表格.

【板书】表格

【师】通过这个表格,我们知道负数没有偶次方根.那么0的n次方根是什么?

【学生】0的n次方根是0.

【师】现在我们来对这个符号作一说明.

例1.求下列各式的值

【注】本题较为简单,由学生口答即可,此处过程省略.

三.n次方根的性质

【注】对于1提问学生a的取值范围,让学生思考便能得出结论.

【注】对于2,少举几个例子让学生观察,并起来说他们的结论.

1.n次方根的性质

四.分数指数幂

【师】这两个根式可以写成分数指数幂的形式,是因为根指数能整除被开方数的指数,那么请大家思考下面的问题.

思考:根指数不能整除被开方数的指数时还能写成分数指数幂的形式吗

【师】如果成立那么它的意义是什么,我们有这样的规定.

(一)分数指数幂的意义:

1.我们规定正数的正分数指数幂的意义是:

2.我们规定正数的负分数指数幂的意义是:

3.0的正分数指数幂等于0,0的负分数指数幂没有意义.

(二)指数幂运算性质的推广:

五.例题

例2.求值

【注】此处例2让学生上黑板做,例3待学生完成后老师在黑板板演,例4让学生黑板上做,然后纠正错误.

六.课堂小结

1.根式的定义;

2.n次方根的性质;

3.分数指数幂.

七.课后作业

P59习题2.1A组1.2.4.

八.课后反思

1.在第一节课的时候没有把重要的内容写在黑板上,而且运算性质中a,r,s的条件没有给出,另外课件中有一处错误.第二节课时改正了第一节课的错误.

2.有许多问题应让学生回答,不能自问自答.根式性质的思考没有讲清楚,应该给学生更多的时间来回答和思考问题,与之互动太少.

3.讲课过程中还有很多细节处理不好,并且讲课声音较小,没有起伏.

4.课前的章节知识结构很好,引入简单到位,亮点是概念后的表格.

高中数学教案ppt模板篇16

椭圆的简单几何性质的重点是性质,难点是应用。椭圆的简单几何性质的知识是解析几何中一个重要内容,是训练学生逻辑思维,发展空间想像能力,提高分析和解决问题能力等的又一重要素材。新课开始,先复习椭圆定义和方程,然后结合图形观察分析得出椭圆有性质(范围、对称性、顶点、离心率、准线)。

当然,要真正掌握性质并灵活应用,适当的训练是必不可少的。由于椭圆的简单几何性质安排了六节数学课,还有足够的时间来开展反馈环节。课本后面的练习及习题比较多,其中习题的第5题及9题难度较大。对于比较简单的习题,基本上由学生独立完成,当然学生解题的时间必须要保证。而对于比较难的第5及9题,采取创设问题情境,注重启发艺术,体现“低起点、小步子、及时反馈”的教学原则,让尽可能多的学生思维和积极性得到最大的挑战和提高。当然,教学永远是一门遗憾的艺术,教学境界是无止境的,“启而不发,引而不导”是一个不断完善的操作过程。

对于习题的教学,如何提升习题的潜在价值,如何让学生得到最大的收获,这是我们每天面对和思考的焦点。在教学过程中几乎花了一节课的时间开展习题教学,由于自己一直担心时间的紧张,学生的主体性没有得到有效体现,进而数学思维及能力缺少了锤炼的机会。这部分的缺陷,将在今后的教学中找时间来给学生补上,不过这是在教学中应注意的,将要要求自己在今后的教学中尽量做到最好。

高中数学教案ppt模板篇17

一 教材分析

本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理和余弦定理的知识非常重要。

根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:

认知目标:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理与三角形的内角和定理解斜三角形的两类问题。

能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。

情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,激发学生学习的兴趣。

教学重点:正弦定理的内容,正弦定理的证明及基本应用。

教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。

二 教法

根据教材的内容和编排的特点,为是更有效地突出重点,空破难点,以学业生的发展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想, 采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。突破重点的手段:抓住学生情感的兴奋点,激发他们的兴趣,鼓励学生大胆猜想,积极探索,以及及时地鼓励,使他们知难而进。另外,抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给以适当的提示和指导。突破难点的方法:抓住学生的能力线联系方法与技能使学生较易证明正弦定理,另外通过例题和练习来突破难点

三 学法:

指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。

四 教学过程

第一:创设情景,大概用2分钟

第二:实践探究,形成概念,大约用25分钟

第三:应用概念,拓展反思,大约用13分钟

(一)创设情境,布疑激趣

“兴趣是的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。

(二)探寻特例,提出猜想

1.激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。

2.那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。

3.让学生总结实验结果,得出猜想:

