教案吧 > 学科教案 > 数学教案 >

2024年高中数学的教案

时间: 新华 数学教案

作为一名教师,时常要编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。这里提供优秀的2024年高中数学的教案,方便大家写2024年高中数学的教案参考。

2024年高中数学的教案篇1

一、教学目标

(一)知识与技能

1、进一步熟练掌握求动点轨迹方程的基本方法。

2、体会数学实验的直观性、有效性,提高几何画板的操作能力。

(二)过程与方法

1、培养学生观察能力、抽象概括能力及创新能力。

2、体会感性到理性、形象到抽象的思维过程。

3、强化类比、联想的方法,领会方程、数形结合等思想。

(三)情感态度价值观

1、感受动点轨迹的动态美、和谐美、对称美

2、树立竞争意识与合作精神,感受合作交流带来的成功感,树立自信心,激发提出问题和解决问题的勇气

二、教学重点与难点

教学重点:运用类比、联想的方法探究不同条件下的轨迹

教学难点:图形、文字、符号三种语言之间的过渡

三、、教学方法和手段

【教学方法】观察发现、启发引导、合作探究相结合的教学方法。启发引导学生积极思考并对学生的思维进行调控,帮助学生优化思维过程,在此基础上,提供给学生交流的机会,帮助学生对自己的思维进行组织和澄清,并能清楚地、准确地表达自己的数学思维。

【教学手段】利用网络教室,四人一机,多媒体教学手段。通过上述教学手段,一方面:再现知识产生的过程,通过多媒体动态演示,突破学生在旧知和新知形成过程中的障碍(静态到动态);另一方面:节省了时间,提高了课堂教学的效率,激发了学生学习的兴趣。

【教学模式】重点中学实施素质教育的课堂模式"创设情境、激发情感、主动发现、主动发展"。

四、教学过程

1、创设情景,引入课题

生活中我们四处可见轨迹曲线的影子

【演示】这是美丽的城市夜景图

【演示】许多人认为天体运行的轨迹都是圆锥曲线,研究表明,天体数目越多,轨迹种类也越多

【演示】建筑中也有许多美丽的轨迹曲线

设计意图:让学生感受数学就在我们身边,感受轨迹曲线的动态美、和谐美、对称美,激发学习兴趣。

2、激发情感,引导探索

靠在墙角的梯子滑落了,如果梯子上站着一个人,我们不禁会想,这个人是直直的摔下去呢?还是划了一条优美的曲线飞出去呢?我们把这个问题转化为数学问题就是新教材高二上册88页20题,也就是这里的例题1;

例1、线段长为,两个端点和分别在轴和轴上滑动,求线段的中点的轨迹方程。

第一步:让学生借助画板动手验证轨迹

第二步:要求学生求出轨迹方程

法一:设,则

由得,

化简得

法二:设,由得

化简得

法三:设, 由点到定点的距离等于定长,

根据圆的定义得;

第三步:复习求轨迹方程的一般步骤

(1)建立适当的坐标系

(2)设动点的坐标M(x,y)

(3)列出动点相关的约束条件p(M)

(4)将其坐标化并化简,f(x,y)=0

(5)证明

其中,最关键的一步是根据题意寻求等量关系,并把等量关系坐标化

设计意图:在这里我借助几何画板的动画功能,先让学生直观地、形象地、动态地感受动点的轨迹是圆,接着要求学生求出轨迹方程,最后师生共同回顾求轨迹方程的一般步骤,达到熟练掌握直译法、定义法,体会从感性到理性、从形象到抽象的思维过程。

3、主动发现、主动发展

由上述例1可知,如果人站在梯子中间,则他会划了一段优美的圆弧飞出去。学生很自然就会想,如果人不是站在中间,而是随意站,结果会怎样呢?让学生动手探究M不是中点时的轨迹。

第一步:利用网络平台展示学生得到的轨迹(教师有意识的整合在一起)

设计意图:借助数学实验,把原本属于教师行为的设疑激趣还原于学生,让学生自己在实践过程中发现疑问,更容易激发学生学习的热情,促使他们主动学习。

第二步:分解动作,向学生提出3个问题:

问题1:当M位置不同时,线段BM与MA的大小关系如何?

问题2、体现BM与MA大小关系还有什么常见的形式?

问题3、你能类比例1把这种数量关系表达出来吗?

第三步:展示学生归纳、概括出来的数学问题

1、线段AB的长为2a,两个端点B和A分别在X轴和Y轴上滑动,点M为AB上的点,满足,求点M的轨迹方程。

2、线段AB的长为2a,两个端点B和A分别在X轴和Y轴上滑动,点M为AB上的点,满足,求点M的轨迹方程。

3、线段AB的长为2a,两个端点B和A分别在X轴和Y轴上滑动,点M为AB上的点,满足,求点M的轨迹方程。(说明是什么轨迹)

第四步:课堂完成学生归纳出来的问题1,问题2和3课后完成

4、合作探究、实现创新

改变A、点的运动方式,同样考虑中点的轨迹,教师进行适当的指导(这里固定A点,运动B点)

学生主要列出了以下几种运动方式:圆、椭圆、双曲线、抛物线,并且得出了一些相应的轨迹。

5、布置作业、实现拓展

1、把上述同学们探究得到的轨迹图形用文字、符号描述出来,(仿造例1),并求出轨迹方程。

2、已知A(4,0),点B是圆上一动点,AB中垂线与直线OB相交于点P,求点P的轨迹方程。

3、已知A(2,0),点B是圆上一动点,AB中垂线与直线OB相交于点P,求点P的轨迹方程。

4若把上述问题中垂线改为一般的垂线与直线OB相交于点P,请同学们利用画板验证点P 的轨迹。

以下是学生课后探究得到的一些轨迹图形

课后有学生问,如果X轴和Y轴不垂直会有什么结果?定长的线段在上面滑动怎么做出来?

