教案吧 > 学科教案 > 数学教案 >

初中数学教案通用

时间: 新华 数学教案

编写教案时,教案中教学步骤要具体、明确,各步骤衔接要自然、紧凑。下面给大家整理一些初中数学教案通用,方便大家学习怎么写初中数学教案通用。

初中数学教案通用篇1

教学目的 知识技能使学生会用列一元二次方程的方法解决有关面积、体积方面和经济方面的问题.

数学思考 提高将实际问题转化为数学问题的能力以及用数学的意识,渗透转化的思想、方程的思想及数形结合的思想.

解决问题通过列一元二次方程的方法解决日常生活及生产实际中遇到的有关面积、体积方面和经济方面的问题.

情感态度 通过探究性学习,抓住问题的关键,揭示它的规律性,展示解题的简洁性的数学美.

教学难点 审题,从文字语言中挖掘有价值的信息.

知识重点 会用列一元二次方程的方法解有关面积、体积方面和经济方面的问题.

教学过程设计意图

教学过程

问题一:列方程解应用题的一般步骤?

师生共同回忆

列方程解应用题的步骤:

(1)审题;(2)设未知数;

(3)列方程;(4)求解;

(5)检验;(6)答.

问题二:矩形的周长和面积?长方体的体积?

问题三:如图,某小区内有一块长、宽比为1:2的矩形空地,计划在该空地上修筑两条宽均为2m的互相垂直的小路,余下的四块小矩形空地铺成草坪,如果四块草坪的面积之和为312m2,请求出原来大矩形空地的长和宽.

教师活动:引导学生读题,找到题目中的关键语句.

学生活动:在关键语句中找到反映相等关系的语句,探究解决办法.

教师活动:用多媒体演示分析,解题方法.

做一做

如图,有一块长80cm,宽60cm的硬纸片,在四个角各剪去一个同样的小正方形,用剩余部分做成一个底面积为1500cm2的无盖的长方体盒子.求剪去的小正方形的边长.

课堂练习:将一个长方形的长缩短5cm,宽增长3cm,正好得到一个正方形.已知原长方形的面积是正方形面积的,求这个正方形的边长.

问题四:某商场销售一种服装,平均每天可售出20件,每件赢利40元.经市场调查发现:如果每件服装降价1元,平均每天能多售出2件.在国庆节期间,商场决定采取降价促销的措施,以达到减少库存、扩大销售量的目的.如果销售这种服装每天赢利1200元,那么每件服装应降价多少元?

学生活动:在众多的文字中,找到关键语句,分析相等关系.

教师活动:用多媒体帮助学生分析试题.提示学生检验解的合理性.

课堂练习:1.经销商以每双21元的价格从厂家购进一批运动鞋,如果每双鞋售价为a元,那么可以卖出这种运动鞋(350-10a)双.物价局限定每双鞋的售价不得超过进价的120%.如果商店要赚400元,每双鞋的售价应定为多少元?需要卖出多少双鞋?

2.某商店从厂家以每件18元的价格购进一批商品,该商店可以自行定价.据市场调查,该商品的售价与销售量的关系是:若每件售价a元,则可卖出(320-10a)件,但物价部门限定每件商品加价不能超过进货价25%的.如果商店计划要获利400元,则每件商品的售价应定为多少元?需要卖出这种商品多少件?(每件商品的利润=售价进货价)

复习列方程解应用题的一般步骤.

本题为后面解决有关面积、体积方面问题做铺垫.

提高学生的审题能力.使学生会解决有关面积的问题.

解决体积问题的问题

培养学生用数学的意识以及渗透转化和方程的思想方法.

强调对方程的解进行双重检验.

小结与作业

课堂

小结利用一元二次方程解决实际问题时,要注意通过实际要求检验根的合理性,要注意审题能力的培养.

本课

作业课本第43页习题2

课后随笔(课堂设计理念,实际教学效果及改进设想)

初中数学教案通用篇2

一、例题的意图分析

例1(P83例2)让学生养成利用勾股定理的逆定理解决实际问题的意识。

例2(补充)培养学生利用方程思想解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识。

二、课堂引入

创设情境:在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法。

三、例习题分析

例1(P83例2)

分析:⑴了解方位角,及方位名词;

⑵依题意画出图形;

⑶依题意可得PR=12×1.5=18,PQ=16×1.5=24,QR=30;

⑷因为242+182=302,PQ2+PR2=QR2,根据勾股定理的逆定理,知∠QPR=90°;

⑸∠PRS=∠QPR-∠QPS=45°。

小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识。

例2(补充)一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状。

分析:⑴若判断三角形的形状,先求三角形的三边长;

⑵设未知数列方程,求出三角形的三边长5、12、13;

⑶根据勾股定理的逆定理,由52+122=132,知三角形为直角三角形。

解略。

四、课堂练习

1。小强在操场上向东走80m后,又走了60m,再走100m回到原地。小强在操场上向东走了80m后,又走60m的方向是。

2。如图,在操场上竖直立着一根长为2米的测影竿,早晨测得它的影长为4米,中午测得它的影长为1米,则A、B、C三点能否构成直角三角形?为什么?

3。如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A、B两个基地前去拦截,六分钟后同时到达C地将其拦截。已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,问:甲巡逻艇的航向

初中数学教案通用篇3

教学目标

通过十几减9的练习,进一步理解和掌握20以内退位减9的口算方法,提高计算能力。

教学过程

一、复习

填数计算,并讲一讲上下两行有什么联系?

(1)9+()=15(2)9+()=18

15-9=()18-9=()

(3)9+()=14(4)9+()=17

14-9=()17-9=()

二、课堂练习

1.完成P11页练习一的第4题。

出示画面,让学生理解题意。

(2)让学生独立口算出每一个算式的答案,并将他们对号入座。

(3)教师任意选择一题让学生说一说你是怎样想的。

2.完成P11页练习一的第3题。

教师将l0、14、13、17……写在黑板上,然后教师一手拿着9的卡片在黑板上移动(不必按顺序),卡片对着十几就算十几减9。

教师还可以随意在黑板上指题,全班每一个学生举数字卡片表示得数,这样能激发学生做题的兴趣,有利于提高学习的效果。

3.完成P12页练习一的第6题。

(1)出示题目让学生理解题意,口头叙述画面内容。

(2)提问:这道题告诉我们什么条件,要我们求什么?

(3)请学生列式,并复述口算过程。

4.完成P12页练习一的第8题。

(1)让学生独立理解题意,叙述画面内容。

(2)让学生通过画面内容想一想:这道题可以提什么问题?