在三角形中,角与所对的边满足关系

这为下一步证明树立信心,不断的使学生对结论的认识从感性逐步上升到理性。

(三)逻辑推理,证明猜想

1.强调将猜想转化为定理,需要严格的理论证明。

2.鼓励学生通过作高转化为熟悉的直角三角形进行证明。

3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。

4.思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明

(四)归纳总结,简单应用

1.让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。

2.正弦定理的内容,讨论可以解决哪几类有关三角形的问题。

3.运用正弦定理求解本节课引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。

(五)讲解例题,巩固定理

1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

例1简单,结果为解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。

2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟悉掌握已知两边和其中一边的对角时解三角形的各种情形。完了把时间交给学生。

(六)课堂练习,提高巩固

1.在△ABC中,已知下列条件,解三角形.

(1)A=45°,C=30°,c=10cm

(2)A=60°,B=45°,c=20cm

2. 在△ABC中,已知下列条件,解三角形.

(1)a=20cm,b=11cm,B=30°

(2)c=54cm,b=39cm,C=115°

学生板演,老师巡视,及时发现问题,并解答。

(七)小结反思,提高认识

通过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会?

1.用向量证明了正弦定理,体现了数形结合的数学思想。

2.它表述了三角形的边与对角的正弦值的关系。

3.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。

(从实际问题出发,通过猜想、实验、归纳等思维方法,最后得到了推导出正弦定理。我们研究问题的突出特点是从特殊到一般,我们不仅收获着结论,而且整个探索过程我们也掌握了研究问题的一般方法。在强调研究性学习方法,注重学生的主体地位,调动学生积极性,使数学教学成为数学活动的教学。)

(八)任务后延,自主探究

如果已知一个三角形的两边及其夹角,要求第三边,怎么办?发现正弦定理不适用了,那么自然过渡到下一节内容,余弦定理。布置作业,预习下一节内容。

五 板书设计

板书设计可以让学生一目了然本节课所学的知识,证明正弦定理的方法以及正弦定理可以解决的两类问题。

高中数学教案ppt模板篇18

高中数学的内容多,抽象性、理论性强,高中很注重自学能力的培养,谁的自学能力强,那么在一定程度上影响着你的成绩以及将来你发展的前途。同时还要注意以下几点:

第一、对数学学科特点有清楚的认识

数学的概念、方法、思想都是人类长期实践中自然发展形成的,以数域的发展为例,从自然数到有理数到实数再到复数,都是由自然的认知冲突引起的。因此,在学习过程中我们有必要了解知识产生的背景,它的形成过程以及它的应用,让数学显得合情合理,浑然天成。数学中没有含糊不清的词,对错分明,凡事都要讲个为什么,只要按照数学规则去学去想就能融会贯通,但是如果不把来龙去脉想清楚而是“想当然”的`话,那就学不下去了。

第二、要改变一个观念。

有人会说自己的基础不好。那什么是基础?今天所学的知识就是明天的基础。明天学习的知识就是后天的基础,

所以只要学好每一天的内容,那么你打的基础就是最扎实的了。所以现在你们是在同一个起跑线上的,无所谓基础好不好。

第三、学数学要摸索自己的学习方法

学习重在方法,好的学习方法让学生事半功倍。学习、掌握并能灵活应用数学的途径有很多,做习题、用数学知识解决各种问题是必需的,理解、学会证明、领会思想、掌握方法也是必需的。同时,要注意前后知识的衔接,类比地学、联系地学,既要从概念中看到它的具体背景,又要在具体的例子中想到它蕴含的一般概念。

相关文章推荐:

1.高中开学第一周教学反思

2.开学第一课教学反思精选

3.20--初中开学第一课教学反思【精选】

4.高三开学教学反思

5.高一信息技术教学反思

6.开学第一课语文教学反思

7.幼儿园开学第一课反思

8.高中英语教学反思精选

9.高中生物教育反思

10.20--开学第一课教学反思

高中数学教案ppt模板篇19

教学目标

1.明确等差数列的定义.

2.掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题

3.培养学生观察、归纳能力.

教学重点

1.等差数列的概念;

2.等差数列的通项公式

教学难点

等差数列“等差”特点的理解、把握和应用

教具准备

投影片1张

教学过程

(I)复习回顾

师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。这两个公式从不同的角度反映数列的特点,下面看一些例子。(放投影片)

(Ⅱ)讲授新课

师:看这些数列有什么共同的特点?