可以说,学生的这些问题我之前并没有想过,给了我很大的触动,同时也促使我更进一步去研究几何画板,提高自己的能力。在这里,我体会到了教师不再只是一根根蜡烛,更像是一盏盏明灯,在照亮别人的同时也照亮自己。

以下是X轴和Y轴不垂直时的轨迹图形

五、教学设计说明:

(一)、教材

《平面动点的轨迹》是高二一节探究课,轨迹问题具有深厚的生活背景,求平面动点的轨迹方程涉及集合、方程、三角、平面几何等基础知识,其中渗透着运动与变化、方程的思想、数形结合的思想等,是中学数学的重要内容,也是历年高考数学考查的重点之一。

(二)、校情、学情

校情:我校是一所省一级达标校,省级示范性高中,学校的硬件设施比较完善,每间教室都具备多媒体教学的功能,另外有两间网络教室和一个学生电子阅室,并且能随时上网。

学情:大部分学生家里都有电脑,而且能随时上网。对学生进行了几何画板基本操作的培训,学生能较快的画出圆、椭圆、双曲线、抛物线等基本的圆锥曲线。学生对求轨迹方程的基本方法有了一定的掌握,但是对文字、图形、符号三种语言之间的转换还存在很大的差异,在合作交流意识方面,发展不均衡,有待加强。

(三)学法

观察、实验、交流、合作、类比、联想、归纳、总结

(四)、教学过程

1、创设情景,引入课题

2、激发情感,引导探索

由梯子滑落问题抽象、概括出数学问题

第一步:让学生借助画板动手验证轨迹

第二步:要求学生求出轨迹方程

第三步:复习求轨迹方程的一般步骤

3、主动发现、主动发展

探究M不是中点时的轨迹

第一步:利用网络平台展示学生得到的轨迹

第二步:分解动作,向学生提出3个问题:

第三步:展示学生归纳、概括出来的数学问题

4、合作探究、实现创新

改变A、点的运动方式,同样考虑中点的轨迹,教师进行适当的指导(这里固定A点,运动B点)

学生主要列出了以下几种运动方式:圆、椭圆、双曲线、抛物线,并且得出了一些相应的轨迹。

5、布置作业、实现拓展

(五)、教学特色:

借助网络、多媒体教学平台,让学生自己动手实验,发现问题并解决问题,同时把学生的学习情况及时的展现出来,做到大家一起学习,一起评价的效果。同时节省了时间,提高了课堂效率。

整个教学过程,体现了四个统一:既学习书本知识与投身实践的统一、书本学习与现代信息技术学习的统一、书本知识与资源拓展的统一、课堂学习与课外实践的统一。

本节课学生精神饱满、兴趣浓厚、合作积极,与我保持良好的互动,还不时产生一些争执,给我提出了一些新的问题,折射出我不足的方面,促进了我的进步与提高,师生间的教与学就像一面镜子,互相折射,共同进步。

2024年高中数学的教案篇2

一、教学内容分析

二面角是我们日常生活中经常见到的一个图形,它是在学生学过空间异面直线所成的角、直线和平面所成角之后,研究的一种空间的角,二面角进一步完善了空间角的概念.掌握好本节课的知识,对学生系统地理解直线和平面的知识、空间想象能力的培养,乃至创新能力的培养都具有十分重要的意义.

二、教学目标设计

理解二面角及其平面角的概念;能确认图形中的已知角是否为二面角的平面角;能作出二面角的平面角,并能初步运用它们解决相关问题.

三、教学重点及难点

二面角的平面角的概念的形成以及二面角的平面角的作法.

四、教学流程设计

五、教学过程设计

一、 新课引入

1.复习和回顾平面角的有关知识.

平面中的角

定义 从一个顶点出发的两条射线所组成的图形,叫做角图形

结构 射线—点—射线

表示法 ∠AOB,∠O等

2.复习和回顾异面直线所成的角、直线和平面所成的角的定义,及其共同特征.(空间角转化为平面角)

3.观察:陡峭与否,跟山坡面与水平面所成的角大小有关,而山坡面与水平面所成的角就是两个平面所成的角.在实际生活当中,能够转化为两个平面所成角例子非常多,比如在这间教室里,谁能举出能够体现两个平面所成角的实例?(如图1,课本的开合、门或窗的开关.)从而,引出“二面角”的定义及相关内容.

二、学习新课

(一)二面角的定义

平面中的角 二面角

定义 从一个顶点出发的两条射线所组成的图形,叫做角 课本P17

图形

结构 射线—点—射线 半平面—直线—半平面

表示法 ∠AOB,∠O等 二面角α—a—β或α-AB-β

(二)二面角的图示

1.画出直立式、平卧式二面角各一个,并分别给予表示.

2.在正方体中认识二面角.

(三)二面角的平面角

平面几何中的“角”可以看作是一条射线绕其端点旋转而成,它有一个旋转量,它的大小可以度量,类似地,"二面角"也可以看作是一个半平面以其棱为轴旋转而成,它也有一个旋转量,那么,二面角的大小应该怎样度量?

1.二面角的平面角的定义(课本P17).

2.∠AOB的大小与点O在棱上的位置无关.