(3)学生任意选择独立完成。

三、课堂练习

1.完成P11页练习一的第5题。

2.完成P12页练习一的第7题。

学生独立完成,集体订正。

3.布置作业。

初中数学教案通用篇4

教学目标

1.通过实验,使学生相信经过大量的重复实验后得到的频率值确实可以作为随机事件每次发生的机会的估计值,体会随机事件中所隐含着的确定性内涵。

2.使学生知道,通过实验的方法,用频率估计机会的大小,必须要求实验是在相同条件下进行的。且在相同条件下,实验次数越多,就越有可能得到较好的估计值,但个人所得的值也并不一定相同。

3.培养学生合作学习的能力,并学会与他人交流思维的过程和结果。

教学重难点

重点:频率与机会的关系。

难点:如何用频率估计机会的大小?教学准备数枚相同的图钉。

教学过程

一、提出问题

上一节课,通过一系列的实验和观察,我们已经知道:实验是估计机会大小的一种方法。我们可以通过实验,观察某事件出现的频率,当频率值逐渐稳定时,这个值就可以作为我们对该事件发生机会的估计。

实际上,在前面的问题中,即使不做实验,也可以设法预先推测出事件发生的机会,为什么还要花大量时间去进行实验呢?

下面让我们看另一类问题:

一枚图钉被抛起后钉尖触地的`机会有多大?

二、分组实验

1.两个学生一个小组,一人抛掷,一人记录

每个小组抛掷40次,记录出现钉尖触地的频数

教师负责把各小组的结果登录在黑板上

2.然后把每小组的结果合起来,分别计算抛掷80次、120次、160次、200次、240次、180次、320次、360次、400次、480次、520次、560次后出现钉尖触地的频数及频率

3.列出统计表,绘制折线图

4.根据实验结果估计一下钉尖触地的机会是百分之几?

5.课本第105页表15.2.1和图15.2.2是一位同学在抛掷图钉的实验中画的统计表和折线图。这与你实验的结果相同吗?为什么?

三、深入思考

如果两个小组使用的是两种不同形状的图钉,那么这两种图钉钉尖触地的机会相同吗?

能把两个小组的实验数据合起来进行实验吗?

四、概括小结

从上面的问题可以看出:

1.通过实验的方法用频率估计机会的大小,必须要求实验是在相同条件下进行的。比如,以同样的方式抛掷同一种图钉。

2.在相同的条件下,实验次数越多,就越有可能得到较好的估计值,但每人所得的值也并不一定相同。

五、用心观察

我们已经知道,在相同条件下,实验次数越多,就越有可能得到较好的估计值。那么,总共要做多少次实验才认为得到的结果比较可靠呢?

观察课本第105页表15.2.1和图15.2.2。

当实验进行到多少次以后,所得频率值就趋于平稳了?

(小结:实验到频率值较稳定时,结果比较可靠。这个频率值也就可以作为这个事件发生机会的估计值。)

六、巩固练习

课本第107页练习第1、2题。

七、课堂小结

这节课你有什么收获?还有哪些问题需要老师帮你解决的?

注意:通过实验的方法用频率估计机会大小,必须要求实验是在相同条件下进行的。

八、布置作业

1、课本第108页习题15.2第2题

2、课本第106页做一做

2、数字之积为奇数与偶数的机会

初中数学教案通用篇5

一、教材分析

本节课在讨论了二次函数y=a(x-h)2+k(a≠0)的图像的基础上对二次函数y=ax2+bx+c(a≠0)的图像和性质进行研究。主要的研究方法是通过配方将y=ax2+bx+c(a≠0)向y=a(x-h)2+k(a≠0)转化,体会知识之间在内的联系。在具体探究过程中,从特殊的例子出发,分别研究a>0和a<0的情况,再从特殊到一般得出y=ax2+bx+c(a≠0)的图像和性质。

二、学情分析

本节课前,学生已经探究过二次函数y=a(x-h)2+k(a≠0)的图像和性质,面对一般式向顶点式的转化,让学上体会化归思想,分析这两个式子的区别。

三、教学目标

(一)知识与能力目标

1.经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程;

2.能通过配方把二次函数y=ax2+bx+c(a≠0)化成y=a(x-h)2+k(a≠0)的形式,从而确定开口方向、顶点坐标和对称轴。

(二)过程与方法目标

通过思考、探究、化归、尝试等过程,让学生从中体会探索新知的方式和方法。

(三)情感态度与价值观目标

1.经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程,渗透配方和化归的思想方法;

2.在运用二次函数的知识解决问题的过程中,亲自体会到学习数学知识的价值,从而提高学生学习数学知识的兴趣并获得成功的体验。

四、教学重难点

1.重点

通过配方求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标。

2.难点

二次函数y=ax2+bx+c(a≠0)的图像的性质。

五、教学策略与设计说明

本节课主要渗透类比、化归数学思想。对比一般式和顶点式的区别和联系;体会式子的恒等变形的重要意义。

六、教学过程

教学环节(注明每个环节预设的时间)

(一)提出问题(约1分钟)

教师活动:形如y=a(x-h)2+k(a≠0)的抛物线的对称轴、顶点坐标分别是什么?那么对于一般式y=ax2+bx+c(a≠0)顶点坐标和对称轴又怎样呢?图像又如何?

学生活动:学生快速回答出第一个问题,第二个问题引起学生的思考。

目的:由旧有的知识引出新内容,体现复习与求新的关系,暗示了探究新知的方法。

(二)探究新知

1.探索二次函数y=0.5x2-6x+21的函数图像(约2分钟)

教师活动:教师提出思考问题。这里教师适当引导能否将次一般式化成顶点式?然后结合顶点式确定其顶点和对称轴。

学生活动:讨论解决

目的:激发兴趣

2.配方求解顶点坐标和对称轴(约5分钟)

教师活动:教师板书配方过程:y=0.5x2-6x+21=0.5(x2-12x+42)

=0.5(x2-12x+36-36+42)

=0.5(x-6)2+3

教师还应强调这里的配方法比一元二次方程的配方稍复杂,注意其区别与联系。

学生活动:学生关注黑板上的讲解内容,注意自己容易出错的地方。

目的:即加深对本课知识的认知有增强了配方法的应用意识。

3.画出该二次函数图像(约5分钟)

教师活动:提出问题。这里要引导学生是否可以通过y=0.5x2的图像的平移来说明该函数图像。关注学生在连线时是否用平滑的曲线,对称性如何。

学生活动:学生通过列表、描点、连线结合二次函数图像的对称性完成作图。

目的:强化二次函数图像的画法。即确定开口方向、顶点坐标、对称轴结合图像的对称性完成图像。

4.探究y=-2x2-4x+1的函数图像特点(约3分钟)

教师活动:教师提出问题。找学生板演抛物线的开口方向、顶点和对称轴内容,教师巡视,学生互相查找问题。这里教师要关注学生是否真正掌握了配方法的步骤及含义。

学生活动:学生独立完成。

目的:研究a<0时一个具体函数的图像和性质,体会研究二次函数图像的一般方法。

5.结合该二次函数图像小结y=ax2+bx+c(a≠0)的性质(约14分钟)