1,2,3,4,5,6;①

10,8,6,4,2,…;②

生:积极思考,找上述数列共同特点。

对于数列①(1≤n≤6);(2≤n≤6)

对于数列②-2n(n≥1)(n≥2)

对于数列③(n≥1)(n≥2)

共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。

师:也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列,我们把它叫做等差数。

一、定义:

等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。

如:上述3个数列都是等差数列,它们的公差依次是1,-2,。

二、等差数列的通项公式

师:等差数列定义是由一数列相邻两项之间关系而得。若一等差数列的首项是,公差是d,则据其定义可得:

若将这n-1个等式相加,则可得:

即:即:即:……

由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。

如数列①(1≤n≤6)

数列②:(n≥1)

数列③:(n≥1)

由上述关系还可得:即:则:=如:三、例题讲解

例1:(1)求等差数列8,5,2…的第20项

(2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?

解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立解之得n=100,即-401是这个数列的第100项。

(Ⅲ)课堂练习

生:(口答)课本P118练习3

(书面练习)课本P117练习1

师:组织学生自评练习(同桌讨论)

(Ⅳ)课时小结

师:本节主要内容为:①等差数列定义。

即(n≥2)

②等差数列通项公式(n≥1)

推导出公式:

(V)课后作业

一、课本P118习题3.21,2

二、1.预习内容:课本P116例2P117例4

2.预习提纲:

①如何应用等差数列的定义及通项公式解决一些相关问题?

②等差数列有哪些性质?

高中数学教案ppt模板篇20

一、教学目标:

1、知识与技能:

了解平面向量基本定理及其意义,理解平面里的任何一个向量都可以用两个不共线的向量来表示;能够在具体问题中适当地选取基底,使其他向量都能够用基底来表示。

2、过程与方法:

让学生经历平面向量基本定理的探索与发现的形成过程,体会由特殊到一般和数形结合的数学思想,初步掌握应用平面向量基本定理分解向量的方法,培养学生分析问题与解决问题的能力。

3、情感、态度和价值观

通过对平面向量基本定理的学习,激发学生的学习兴趣,调动学习积极性,增强学生向量的应用意识,并培养学生合作交流的意识及积极探索勇于发现的学习品质、

二、教学重点:

平面向量基本定理、

三、教学难点:

平面向量基本定理的理解与应用、

四、教学方法:

探究发现、讲练结合

五、授课类型:

新授课

六、教具:

电子白板、黑板和课件

七、教学过程:

(一)情境引课,板书课题

由导弹的发射情境,引出物理中矢量的分解,进而探究我们数学中的向量是不是也可以沿两个不同方向的向量进行分解呢?

(二)复习铺路,渐进新课

在共线向量定理的复习中,自然地、渐进地融入到平面向量基本定理的师生互动合作的探究与发现中去,感受着从特殊到一般、分类讨论和数形结合的数学思想碰撞的火花,体验着学习的快乐。

(三)归纳总结,形成定理

让学生在发现学习的过程中归纳总结出平面向量基本定理,并给出基底的定义。

(四)反思定理,解读要点

反思平面向量基本定理的实质即向量分解,思考基底的不共线、不惟一和非零性及实数对

的存在性和唯一性。

(五)跟踪练习,反馈测试

及时跟踪练习,反馈测试定理的理解程度。

(六)讲练结合,巩固理解

即讲即练定理的应用,讲练结合,进一步巩固理解平面向量基本定理。

(七)夹角概念,顺势得出

不共线向量的不同方向的位置关系怎么表示,夹角概念顺势得出。然后数形结合,讲清本质:夹角共起点。再结合例题巩固加深。

(八)课堂小结,画龙点睛

回顾本节的学习过程,小结学习要点及数学思想方法,老师的“教”与学生的“学”浑然一体,一气呵成。

(九)作业布置,回味思考。

布置课后作业,检验教学效果。回味思考,更加理解定理的实质。

八、板书设计:

1、平面向量基本定理:如果是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数

2、基底:

(1)不共线向量

叫做表示这一平面内所有向量的一组基底;

(2)基底:不共线,不唯一,非零

(3)基底给定,分解形式唯一,实数对

存在且唯一;

(4)基底不同,分解形式不唯一,实数对

可同可异。

例1例2

3、夹角:

(1)两向量共起点;

(2)夹角范围:

例3

4、小结

5、作业

44362