[说明]①平面与平面的位置关系,只有相交或平行两种情况,为了对相交平面的相互位置作进一步的探讨,有必要来研究二面角的度量问题.

②与两条异面直线所成的角、直线和平面所成的角做类比,用“平面角”去度量.

③二面角的平面角的三个主要特征:角的顶点在棱上;角的两边分别在两个半平面内;角的两边分别与棱垂直.

3.二面角的平面角的范围:

(四)例题分析

例1 一张边长为a的正三角形纸片ABC,以它的高AD为折痕,将其折成一个 的二面角,求此时B、C两点间的距离.

[说明] ①检查学生对二面角的平面角的定义的掌握情况.

②翻折前后应注意哪些量的位置和数量发生了变化, 哪些没变?

例2 如图,已知边长为a的等边三角形 所在平面外有一点P,使PA=PB=PC=a,求二面角 的大小.

[说明] ①求二面角的步骤:作—证—算—答.

②引导学生掌握解题可操作性的通法(定义法和线面垂直法).

例3 已知正方体 ,求二面角 的大小.(课本P18例1)

[说明] 使学生进一步熟悉作二面角的平面角的方法.

(五)问题拓展

例4 如图,山坡的倾斜度(坡面与水平面所成二面角的度数)是 ,山坡上有一条直道CD,它和坡脚的水平线AB的夹角是 ,沿这条路上山,行走100米后升高多少米?

[说明]使学生明白数学既来源于实际又服务于实际.

三、巩固练习

1.在棱长为1的正方体 中,求二面角 的大小.

2. 若二面角 的大小为 ,P在平面 上,点P到 的距离为h,求点P到棱l的距离.

四、课堂小结

1.二面角的定义

2.二面角的平面角的定义及其范围

3.二面角的平面角的常用作图方法

4.求二面角的大小(作—证—算—答)

五、作业布置

1.课本P18练习14.4(1)

2.在 二面角的一个面内有一个点,它到另一个面的距离是10,求它到棱的距离.

3.把边长为a的正方形ABCD以BD为轴折叠,使二面角A-BD-C成 的二面角,求A、C两点的距离.

六、教学设计说明

本节课的设计不是简单地将概念直接传受给学生,而是考虑到知识的形成过程,设法从学生的数学现实出发,调动学生积极参与探索、发现、问题解决全过程.“二面角”及“二面角的平面角”这两大概念的引出均运用了类比的手段和方法.教学过程中通过教师的层层铺垫,学生的主动探究,使学生经历概念的形成、发展和应用过程,有意识地加强了知识形成过程的教学.

2024年高中数学的教案篇3

一、教学内容分析

二面角是我们日常生活中经常见到的一个图形,它是在学生学过空间异面直线所成的角、直线和平面所成角之后,研究的一种空间的角,二面角进一步完善了空间角的概念。掌握好本节课的知识,对学生系统地理解直线和平面的知识、空间想象能力的培养,乃至创新能力的培养都具有十分重要的意义。

二、教学目标设计

理解二面角及其平面角的概念;能确认图形中的已知角是否为二面角的平面角;能作出二面角的平面角,并能初步运用它们解决相关问题。

三、教学重点及难点

二面角的平面角的概念的形成以及二面角的平面角的作法。

四、教学流程设计

五、教学过程设计

一、新课引入

1。复习和回顾平面角的有关知识。

平面中的角

定义从一个顶点出发的两条射线所组成的图形,叫做角

图形

结构射线点射线

表示法AOB,O等

2。复习和回顾异面直线所成的角、直线和平面所成的角的定义,及其共同特征。(空间角转化为平面角)

3。观察:陡峭与否,跟山坡面与水平面所成的角大小有关,而山坡面与水平面所成的角就是两个平面所成的角。在实际生活当中,能够转化为两个平面所成角例子非常多,比如在这间教室里,谁能举出能够体现两个平面所成角的实例?(如图1,课本的开合、门或窗的开关。)从而,引出二面角的定义及相关内容。

二、学习新课

(一)二面角的定义

平面中的角二面角

定义从一个顶点出发的两条射线所组成的图形,叫做角课本P17

图形

结构射线点射线半平面直线半平面

表示法AOB,O等二面角a或—AB—

(二)二面角的图示

1。画出直立式、平卧式二面角各一个,并分别给予表示。

2。在正方体中认识二面角。

(三)二面角的平面角

平面几何中的角可以看作是一条射线绕其端点旋转而成,它有一个旋转量,它的大小可以度量,类似地,二面角也可以看作是一个半平面以其棱为轴旋转而成,它也有一个旋转量,那么,二面角的大小应该怎样度量?

1。二面角的平面角的定义(课本P17)。

2。AOB的大小与点O在棱上的位置无关。

[说明]①平面与平面的位置关系,只有相交或平行两种情况,为了对相交平面的相互位置作进一步的探讨,有必要来研究二面角的度量问题。

②与两条异面直线所成的角、直线和平面所成的角做类比,用平面角去度量。

③二面角的平面角的三个主要特征:角的顶点在棱上;角的两边分别在两个半平面内;角的两边分别与棱垂直。

3。二面角的平面角的范围:

(四)例题分析

例1一张边长为a的正三角形纸片ABC,以它的高AD为折痕,将其折成一个的二面角,求此时B、C两点间的距离。

[说明]①检查学生对二面角的平面角的定义的掌握情况。

②翻折前后应注意哪些量的位置和数量发生了变化,哪些没变?