教师活动:教师将y=ax2+bx+c(a≠0)通过配方化成y=a(x-h)2+k(a≠0)的形式。确定函数顶点、对称轴和开口方向并着重讨论分析a>0和a<0时,y随x的变化情况、抛物线与y的交点以及函数的最值如何。

学生活动:仔细理解记忆一般式中的顶点坐标、对称轴和开口方向;理解y随x的变化情况。

目的:体会由特殊到一般的过程。体验、观察、分析二次函数图像和性质。

6.简单应用(约11分钟)

教师活动:教师板书:已知抛物线y=0.5x2-2x+1.5,求这条抛物线的开口方向、顶点坐标、对称轴图像和y轴的交点坐标并确定y随x的变化情况和最值。

教师巡视,个别指导。教师在这里可以用两种方法解决该问题:i)用配方法如例题所示;ii)我们可以先求出对称轴,然后将对称轴代入到原函数解析式求其函数值,此时对称轴数值和所求出的函数值即为顶点的横、纵坐标。

学生活动:学生先独立完成,约3分钟后讨论交流,最后形成结论。

目的:巩固新知

课堂小结(2分钟)

1.本节课研究的内容是什么?研究的过程中你遇到了哪些知识上的问题?

2.你对本节课有什么感想或疑惑?

布置作业(1分钟)

1.教科书习题22.1第6,7两题;

2.《课时练》本节内容。

板书设计

提出问题画函数图像学生板演练习

例题配方过程

到顶点式的配方过程一般式相关知识点

教学反思

在教学中我采用了合作、体验、探究的教学方式。在我引导下,学生通过观察、归纳出二次函数y=ax2+bx+c的图像性质,体验知识的形成过程,力求体现“主体参与、自主探索、合作交流、指导引探”的教学理念。整个教学过程主要分为三部分:第一部分是知识回顾;第二部分是学习探究;第三部分是课堂练习。从当堂的反馈和第二天的作业情况来看,绝大多数同学能掌握本节课的知识,达到了学习目标中的要求。

我认为优点主要包括:

1.教态自然,能注重身体语言的作用,声音洪亮,提问具有启发性。

2.教学目标明确、思路清晰,注重学生的自我学习培养和小组合作学习的落实。

3.板书字体端正,格式清晰明了,突出重点、难点。

4.我觉的精彩之处是求一般式的顶点坐标时的第二种方法,给学生减轻了一些负担,不一定非得配方或运用公式求顶点坐标。

所以我对于本节课基本上是满意的。但也有很多需要改进的地方主要表现在:

1.知识的生成过程体现的不够具体,有些急于求成。在学生活动中自己引导的较少,时间较短,讨论的不够积极;

2.一般式图像的性质自己总结的较多,学生发言较少,有些知识完全可以有学生提出并生成,这样的结论学生理解起来会更深刻;

3.学生在回答问题的过程中我老是打断学生。提问一个问题,学生说了一半,我就迫不及待地引导他说出下一半,有的时候是我替学生说了,这样学生的思路就被我打断了。破坏学生的思路是我们教师最大的毛病,此顽疾不除,教学质量难以保证。

4.合作学习的有效性不够。正所谓:“水本无波,相荡乃成涟漪;石本无火,相击而生灵光。”只有真正把自主、探究、合作的学习方式落到实处,才能培养学生成为既有创新能力,又能适应现代社会发展的公民。

重新去解读这节课的话我会注意以上一些问题,再多一些时间给学生,让他们去体验,探究而后形成自己的知识。

初中数学教案通用篇6

教学目标

1、经历不同的拼图方法验证公式的过程,在此过程中加深对因式分解、整式运算、面积等的认识。

2、通过验证过程中数与形的结合,体会数形结合的思想以及数学知识之间内在联系,每一部分知识并不是孤立的。

3、通过丰富有趣的拼图活动,经历观察、比较、拼图、计算、推理交流等过程,发展空间观念和有条理地思考和表达的能力,获得一些研究问题与合作交流方法与经验。

4、通过获得成功的体验和克服困难的经历,增进数学学习的信心。通过丰富有趣拼的图活动增强对数学学习的兴趣。

重点

1、通过综合运用已有知识解决问题的过程,加深对因式分解、整式运算、面积等的认识。

2、通过拼图验证公式的过程,使学习获得一些研究问题与合作交流的方法与经验。

难点:利用数形结合的方法验证公式

教学方法:动手操作,合作探究课型新授课教具投影仪

情景设置:

你已知道的关于验证公式的拼图方法有哪些?(教师在此给予学生独立思考和讨论的时间,让学生回想前面拼图。)

新课讲解:

把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子。美国第二十任总统伽菲尔德就由这个图(由两个边长分别为a、b、c的直角三角形和一个两条直角边都是c的直角三角形拼成一个新的图形)得出:c2=a2+b2他的证法在数学史上被传为佳话。他是这样分析的,如图所示:

教师接着在介绍教材第94页例题的拼法及相关公式

提问:还能通过怎样拼图来解决以下问题

(1)任意选取若干块这样的硬纸片,尝试拼成一个长方形,计算它的面积,并写出相应的等式;

(2)任意写出一个关于a、b的二次三项式,如a2+4ab+3b2

试用拼一个长方形的方法,把这个二次三项式因式分解。

这个问题要给予学生充足的时间和空间进行讨论和拼图,教师在这要引导适度,不要限制学生思维,同时鼓励学生在拼图过程中进行交流合作

了解学生拼图的情况及利用自己的拼图验证的情况。教师在巡视过程中,及时指导,并让学生展示自己的拼图及让学生讲解验证公式的方法,并根据不同学生的不同状况给予适当的引导,引导学生整理结论。

小结:

从这节课中你有哪些收获?

(教师应给予学生充分的时间鼓励学生畅所欲言,只要是学生的感受和想法,教师要多鼓励、多肯定。最后,教师要对学生所说的进行全面的总结。)

学生回答

a(b+c+d)=ab+ac+ad

(a+b)(c+d)=ac+ad+bc+bd

(a+b)2=a2+2ab+b2

学生拿出准备好的硬纸板制作

给学生充分的时间进行拼图、思考、交流经验,对于有困难的学生教师要给予适当引导。

初中数学教案通用篇7

教学目标:

1、通过解题,使学生了解到数学是具有趣味性的。

2、培养学生勤于动脑的习惯。

教学过程:

一、出示趣味题

师:老师这里有一些有趣的问题,希望大家开动脑筋,积极思考。

1、小卫到文具店买文具,他买毛笔用去了所带钱的一半,买铅笔用去了剩下钱的一半,最后用去剩下的8分,问小卫原有()钱?