例2如图,已知边长为a的等边三角形所在平面外有一点P,使PA=PB=PC=a,求二面角的大小。

[说明]①求二面角的步骤:作证算答。

②引导学生掌握解题可操作性的通法(定义法和线面垂直法)。

例3已知正方体,求二面角的大小。(课本P18例1)

[说明]使学生进一步熟悉作二面角的平面角的方法。

(五)问题拓展

例4如图,山坡的倾斜度(坡面与水平面所成二面角的度数)是,山坡上有一条直道CD,它和坡脚的水平线AB的夹角是,沿这条路上山,行走100米后升高多少米?

[说明]使学生明白数学既来源于实际又服务于实际。

三、巩固练习

1。在棱长为1的正方体中,求二面角的大小。

2。若二面角的大小为,P在平面上,点P到的距离为h,求点P到棱l的距离。

四、课堂小结

1。二面角的定义

2。二面角的平面角的定义及其范围

3。二面角的平面角的常用作图方法

4。求二面角的大小(作证算答)

五、作业布置

1。课本P18练习14。4(1)

2。在二面角的一个面内有一个点,它到另一个面的距离是10,求它到棱的距离。

3。把边长为a的正方形ABCD以BD为轴折叠,使二面角A—BD—C成的二面角,求A、C两点的距离。

六、教学设计说明

本节课的设计不是简单地将概念直接传受给学生,而是考虑到知识的形成过程,设法从学生的数学现实出发,调动学生积极参与探索、发现、问题解决全过程。二面角及二面角的平面角这两大概念的引出均运用了类比的手段和方法。教学过程中通过教师的层层铺垫,学生的主动探究,使学生经历概念的形成、发展和应用过程,有意识地加强了知识形成过程的教学。

2024年高中数学的教案篇4

高中数学数列知识点

数列的函数理解:

①数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N_或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。图像法;c.解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。③函数不一定有解析式,同样数列也并非都有通项公式。

通项公式:数列的第N项an与项的序数n之间的关系可以用一个公式an=f(n)来表示,这个公式就叫做这个数列的通项公式(注:通项公式不)。

数列通项公式的特点:

(1)有些数列的通项公式可以有不同形式,即不。

(2)有些数列没有通项公式(如:素数由小到大排成一列2,3,5,7,11,...)。

递推公式:如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。

数列递推公式特点:

(1)有些数列的递推公式可以有不同形式,即不。

(2)有些数列没有递推公式。

有递推公式不一定有通项公式。

注:数列中的项必须是数,它可以是实数,也可以是复数。

等差数列通项公式

an=a1+(n-1)d

n=1时a1=S1

n≥2时an=Sn-Sn-1

an=kn+b(k,b为常数)推导过程:an=dn+a1-d令d=k,a1-d=b则得到an=kn+b

等差中项

由三个数a,A,b组成的等差数列可以堪称最简单的等差数列。这时,A叫做a与b的等差中项(arithmeticmean)。

有关系:A=(a+b)÷2

前n项和

倒序相加法推导前n项和公式:

Sn=a1+a2+a3+·····+an

=a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①

Sn=an+an-1+an-2+······+a1

=an+(an-d)+(an-2d)+······+[an-(n-1)d]②

由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n个)=n(a1+an)

∴Sn=n(a1+an)÷2

等差数列的前n项和等于首末两项的和与项数乘积的一半:

Sn=n(a1+an)÷2=na1+n(n-1)d÷2

Sn=dn2÷2+n(a1-d÷2)

亦可得

a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n

an=2sn÷n-a1

有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1

等差数列性质

一、任意两项am,an的关系为:

an=am+(n-m)d

它可以看作等差数列广义的通项公式。

二、从等差数列的定义、通项公式,前n项和公式还可推出:

a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N_

三、若m,n,p,q∈N_,且m+n=p+q,则有am+an=ap+aq

四、对任意的k∈N_,有

Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差数列。

怎么样提高数学成绩

首先想要提升数学成绩,成为数学学霸的前提是要对数学有良好的学习兴趣。其次要学会课前预习,方便自己能够更加深入的吃透课堂上的知识点。然后还要学会总结复习,总结自己课堂上的问题,复习课堂上的重要知识点,从而提高自己的数学成绩。

提升数学成绩还要拥有一个错题本,和数学资料。认真对待自己的学习工具,多做练习题,找出自己的薄弱环节和自己常犯的题型,记在错题本上,常练习,常巩固。在自己的数学资料中摸索出适合自己的解题技巧,反复练习加以运用,一定会提升你的数学成绩。

学会听课,在课堂上勇于提问。数学最重要的部分都是在课本上,所以必须要掌握好课堂的45分钟。把握好数学课本,为自己打下一个好基础,这样才能更有效的提升你的数学成绩。学会做课堂笔记,把每节课的重要知识点记下来,以便接下来的复习。

学好数学的方法技巧整理

预习的方法

上课之前一定要抽时间进行预习,有时预习比做作业更重要,因为通过预习我们可以初步掌握课程的大致内容,听课就能够把握好重点,针对性比较强,还会带着问题去听课,听课效率就会比较高,上课听明白了,完成作业也会更好更快,最终会形成良性循环。

听懂课的习惯

注意听教师每节课强调的学习重点,注意听对定理、公式、法则的引入与推导的方法和过程,注意听对例题关键部分的提示和处理方法,注意听对疑难问题的解释及一节课最后的小结,这样,抓住重、难点,沿着知识的发生发展的过程来听课,不仅能提高听课效率,而且能由“听会”转变为“会听”。

不断练习

不断练习是指多做数学练习题。希望学好数学,多做练习是必不可少的。做练习的原因有以下三点:第一,熟练和巩固学到的数学知识;二,引导同学灵活运用所学知识点以及独立思考独立做题的水平;第三,融会贯通。通过做题将所学的所有知识点结合起来,加深同学对数学体系化的理解。

2024年高中数学的教案篇5

教学目标:

1、理解流程图的选择结构这种基本逻辑结构。

2、能识别和理解简单的框图的功能。

3、能运用三种基本逻辑结构设计流程图以解决简单的问题。

教学方法:

1、通过模仿、操作、探索,经历设计流程图表达求解问题的过程,加深对流程图的感知。

2、在具体问题的解决过程中,掌握基本的流程图的画法和流程图的三种基本逻辑结构。

教学过程:

一、问题情境

情境:

某铁路客运部门规定甲、乙两地之间旅客托运行李的费用为

其中(单位:)为行李的重量。

试给出计算费用(单位:元)的一个算法,并画出流程图。

二、学生活动

学生讨论,教师引导学生进行表达。

解算法为:

输入行李的重量;

如果,那么,

否则;

输出行李的重量和运费。

上述算法可以用流程图表示为:

教师边讲解边画出第10页图1-2-6。

在上述计费过程中,第二步进行了判断。

三、建构数学

1、选择结构的概念:

先根据条件作出判断,再决定执行哪一种操作的结构称为选择结构。

如图:虚线框内是一个选择结构,它包含一个判断框,当条件成立(或称条件为“真”)时执行,否则执行。

2、说明:

(1)有些问题需要按给定的条件进行分析、比较和判断,并按判断的不同情况进行不同的操作,这类问题的实现就要用到选择结构的设计;

(2)选择结构也称为分支结构或选取结构,它要先根据指定的条件进行判断,再由判断的结果决定执行两条分支路径中的某一条;

(3)在上图的选择结构中,只能执行和之一,不可能既执行,又执行,但或两个框中可以有一个是空的,即不执行任何操作;

(4)流程图图框的形状要规范,判断框必须画成菱形,它有一个进入点和两个退出点。

3、思考:教材第7页图所示的算法中,哪一步进行了判断?

2024年高中数学的教案篇6

教学过程:

前言:

今天是新学期的第一堂语文课,王老师为大家带来了一首小诗。(音乐中指名读,齐读。)

三年级的天空

今天,是20__年的一天

一张张可爱的笑脸

从20__年的家中匆匆赶来

来到美丽的暨阳学校,

继续

踏入三年级明亮的天空

书写新的传奇。

是呀,三年级的天空一定会无比明媚。那么,今天先让我们一起来回忆刚刚过去的美好的寒假。

一、口头交流寒假趣事

1.新年过得如何?(用词语来形容)

2.你觉得最有趣的是什么事?(根据你说的词语来说说)

二、书面了解别人的寒假趣事

1.全班欣赏同学写的优秀作文。(说说自己的感受。)

2.再欣赏网上找的。(认真倾听,分享快乐。)

三、王老师介绍自己的寒假趣事

1.你猜猜王老师怎么度过的?

2.公布答案。(在带宝宝的同时看书)

四、送礼物——听故事

王老师知道我们班同学都非常喜欢听故事,所以我在寒假的时候,特别挑选了一个故事,送给大家,作为新年礼物。

毛虫和我

——送给新学期的孩子们

毛虫知道,在它的身体里面,藏着一只蝴蝶。是的,它一直都知道,一刻也不曾忘记。当它慢吞吞地爬过菜叶的时候,它在想着这件事;当它贪婪地把叶子咬出一个个小洞时,它在想着这件事;当它舒展身体晒太阳的时候,它在想着这件事;当它亲吻一朵美丽的小花儿时,它在想这件事……

我要挑最鲜嫩的叶子吃,它对自己说,这样当我变成蝴蝶的时候,才会有艳丽的色彩。我要多多地吃,它对自己说,这样当我变成蝴蝶的时候,翅膀才会有力气。这金色的光线多么温暖,它对自己说,最重要的是,它将变成金粉装点我的翅膀。这朵小花多么可爱,它对自己说,将来我的翅膀上面,也会开出美丽的花儿来。

“哎呀,毛毛虫!好丑好恶心哟!”一个小女孩指着它叫道。这样的话毛毛虫听得多了,一点儿也不会破坏它的好心情。哦,我将长出一双美丽的翅膀,它对自己说。这样想着,毛毛虫昂起了它小小的脑袋,慢慢爬走了。

我知道,在我的身体里面,藏着一个更好的自己。是的,我一直都知道,一刻也不曾忘记。

所以我从来都不挑食,我知道所有健康的食物都将变成我的一部分,成就一个更好的我自己。所以我努力地读书,我知道所有那些有趣的书、严肃的书、美丽的书、智慧的书,最终都将变成我的一部分,成就一个更好的我自己。所以我喜欢认识新朋友,我知道所有那些善良的朋友、聪明的朋友、慷慨的朋友、睿智的朋友,他们的友情以及他们的美好天性,最终都将变成我的一部分,成就一个更好的我自己。所以我积极上好每一堂课,认真完成每一次作业,我知道千里之行始于足下,我走过的每一步路,我做过的每一件事,最终都将变成我的一部分,成就一个更好的我自己。所以我喜欢亲近大自然,我知道所有那些美丽的山水、阳光、花香和清新空气,最终都将变成我的一部分,成就一个更好的我自己。

每天早晨,我都会在镜子面前照一照自己;每天早晨,我都会在镜子里看到一个普普通通的小女孩(小男孩)。

可我知道,在我的身体里面,藏着一个更好的我自己。就像毛毛虫会变成蝴蝶,小种子会长成大树,我也会变成一个更好的我自己。

故事听完了,王老师要检查下你们是不是认真在听,有没有收到我的礼物?