2、苹苹做加法,把一个加数22错写成12,算出结果是48,问正确结果是()。

3、小明做减法,把减数30写成20,这样他算出的得数比正确得数多(),如果小明算出的结果是10,正确结果是()。

4、同学们种树,要把9棵树分3行种,每一行都是4棵,你能想出几种

办法来用△表示。

5、把一段布5米,一次剪下1米,全部剪下要()次。

6、李小松有10本本子,送给小刚2本后,两人本子数同样多,小刚原来

有()本本子。

二、小组讨论

三、指名讲解

四、评价

1、同学互评

2、老师点评

五、小结

师:通过今天的学习,你有哪些收获呢?

初中数学教案通用篇8

一、教学目标

1、了解推理、证明的格式,理解判定定理的证法、

2、掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证、

3、通过第二个判定定理的推导,培养学生分析问题、进行推理的能力、

4、使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进行学习目的的&39;教育、

二、学法引导

1、教师教法:启发式引导发现法、

2、学生学法:积极参与、主动发现、发展思维、

三、重点、难点及解决办法

(一)重点

判定定理的推导和例题的解答、

(二)难点

使用符号语言进行推理、

(三)解决办法

1、通过教师正确引导,学生积极思维,发现定理,解决重点、

2、通过教师指导,学生自行完成推理过程,解决难点及疑点、

四、课时安排

1课时

五、教具学具准备

三角板、投影仪、自制胶片、

六、师生互动活动设计

1、通过设计练习,复习基础,创造情境,引入新课、

2、通过教师指导,学生探索新知,练习巩固,完成新授、

3、通过学生自己总结完成小结、

七、教学步骤

(一)明确目标

掌握平行线的第二个定理的推理,并能运用其进行简单的证明,培养学生的逻辑思维能力、

(二)整体感知

以情境创设,设计悬念,引出课题,以引导学生的思维,发现新知,以变式训练巩固新知、

(三)教学过程

创设情境,复习引入

师:上节课我们学习了平行线的判定公理和一种判定方法,根据所学看下面的问题(出示投影)、

学生活动:学生口答第1、2题、

师:你能说出有什么条件,就可以判定两条直线平行呢?

学生活动:由第l、2题,学生思考分析,只要有同位角相等或内错角相等,就可以判定两条直线平行、

教师将第3题图形画在黑板上、

学生活动:学生口答理由,同角的补角相等、

师:要求学生写出符号推理过程,并板书、

教法说明:本节课是前一节课的继续,是在前一节课的基础上进行学习的,所以通过第1、2两题复习上节课所学平行线判定的两个方法,使学生明确,只要有同位角相等或内错角相等,就可以判定两条直线平行、第3题是为推导本节到定定理做铺垫,即如果同旁内角互补,则可以推出同位角相等,也可以推出内错角相等,为定理的推理论证,分散了难点、

师:第4题是一个实际问题,题目中已知的两个角是什么位置关系角?

学生活动:同分内角、

师:它们有什么关系、

学生活动:互补、

师:这个问题就是知道同分内角互补了,那么两条直线是不是平行的呢?这就是这节课我们要研究的问题、

初中数学教案通用篇9

一、教材分析:

1、教材所处的地位:

二次函数是沪科版初中数学九年级(上册)第22章的内容,在此之前,学生在八年级已经学过了函数及一次函数的内容,对于函数已经有了初步的认识。从一次函数的学习来看,学习一种函数大致包括以下内容:通过具体实例认识这种函数;探索这种函数的图象和性质,利用这种函数解决实际问题;探索这种函数与相应方程不等式的关系。本章“二次函数”的学习也是从以上几个方面展开的。本节课的主要内容在于使学生认识并了解两个变量之间的二次函数的关系,为二次函数的后续学习奠定基础

2、教学目的要求:

(1)学生经历从实际问题中抽象出两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系;

(2)让学生学习了二次函数的定义后,能够表示简单变量之间的二次函数关系;

(3)知道实际问题中存在的二次函数关系中,多自变量的取值范围的要求。

(4)把数学问题和实际问题相联系,使学生初步体会数学与人类生活的密切联系及对人类历史发展的作用。

3、教学重点和难点

本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点:

重点:

(1)二次函数的概念

(2)能够表示简单变量之间的二次函数关系.

难点:

具体的分析、确定实际问题中函数关系式

二.教法、学法分析:

下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:

1、教法研究

教学中教师应当暴露概念的再创造过程,鼓励学生不但要动口、动脑,而且要动手,学生经过自己亲身的实践活动,形成自己的经验、猜想,产生对结论的感知,这不仅让学生对所学内容留下了深刻的印象,而且能力得到培养,素质得以提高,充分地调动学生学习的热情,让学生学会主动学习,学会研究问题的方法,培养学生的能力。本节课的设计坚持以学生为主体,充分发挥学生的主观能动性。教学过程中,注重学生探究能力的培养。还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。

2、学法研究

初中学生的思维方式往往还是比较具象的,要让他们在问题的探究过程中充分体验问题的发现、解决及最终表述的方式方法,遇到困难可以和同伴、老师进行交流甚至争论,这样既可以加深学生对问题的理解又可以让学生体验获得学习的快乐。

3、教学方式

(1)由于本节课的内容是学生在学习了《一次函数》和《正比例函数》的基础上的加深,所以可以利用学生已有的知识在问题一、二中放手让学生先去探究探究两个问题中的变量之间的关系,在得到具体的关系式后,再引导学生观察关系式都有着什么样的特点,可以和多项式中的二次三项式或一元二次方程比较认识,并最终得出二次函数的一般式及二次项系数的取值为什么不为零的道理。

(2)要特别提醒学生注意:二次函数是解决实际生活生产的一个很有效的模板,因而对二次函数解析式中自变量的取值范围一定要从理论上和实际中加以综合讨论和认定。

(3)可以多让学生解决实际生活中的一些具有二次函数关系的实例来加深和提高学生对这一关系模型的理解。

三.教学流程分析:

这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。

1、温故知新—揭示课题

由回顾所学过的正比例函数,一次函数入手,引入函数大家庭中还会认识那一种函数呢?再由例子打篮球投篮时篮球运动的轨迹如何?何时达到最高点?引入二次函数。

2、自我尝试、合作探究—探求新知

通过学生自己独立解决运用函数知识表述变量间关系,即自我探讨环节;合作探究环节,学生间互动,集群体力量,共破难关,来自主探究新知,从而通过观察,归纳得到二次函数的解析式,获取新知。

3、小试身手—循序渐进

本组题目是对新学的直接应用,目的在于使学生能辨认二次函数,准确指出a、b、c,并应用其定义求字母系数的值,能应用二次函数准确表示具体问题中的变量间关系。本组题目的解决以学生快速解答为主,重点对第2题分析解决方法。这一环节主要由学生处理解决,以检查学生的掌握程度。