1.毛毛虫的理想是什么?它为了成就更好的自己,怎么努力的?我的理想是什么?为了做最好的自己,我又是怎么做的?(大方向)

2.听了故事,说说自己新学期的目标?为了做最好的自己,在学习中你又准备怎么做?(小方向)(多阅读、多思考、多写作)

我相信,只要我们像毛毛虫那样努力,我们也一定可以变成美丽的蝴蝶!

四、总结

让我们每个人多阅读、多思考、多写作,向着美好的自己努力。最后让我们在诗歌中结束我们的开学第一课。(再次诵读诗歌)

2024年高中数学的教案篇7

【教学目标】

1、知识与技能

(1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列:

(2)账务等差数列的通项公式及其推导过程:

(3)会应用等差数列通项公式解决简单问题。

2、过程与方法

在定义的理解和通项公式的推导、应用过程中,培养学生的观察、分析、归纳能力和严密的逻辑思维的能力,体验从特殊到一般,一般到特殊的认知规律,提高熟悉猜想和归纳的能力,渗透函数与方程的思想。

3、情感、态度与价值观

通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、用于发现的求知精神,激发学生的学习兴趣,让学生感受到成功的喜悦。在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的良好习惯。

【教学重点】

①等差数列的概念;

②等差数列的通项公式

【教学难点】

①理解等差数列“等差”的特点及通项公式的含义;

②等差数列的通项公式的推导过程.

【学情分析】

我所教学的学生是我校高一(7)班的学生(平行班学生),经过一年的高中数学学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。

【设计思路】

1、教法

①启发引导法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性.

②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性.

③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点.

2、学法

引导学生首先从三个现实问题(数数问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法.

【教学过程】

一、创设情境,引入新课

1、从0开始,将5的倍数按从小到大的顺序排列,得到的数列是什么?

2、水库管理人员为了保证优质鱼类有良好的生活环境,用定期放水清库的办法清理水库中的杂鱼.如果一个水库的水位为18m,自然放水每天水位降低2.5m,最低降至5m.那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位(单位:m)组成一个什么数列?

3、我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本息计算下一期的利息.按照单利计算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10000元钱,年利率是0.72%,那么按照单利,5年内各年末的本利和(单位:元)组成一个什么数列?

教师:以上三个问题中的数蕴涵着三列数.

学生:

①0,5,10,15,20,25,….

②18,15.5,13,10.5,8,5.5.

③10072,10144,10216,10288,10360.

(设置意图:从实例引入,实质是给出了等差数列的现实背景,目的是让学生感受到等差数列是现实生活中大量存在的数学模型.通过分析,由特殊到一般,激发学生学习探究知识的自主性,培养学生的归纳能力.

二、观察归纳,形成定义

①0,5,10,15,20,25,….

②18,15.5,13,10.5,8,5.5.

③10072,10144,10216,10288,10360.

思考1上述数列有什么共同特点?

思考2根据上数列的共同特点,你能给出等差数列的一般定义吗?

思考3你能将上述的文字语言转换成数学符号语言吗?

教师:引导学生思考这三列数具有的共同特征,然后让学生抓住数列的特征,归纳得出等差数列概念.

学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些数都是按照一定顺序排列的…只要合理教师就要给予肯定.

教师引导归纳出:等差数列的定义;另外,教师引导学生从数学符号角度理解等差数列的定义.

(设计意图:通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性;使学生体会到等差数列的规律和共同特点;一开始抓住:“从第二项起,每一项与它的前一项的差为同一常数”,落实对等差数列概念的&39;准确表达.)

三、举一反三,巩固定义

1、判定下列数列是否为等差数列?若是,指出公差d.

(1)1,1,1,1,1;

(2)1,0,1,0,1;

(3)2,1,0,-1,-2;

(4)4,7,10,13,16.

教师出示题目,学生思考回答.教师订正并强调求公差应注意的问题.

注意:公差d是每一项(第2项起)与它的前一项的差,防止把被减数与减数弄颠倒,而且公差可以是正数,负数,也可以为0.

(设计意图:强化学生对等差数列“等差”特征的理解和应用).

2、思考4:设数列{an}的通项公式为an=3n+1,该数列是等差数列吗?为什么?

(设计意图:强化等差数列的证明定义法)

四、利用定义,导出通项

1、已知等差数列:8,5,2,…,求第200项?

2、已知一个等差数列{an}的首项是a1,公差是d,如何求出它的任意项an呢?

教师出示问题,放手让学生探究,然后选择列式具有代表性的上去板演或投影展示.根据学生在课堂上的具体情况进行具体评价、引导,总结推导方法,体会归纳思想以及累加求通项的方法;让学生初步尝试处理数列问题的常用方法.

(设计意图:引导学生观察、归纳、猜想,培养学生合理的推理能力.学生在分组合作探究过程中,可能会找到多种不同的解决办法,教师要逐一点评,并及时肯定、赞扬学生善于动脑、勇于创新的品质,激发学生的创造意识.鼓励学生自主解答,培养学生运算能力)

五、应用通项,解决问题

1、判断100是不是等差数列2,9,16,…的项?如果是,是第几项?

2、在等差数列{an}中,已知a5=10,a12=31,求a1,d和an.

3、求等差数列3,7,11,…的第4项和第10项

教师:给出问题,让学生自己操练,教师巡视学生答题情况.

学生:教师叫学生代表总结此类题型的解题思路,教师补充:已知等差数列的首项和公差就可以求出其通项公式

(设计意图:主要是熟悉公式,使学生从中体会公式与方程之间的联系.初步认识“基本量法”求解等差数列问题.)

六、反馈练习:

教材13页练习1

七、归纳总结:

1、一个定义:

等差数列的定义及定义表达式

2、一个公式:

等差数列的通项公式

3、二个应用:

定义和通项公式的应用

教师:让学生思考整理,找几个代表发言,最后教师给出补充

(设计意图:引导学生去联想本节课所涉及到的各个方面,沟通它们之间的联系,使学生能在新的高度上去重新认识和掌握基本概念,并灵活运用基本概念.)

【设计反思】

本设计从生活中的数列模型导入,有助于发挥学生学习的主动性,增强学生学习数列的兴趣.在探索的过程中,学生通过分析、观察,归纳出等差数列定义,然后由定义导出通项公式,强化了由具体到抽象,由特殊到一般的思维过程,有助于提高学生分析问题和解决问题的能力.本节课教学采用启发方法,以教师提出问题、学生探讨解决问题为途径,以相互补充展开教学,总结科学合理的知识体系,形成师生之间的良性互动,提高课堂教学效率.

2024年高中数学的教案篇8

一、教学内容

本节主要内容为:经历探索30°、45°、60°角的三角函数值的过程,能够进行含有30°、45°、60°角的三角函数值的计算。

二、教学目标

1、经历探索30°、45°、60°角的三角函数值的过程,能够进行有关推理,进一步体会三角函数的意义。

2、能够进行含有30°、45°、60°角的三角函数值的计算。

3、能够根据30°、45°、60°角的三角函数值,说出相应的锐角的大小。

三、过程与方法

通过进行有关推理,探索30°、45°、60°角的三角函数值。在具体教学过程中,教师可在教材的基础上适当拓展,使得内容更为丰富.教师可以运用和学生共同探究式的教学方法,学生可以采取自主探讨式的学习方法.

四、教学重点和难点

重点:进行含有30°、45°、60°角的三角函数值的计算

难点:记住30°、45°、60°角的三角函数值

五、教学准备

教师准备

预先准备教材、教参以及多媒体课件

学生准备

教材、同步练习册、作业本、草稿纸、作图工具等

六、教学步骤

教学流程设计

教师指导学生活动

1.新章节开场白.1.进入学习状态.

2.进行教学.2.配合学习.

3.总结和指导学生练习.3记录相关内容,完成练习.

教学过程设计

1、从学生原有的认知结构提出问题

2、师生共同研究形成概念

3、随堂练习

4、小结

5、作业

板书设计

1、叙述三角函数的意义

2、30°、45°、60°角的三角函数值

3、例题

七、课后反思

本节课基本上能够突出重点、弱化难点,在时间上也能掌控得比较合理,学生也比较积极投入学习中,但是学生好像并不是掌握得很好,在今后的教学中应该再加强关于这方面的学习。

2024年高中数学的教案篇9

教学目标:①掌握对数函数的性质。

②应用对数函数的性质可以解决:对数的大小比较,求复合函数的定义域、值 域及单调性。

③ 注重函数思想、等价转化、分类讨论等思想的渗透,提高解题能力。

教学重点与难点:对数函数的性质的应用。

教学过程设计:

⒈复习提问:对数函数的概念及性质。

⒉开始正课

1 比较数的大小

例 1 比较下列各组数的大小。

⑴loga5.1 ,loga5.9 (a>0,a≠1)

⑵log0.50.6 ,logЛ0.5 ,lnЛ

师:请同学们观察一下⑴中这两个对数有何特征?

生:这两个对数底相等。

师:那么对于两个底相等的对数如何比大小?

生:可构造一个以a为底的对数函数,用对数函数的单调性比大小。

师:对,请叙述一下这道题的解题过程。

生:对数函数的单调性取决于底的大小:当0调递减,所以loga5.1>loga5.9 ;当a>1时,函数y=logax单调递增,所以loga5.1

板书:

解:Ⅰ)当0∵5.1<5.9 ∴loga5.1>loga5.9

Ⅱ)当a>1时,函数y=logax在(0,+∞)上是增函数,∵5.1<5.9 ∴loga5.1

师:请同学们观察一下⑵中这三个对数有何特征?

生:这三个对数底、真数都不相等。

师:那么对于这三个对数如何比大小?

生:找“中间量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnЛ>1,log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。

板书:略。

师:比较对数值的大小常用方法:①构造对数函数,直接利用对数函数 的单调性比大小,②借用“中间量”间接比大小,③利用对数函数图象的位置关系来比大小。

2 函数的定义域, 值 域及单调性。

例 2 ⑴求函数y=的定义域。

⑵解不等式log0.2(x2+2x-3)>log0.2(3x+3)

师:如何来求⑴中函数的定义域?(提示:求函数的定义域,就是要使函数有意义。若函数中含有分母,分母不为零;有偶次根式,被开方式大于或等于零;若函数中有对数的形式,则真数大于零,如果函数中同时出现以上几种情况,就要全部考虑进去,求它们共同作用的结果。)生:分母2x-1≠0且偶次根式的被开方式log0.8x-1≥0,且真数x>0。