4、课堂回眸—归纳提高

本课小结从内容、应用、数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学知识,用知识是有很大的促进的。方法以学生畅谈收获为主。

5、课堂检测—测评反馈

共有6个题目,由学生独自处理第1、2、3、4、5小题,再发表自己的看法,第6小题可由学生或独自或同组交流均可。教师多以巡视为主,注意掌握学生对本节的掌握情况。

6、作业布置

作业我选择“同步作业”里的题目,其中基础训练为必做题,全员均做;综合应用为选做题,可供学有余力的学生能力提升用。

四、对本节课的一点看法

通过引入实例,丰富学生认识,理解新知识的意义,进而摆脱其原型,从而进行更深层次的研究,这种“数学化”的方法是认识事物规律的重要方法之一,通过教学让学生初步掌握这种方法,对于学生良好思维品质的形成有重要作用,对于学生的终身发展也有一定的作用。

初中数学教案通用篇10

【学习目标】

1.借助数轴,初步理解绝对值和相反数的概念,能求一个数的绝对值和相反数,2.会利用绝对值比较两负数的大小;学习数形结合的数学方法和分类讨论的思想。

3.会与人合作,并能与他人交流思想的过程和结果;

【学习方法】

自主探究与合作交流相结合。

【学习重难点】

重点:会求一个数的绝对值和相反数,会利用绝对值比较两负数的大小。

难点:对绝对值和相反数的代数意义、几何意义的理解。

【学习过程】

模块一预习反馈

一、学习准备

1.数轴:规定了__、__、__的一条直线叫做__.

2.数轴上两个点表示的数,右边的总比左边的;正数大于,负数小于,正数大于一切。

3.请同学们阅读教材p30—p32,预习过程中请注意:⑴不懂的地方要用红笔标记符号;⑵完成你力所能及的习题和课后作业。

二、精读教材

4.相反数的意义

+3与—3,—5与+5,—1.5与1.5这三对数有什么共同点?还能列举出这样的数吗?

归纳:如果两个数只有__不同,那么称其中一个数为另一个数的__,也称这两个数__.特别地,0的相反数是__。如,+3的相反数是—3,也可以说+3与—3互为相反数。相反数是成对出现的,不能单独存在。

《2.3绝对值》课时练习

一、选择题(共10题)

1.有理数的绝对值一定是()

A.正数B.负数

C.零或正数D.零或负数

答案:C

解析:解答:根据绝对值的定义可知:正数的绝对值是它本身,负数的绝对值是正数,零的绝对值是零;所以答案选择C选项

分析:考查有理数的绝对值,注意正数的绝对值是它本身,负数的绝对值是正数,零的绝对值是零

2.绝对值等于它本身的数有()

A.0个B.1个C.2个D.无数个

答案:D

解析:解答:根据绝对值得定义可知正数和零的绝对值是它本身,所以答案选择D选项

分析:考查绝对值这一知识点.

3.相反数等于-5的数是()

A.5B.-5C.5或-5D.不能确定

答案:A

解析:解答:根据相反数的定义可知,互为相反数的两个数只有符号不同,所以答案选择A选项

分析:考查相反数的基本概念。

2.3绝对值》同步练习

10.如果a=-a,下列成立的是()

A.-a一定是非负数B.-a一定是负数

C.a一定是正数D.a不能是0

11.下列说法:①一个数的绝对值一定是正数;②-a一定是一个负数;③没有绝对值为-3的数;④若a=a,则a是一个正数;⑤-20__的绝对值是20__.其中正确的有__.(填序号)

12.若绝对值相等的两个数在数轴上的对应点的距离为6,则这两个数为()

A.+6和-6B.-3和+3C.-3和+6D.-6和+3

初中数学教案通用篇11

教学目标 1, 通过对数“零”的意义的探讨,进一步理解正数和负数的概念;

2, 利用正负数正确表示相反意义的量(规定了指定方向变化的量)

3, 进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣。

教学难点 深化对正负数概念的理解

知识重点 正确理解和表示向指定方向变化的量

教学过程(师生活动) 设计理念

知识回顾与深化 回顾:上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示.这就是说:数的范围扩大了(数有正数和负数之分).那么,有没有一种既不是正数又不是负数的数呢?

问题1:有没有一种既不是正数又不是负数的数呢?

学生思考并讨论.

(数0既不是正数又不是负数,是正数和负数的分

界,是基准.这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例子供参考)

例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示。那么某一天某地的温度是

零上7℃,最低温度是零下5℃时,就应该表示为+7℃

和-5℃,这里+7℃和-5℃就分别称为正数和负数 .

那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数•

问题2:引入负数后,数按照“两种相反意义的量”来分,可以分成几类? “数0耽不是正数,也不是负数”也应看作是负数定义的一部分.在引入

负数后,0除了表示一个也没有以外,还是正数和负数的分界.了解。的这一层意义,也有助于对正负数的理解;且对数的顺利扩张和有理毅概念的建立都有帮助。

所举的例子,要考虑学生的可接受性.“数0既不是正数,也不是负数”应从相反意义的1这个角度来说明.这个问题只要初步认识即

可,不必深究.

分析问题

解决问题 问题3:教科书第6页例题

说明:这是一个用正负数描述向指定方向变化情况的例子, 通常向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示。这种描述在实际生活中有广泛的应用,应予以重视。教学中,应让学生体验“增长”和“减少”是两种相反意义的量,要求写出“体重的增长值”和“进出口额的增长率”,就暗示着用正数来表示增长的量。

归纳:在同一个问题中,分别用正数和负数表示的量具有相反的意义(教科书第6页).

类似的例子很多,如:

水位上升-3m,实际表示什么意思呢?

收人增加-10%,实际表示什么意思呢?

等等。

可视教学中的实际情况进行补充.

这种用正负数描述向指定方向变化情况的例子,在实际生活中有广泛的应用,按题意找准哪种

意义的量应该用正数表示是解题的关健.这种描述具有相反数的影子,例如第(1)题中小明的体重可说成是减少-2kg,但现在

不必向学生提出.

巩固练习 教科书第6页练习

阅读思考

教科书第8页 阅读与思考是正负数应用的很好例子,要花时间让学生讨论交流

小结与作业

课堂小结 以问题的形式,要求学生思考交流:

1,引人负数后,你是怎样认识数0的,数0的意义有哪些变化?

2,怎样用正负数表示具有相反意义的量?

(用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.)

本课作业 1, 必做题:教科书第7页习题1.1第3,6,7,8题

2, 选做题:教师自行安排

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1,本课主要目的是加深对正负数概念的理解和用正负数表示实际生产生活中的向指

定方向变化的量。

2,“数0既不是正数,也不是负数,’(要从0不属于两种相反意义的量中的任何一种上来理解)也应看作是负数定义的一部分.在引人负数后,除了表示一个也没有以外,还是正数和负数的分界。了解0的这一层意义,也有助于对正负数的理解,且对数的顺利扩张和有理数概念的建立都有帮助.由于上节课的重点是建立两种相反意义量的概念,考虑到学生的可接受性,所以作为知识的回顾和深化而放到本课.

3,教科书的例子是用正负数表示(向指定方向变化的)量的实际应用,用这种方式描述的例子很多,要尽量使学生理解.

4,本设计体现了学生自主学习、交流讨论的教学理念,教学中要让学生体验数学知识在实际中的合理应用,在体验中感悟和深化知识.通过实际例子的学习激发学生学习数学的兴趣.

初中数学教案通用篇12

我说课的题目是冀教版小学数学教材四年级下册第六单元时《垂线》。下面我从四个方面进行说课:

一、教学设计:

主要包括三个方面

1、教材分析:

垂线在生产、生活中有着广泛的应用,垂线的概念、性质是学生今后进一步学习数学的基础,在教材上起着承上启下的作用。

大多数学生感到数学枯燥,学习兴趣不高。我所教的班一直采用小组合作学习,学生基本养成了良好的预习习惯。这节课利用普通的多媒体教室,灵活运用现代教育技术,通过实例的展示及动画演示,让学生充分感知图形中蕴含的垂线特征,使知识的生成过程更直观更形象。对学生的认知、理解以及教学重难点突破起到了关键作用。

2、根据以上分析,我确定本节课的教学目标是:

知识与技能包括垂直的定义垂线的画法与性质。

数学思考包括

探索垂线的性质,发展学生的几何直觉,培养学生的猜想能力。并通过“做数学”,让学生对猜想进行检验,作出正确判断。

解决问题包括

培养学生数学语言表达能力,培养学生解决问题时的合作意识和习惯。

情感与态度包括

让学生体验数学充满着探索和创造,感受数学趣味,获得发现的喜悦。

鼓励学生感想敢说,让学生体验成功的快乐,树立学好数学的信心。

3、教学重难点:

教学重点:

垂直概念的建立、垂线的画法与性质。

教学难点:

用数学语言描述垂直的定义以及学生猜想能力的培养。

二、教学过程设计:

根据这节课的特点,我把整堂课分为课题导入、合作探究、课堂小结、拓展创新四个环节,灵活运用现代教育技术,突出重点,化解难点。为培养学生课前预习的习惯,设立了预习导航,准备了大量有关本节课的学习资料,并鼓励学生自己到网上查阅资料,提高学生的信息素养。

1、课题导入

课题导入运用多媒体展示学生熟悉的马路、篱笆、小棒等实物形象,并提出问题:仔细观察各组图形中两条直线的位置关系有什么共同点?让学生感到数学贴近生活,激发学生的表达欲望。

2、合作探究凸现学生的主体地位,让学生在学习中学会质疑、学会发现。合作探究分为垂直的定义、课堂练习、试试身手、垂线性质、你来当老师、走进生活五个小版块。其中,垂线的定义鼓励学生自己概括,并积极与大家交流。课堂练习梯度明显,答案灵活,尽量让每一个学生都有收获。“试试身手”让学生走上讲台,展示自己的发现,学生在轻松愉悦中很容易发现垂线的性质。“你来当老师”、“各抒己见”鼓励学生积极主动的发表自己的见解,营造平等、民主的学习氛围。激发学生探求的欲望,给学生一份自信,让学生在学习中学会质疑、学会发现。“走进生活”借助多媒体把学生的生活体验真实的再现给学生,让学生体验学有用的数学,增强学生学习数学的兴趣。

3、“课堂小结”让学生自己总结,谈本节课的收获、体会、本节课还有什么问题、新发现。鼓励学生大胆发言、锻炼学生的数学表达能力、语言概括能力。

4、探究创新:“创新园”让学生利用本节课所学知识,课后去思考、去动手制作、去创新发现。既能激发学生课后去学习、去探索的欲望,又能让学生感悟数学来源于生活,并反作用于生活的道理。培养学生学数学、用数学的创新意识,我想,只要我们教师用心,精心培育,创新园一定能育出创新果。

初中数学教案通用篇13

教学目标

(一)知识认知要求

1、回顾收集数据的方式、

2、回顾收集数据时,如何保证样本的代表性、

3、回顾频率、频数的概念及计算方法、

4、回顾刻画数据波动的统计量:极差、方差、标准差的概念及计算公式、

5、能利用计算器或计算机求一组数据的算术平均数、

(二)能力训练要求

1、熟练掌握本章的知识网络结构、

2、经历数据的收集与处理的过程,发展初步的统计意识和数据处理能力、

3、经历调查、统计等活动,在活动中发展学生解决问题的能力、

(三)情感与价值观要求

1、通过对本章内容的回顾与思考,发展学生用数学的意识、

2、在活动中培养学生团队精神、

教学重点

1、建立本章的知识框架图、

2、体会收集数据的方式,保证样本的代表性,频率、频数及刻画数据离散程度的统计量在实际情境中的意义和应用、

教学难点

收集数据的方式、抽样时保证样本的代表性、频率、频数、刻画数据离散程度的统计量在不同情境中的应用、

教学过程

一、导入新课

本章的内容已全部学完、现在如何让你调查一个情况、并且根据你获得数据,分析整理,然后写出调查报告,我想大家现在心里应该有数、

例如,我们要调查一下“上网吧的人的年龄”这一情况,我们应如何操作?

先选择调查方式,当然这个调查应采用抽样调查的方式,因为我们不可能调查到所有上网吧的人,何况也没有必要、

同学们感兴趣的话,下去以后可以以小组为单位,选择自己感兴趣的事情做调查,然后再作统计分析,然后把调查结果汇报上来,我们可以比一比,哪一个组表现最好?

二、讲授新课

1、举例说明收集数据的方式主要有哪几种类型、

2、抽样调查时,如何保证样本的代表性?举例说明、

3、举出与频数、频率有关的几个生活实例?

4、刻画数据波动的统计量有哪些?它们有什么作用?举例说明、

针对上面的几个问题,同学们先独立思考,然后可在小组内交流你的想法,然后我们每组选出代表来回答、

(教师可参与到学生的讨论中,发现同学们前面知识掌握不好的地方,及时补上)、

收集数据的方式有两种类型:普查和抽样调查、

例如:调查我校八年级同学每天做家庭作业的时间,我们就可以用普查的形式、

在这次调查中,总体:我校八年级全体学生每天做家庭作业的时间;个体:我校八年级每个学生每天做家庭作业的时间、

用普查的方式可以直接获得总体情况、但有时总体中个体数目太多,普查的工作量较大;有时受客观条件的限制,无法对所有个体进行普查;有时调查具有破坏性,不允许普查,此时可用抽样调查、

例如把上面问题改成“调查全国八年级同学每天做家庭作业的时间”,由于个体数目太多,普查的工作量也较大,此时就采取抽样调查,从总体中抽取一个样本,通过样本的特征数字来估计总体,例如平均数、中位数、众数、极差、方差等、

上面我们回顾了为了了解某种情况而采取的调查方式:普查和抽样调查,但抽样调查必须保证数据具有代表性,因为只有这样,你抽取的样本才能体现出总体的情况,不然,就会失去可靠性和准确性、

例如对我们班里某门学科的成绩情况,有时不仅知道平均成绩,还要知道90分以上占多少,80到90分之间占多少,……,不及格的占多少等,这时,我们只要看一下每个学生的成绩落在哪一个分数段,落在这个分数段的分数有几个,表明数据落在这个小组的频数就是多少,数据落在这个小组的频率就是频数与数据总个数的商、

刻画数据波动的统计量有极差、方差、标准差、它们是用来描述一组数据的稳定性的、一般而言,一组数据的`极差、方差或标准差越小,这组数据就越稳定、

例如:某农科所在8个试验点,对甲、乙两种玉米进行对比试验,这两种玉米在各试验点的亩产量如下(单位:千克)

甲:450460450430450460440460

乙:440470460440430450470440

在这个试验点甲、乙两种玉米哪一种产量比较稳定?

我们可以算极差、甲种玉米极差为460-430=30千克;乙种玉米极差为470-430=40千克、所以甲种玉米较稳定、

还可以用方差来比较哪一种玉米稳定、

s甲2=100,s乙2=200、

s甲2<s乙2,所以甲种玉米的产量较稳定、

三、建立知识框架图

通过刚才的几个问题回顾思考了我们这一章的重点内容,下面构建本章的知识结构图、

四、随堂练习

例1一家电脑生产厂家在某城市三个经销本厂产品的大商场调查,产品的销量占这三个大商场同类产品销量的40%、由此在广告中宣传,他们的产品在国内同类产品的销售量占40%、请你根据所学的统计知识,判断该宣传中的数据是否可靠:________,理由是________、

分析:这是一道判断说理型题,它要求借助于统计知识,作出科学的判断,同时运用统计原理给予准确的解释、因此,该电脑生产厂家凭借挑选某城市经销本产品情况,断然说他们的产品在国内同类产品的销量占40%,宣传中的数据是不可靠的,其理由有二:第一,所取样本容量太小;第二,样本抽取缺乏代表性和广泛性、

例2在举国上下众志成城抗击“非典”的斗争中,疫情变化牵动着全国人民的心、请根据下面的疫情统计图表回答问题:

(1)图10是5月11日至5月29日全国疫情每天新增数据统计走势图,观察后回答:

①每天新增确诊病例与新增疑似病例人数之和超过100人的天数共有__________天;

②在本题的统计中,新增确诊病例的人数的中位数是___________;

③本题在对新增确诊病例的统计中,样本是__________,样本容量是__________、

(2)下表是我国一段时间内全国确诊病例每天新增的人数与天数的频率统计表、(按人数分组)

①100人以下的分组组距是________;

②填写本统计表中未完成的空格;

③在统计的这段时期中,每天新增确诊

病例人数在80人以下的天数共有_________天、

解:(1)①7②26③5月11日至29日每天新增确诊病例人数19

(2)①10人②11400、1250、325③25

五.课时小结

这节课我们通过回顾与思考这一章的重点内容,共同建立的知识框架图,并进一步用统计的思想和知识解决问题,作出决策、

六.课后作业:

七.活动与探究

从鱼塘捕得同时放养的草鱼240尾,从中任选9尾,称得每尾鱼的质量分别是1、5,1、6,1、4,1、6,1、3,1、4,1、2,1、7,1、8(单位:千克)、依此估计这240尾鱼的总质量大约是

A、300克B、360千克C、36千克D、30千克

初中数学教案通用篇14

一、一次函数

1、问题导入:

问题1:小明暑假第一次去北京、汽车驶上A地的高速公路后,小明观察里程碑,发现汽车的平均速度是95千米/时、己知A地直达北京的高速公路全程为570千米,小明想知道汽车从A地驶出后,距北京的路程和汽车在高速公路上行驶的时间有什么关系,以便根据时间估计自己和北京的距离、

问题2:小张准备将平时的零用钱节约一些储存起来、他己存有50元,从现在起每个月节存12元、试写出小张的存款与从现在开始的月份数之间的函数关系式、

请同学们思考后回答:

(1)找出问题中的变量并用字母表示,列出函数关系式、

(2)这两个函数关系式有什么共同点?自变量的取值范围各有什么限制?

以上这些问题,请各小组讨论一下,派代表回答、引出课题(板书课题)教师最后总结一次函数的概念、(板书)

2、引导学生观察这两个函数关系式的结构特征,引出一次函数的一般形式(学生回答,且互相补充)老师最后归纳:一次函数通常可以表示为的形式,其中为常数,特别地,当时,一次函数(常数)也叫做正比例函数、

二、一次函数的图象是什么形状呢?

1、做一做:

我们已经学习了用描点法画函数的图象,请同学运用描点法画出下列函数的图象(老师用多媒体打出题目)。根据学生的动手实践、观察与讨论,得出结论:一次函数的图象是一条直线、特别地,正比例函数的图象是经过原点的一条直线。

2、接下来教师提问:

(1)观察所画出的四个一次函数的图象,比较各对一次函数的图象有什么共同点,有什么不同点。

(2)能否从中了现一些规律?对于直线(是常数),常数的取值对于直线的位置各有什么影响?

3、组织学生分小组讨论,相互交流、相互补充,最后总结出规律:当一样,不一样时,直线方向相同(平行),但没有相同点;当不一样,一样时,都经过(0,)点(相交),但直线方向不同、

4、巩固训练:

(1)在同一平面直角坐标系中画出下列函数的图象

教师提出问题:①画出图象,看看是否与上面的讨论结果一样;②你取的是哪几个点?和同学比较一下,怎样取比较简便?

(2)将直线向下平移2个单位,得到直线_______________________、

将直线向上平移5个单位,得到直线_______________________、

(由学生到前板演)、

5、对于教材中第42页例2处理,教师先用多媒体打出,并提出问题:平面直角坐标系中坐标轴上点的坐标有什么特征?在坐标轴上取点有什么好处?组织学生结合问题去分析,动手尝试,小组讨论交流,最后达成共识、对于教材第43页例3处理,教师可以提出以下几个问题讨论同学们讨论:①这里取的数悬殊较大怎么办?②这个函数是不是一次函数?③这个函数中自变量的取值范围是什么?函数的图象是什么?④在实际问题中,一次函数的图象除了直线和本题的图形外,还有没有其他情形?你能不能找出几个例子加以说明?

三、一次函数的性质

函数反映了客观世界中量的变化规律,那么一次函数又有什么性质呢?

1、请同学们来一起观察大屏幕上函数图象(教师用多媒体演示函数的图象),并回答:当一个点在直线上从左右移动时,它的位置如何变化?你能从中得到函数值的变化与自变量的变化规律吗?(教师运用现代化的教学手段来演示点的移动情况,进一步促进了学生对一次函数的变化规律理解)由学生讨论出结果:也就是说,函数值随自变量的增大而增大、(教师板书)

2、请同学们画出函数的图象,然后教师可以提出问题:观察它们是否也有相应的性质,有什么不同你能否发现什么规律?让学生带着老师提出的问题进行分组讨论,相互交流,最后归纳出一次函数如下性质:(1)当时,随的增大而增大,这时函数的图象从左到右上升;(2)当时,随的增大而减小,这时函数的图象从左到右下降;

3、补充性质:(3)时,一次函数的图象经过一、二、三象限;(4)时,一次函数的图象经过一、三、四象限;(5)时,一次函数的图象经过一、二、四象限;(6)时,一次函数的图象经过二、三、四象限、

4、对于教材中第45页做一做处理,可以作为例题,引导学生动手操作,分组讨论,由学生自己得出结论,教师起着指导作用;对于教材中第45页例4的处理,教师可以先组织学生审题分析找出题中的己知量,并提示学生:要想求一次函数的关系式,关键是要确定和的值,那么,结合题中所给的己知条件,又怎样来确定和的值呢?组织学生讨论,结合学生得出的结论,教师再给出待定系数法的概念,这样学生马上就会理解,从而难点得以突破、在这里教师要提醒学生,注意实际问题有关函数的自变量的范围限制、

初中数学教案通用篇15

教学目标:

1、知识与技能:

⑴、在具体的现实情境中,认识一个角的余角和补角,掌握余角和补角的性质。

⑵、了解方位角,能确定具体物体的方位。

2、过程与方法:

进一步提高学生的抽象概括能力,发展空间观念和知识运用能力,学会推理,并能对问题的结论进行合理的猜想。

3、情感态度与价值观:

体会观察、归纳、推理对数学知识中获取数学猜想和论证的重要作用,初步数学中推理的严谨性和结论的确定性,能在独立思考和小组交流中获益。

重、难点及关键:

1、重点:认识角的互余、互补关系及其性质,确定方位是本节课的重点。

2、难点:通过简单的推理,归纳出余角、补角的性质,并能用规范的语言描述性质是难点。

3、关键:了解推理的意义和推理过程是掌握性质的关键。

教学过程:

一、引入新课:

让学生观察意大利著名建筑比萨斜塔。

比萨斜塔建于1173年,工程曾间断了两次很长的时间,历经约二百年才完工。设计为垂直建造,但是在工程开始后不久便由于地基不均匀和土层松软而倾斜。

二、新课讲解:

1、探究互为余角的定义:

如果两个角的和是90(直角),那么这两个角叫做互为余角,其中一个角是另一个角的余角。即:1是2的余角或2是1的余角。

2、练习⑴:

图中给出的各角,那些互为余角?

3、探究互为补角的定义:

如果两个角的和是180(平角),那么这两个角叫做互为补角,其中一个角是另一个角的补角。即:3是4的补角或4是3的补角。

4、练习⑵:

(1)图中给出的各角,那些互为补角?

(2)填下列表:

a的余角a的补角

5

32

45

77

6223

x

结论:同一个锐角的补角比它的余角大90。

(3)填空:

①70的余角是,补角是。

②a(90)的它的余角是,它的补角是。

重要提醒:ⅰ(如何表示一个角的余角和补角)

锐角a的余角是(90a)

a的补角是(180a)

ⅱ互余和互补是两个角的数量关系,与它们的位置无关。

5、讲解例题:

例1:若一个角的补角等于它的余角4倍,求这个角的度数。

解:设这个角是x,则它的补角是(180-x),余角是(90-x)。

根据题意得:

(180-x)=4(90-x)

解之得:x=60

答:这个角的度数是60。

6、练习⑶:

一个角的补角是它的3倍,这个角是多少度?

7、探究补角的性质:

如图1与2互补,3与4互补,如果1=3,那么2与4相等吗?为什么?

教师活动:操作多媒体演示。

学生活动:观察图形的运动,得出结果:4

补角性质:同角或等角的补角相等

教师活动:向学生说明,以上从观察图形得到的`结论,还可以从理论上说明其理由。

∵1+2=180,3+4=180

2=180-1,4=180-3

∵1=3

180-1=180-3

即:2=4

8、探究余角的性质:

如图1与2互余,3与4互余,如果1=3,那么2与4相等吗?为什么?

教师活动:操作多媒体演示。

学生活动:观察图形的运动,得出结果:4

余角性质:同角或等角的余角相等

教师活动:向学生说明,以上从观察图形得到的结论,还可以从理论上说明其理由。

∵1+2=90,3+4=90

2=90-1,4=90-3

∵1=3

90-1=90-3

即:2=4

9、讲解例题:

例2:如图,AOB=90COD=EOD=90,C,O,E在一条直线上,且4,请说出1与3之间的关系?并试着说明理由?

解:3

∵2=COD=90

3+2=AOB=90

3(等角的余角相等)

10、练习⑷:

如图AOB=90COD=90则1与2是什么关系?

11、讲解方位角:

(1)认识方位:

正东、正南、正西、正北、东南、

西南、西北、东北。

(2)找方位角:

ⅰ乙地对甲地的方位角ⅱ甲地对乙地的方位角

12、讲解例题:

例3:选择题:

(1)A看B的方向是北偏东21,那么B看A的方向()

A:南偏东69B:南偏西69C:南偏东21D:南偏西21

(2)如图,下列说法中错误的是()

A:OC的方向是北偏东60

B:OC的方向是南偏东60

C:OB的方向是西南方向

D:OA的方向是北偏西22

(3)在点O北偏西60的某处有一点A,在点O南偏西20的某处有一点B,则AOB的度数是()

A:100B:70C:180D:140

例4:如图.货轮O在航行过程中,发现灯塔A在它南偏东60的方向上,同时,在它北偏东40,南偏西10,西北(即北偏西45)方向上又分别发现了客轮B,货轮C和海岛D.仿照表示灯塔方位的方法画出表示客轮B,货轮C和海岛D方向的射线.

三、课堂小结:

1、本节课学习了余角和补角,并通过简单的推理,得到出了余角和补角的性质。

2、了解方位角,学会了确定物体运动的方向。

四、课外作业:

1、课本第114页:9、11、12题。

2、学习指要第78-79页:训练二和训练三。

课后反思:

44555