板书:

解:∵   2x-1≠0      x≠0.5

log0.8x-1≥0 ,  x≤0.8

x>0        x>0

∴x(0,0.5)∪(0.5,0.8〕

师:接下来我们一起来解这个不等式。

分析:要解这个不等式,首先要使这个不等式有意义,即真数大于零,

再根据对数函数的单调性求解。

师:请你写一下这道题的解题过程。

生:<板书>

解:  x2+2x-3>0      x<-3 或 x>1

(3x+3)>0    ,   x>-1

x2+2x-3<(3x+3)    -2

不等式的解为:1

例 3 求下列函数的值域和单调区间。

⑴y=log0.5(x- x2)

⑵y=loga(x2+2x-3)(a>0,a≠1)

师:求例3中函数的的值域和单调区间要用及复合函数的思想方法。

下面请同学们来解⑴。

生:此函数可看作是由y= log0.5u, u= x- x2复合而成。

板书:

解:⑴∵u= x- x2>0, ∴0

u= x- x2=-(x-0.5)2+0.25, ∴0

∴y= log0.5u≥log0.50.25=2

∴y≥2

x    x(0,0.5]   x[0.5,1)

u= x- x2

y= log0.5u

y=log0.5(x- x2)

函数y=log0.5(x- x2)的单调递减区间(0,0.5],单调递 增区间[0.5,1)

注:研究任何函数的性质时,都应该首先保证这个函数有意义,否则函数都不存在,性质就无从谈起。

师:在⑴的基础上,我们一起来解⑵。请同学们观察一下⑴与⑵有什么区别?

生:⑴的底数是常值,⑵的底数是字母。

师:那么⑵如何来解?

生:只要对a进行分类讨论,做法与⑴类似。

板书:略。

⒊小结

这堂课主要讲解如何应用对数函数的性质解决一些问题,希望能通过这堂课使同学们对等价转化、分类讨论等思想加以应用,提高解题能力。

⒋作业

⑴解不等式

①lg(x2-3x-4)≥lg(2x+10);②loga(x2-x)≥loga(x+1),(a为常数)

⑵已知函数y=loga(x2-2x),(a>0,a≠1)

①求它的单调区间;②当0

⑶已知函数y=loga (a>0, b>0, 且 a≠1)

①求它的定义域;②讨论它的奇偶性;  ③讨论它的单调性。

⑷已知函数y=loga(ax-1) (a>0,a≠1),

①求它的定义域;②当x为何值时,函数值大于1;③讨论它的单调性。

5.课堂教学设计说明

这节课是安排为习题课,主要利用对数函数的性质解决一些问题,整个一堂课分两个部分:一 .比较数的大小,想通过这一部分的练习,培养同学们构造函数的思想和分类讨论、数形结合的思想。二.函数的定义域, 值 域及单调性,想通过这一部分的练习,能使同学们重视求函数的定义域。因为学生在求函数的值域和单调区间时,往往不考虑函数的定义域,并且这种错误很顽固,不易纠正。因此,力求学生做到想法正确,步骤清晰。为了调动学生的积极性,突出学生是课堂的主体,便把例题分了层次,由易到难,力求做到每题都能由学生独立完成。但是,每一道题的解题过程,老师都应该给以板书,这样既让学生有了获取新知识的快乐,又不必为了解题格式的不熟悉而烦恼。每一题讲完后,由教师简明扼要地小结,以使好学生掌握地更完善,较差的学生也能够跟上。

2024年高中数学的教案篇10

一、课前检测

1.在数列{an}中,an=1n+1+2n+1++nn+1,又bn=2anan+1,求数列{bn}的前n项的和.

解:由已知得:an=1n+1(1+2+3++n)=n2,

bn=2n2n+12=8(1n-1n+1)数列{bn}的前n项和为

Sn=8[(1-12)+(12-13)+(13-14)++(1n-1n+1)]=8(1-1n+1)=8nn+1.

2.已知在各项不为零的数列中,。

(1)求数列的通项;

(2)若数列满足,数列的前项的和为,求

解:(1)依题意,,故可将整理得:

所以即

,上式也成立,所以

(2)

二、知识梳理

(一)前n项和公式Sn的定义:Sn=a1+a2+an。

(二)数列求和的方法(共8种)

5.错位相减法:适用于差比数列(如果等差,等比,那么叫做差比数列)即把每一项都乘以的公比,向后错一项,再对应同次项相减,转化为等比数列求和。

如:等比数列的前n项和就是用此法推导的.

解读:

6.累加(乘)法

解读:

7.并项求和法:一个数列的前n项和中,可两两结合求解,则称之为并项求和.

形如an=(-1)nf(n)类型,可采用两项合并求。

解读:

8.其它方法:归纳、猜想、证明;周期数列的求和等等。

解读:

三、典型例题分析

题型1错位相减法

例1求数列前n项的和.

解:由题可知{}的通项是等差数列{2n}的通项与等比数列{}的通项之积

设①

②(设制错位)

①-②得(错位相减)

变式训练1(20__昌平模拟)设数列{an}满足a1+3a2+32a3++3n-1an=n3,nN__.

(1)求数列{an}的通项公式;

(2)设bn=nan,求数列{bn}的&39;前n项和Sn.

解:(1)∵a1+3a2+32a3++3n-1an=n3,①

当n2时,a1+3a2+32a3++3n-2an-1=n-13.②

①-②得3n-1an=13,an=13n.

在①中,令n=1,得a1=13,适合an=13n,an=13n.

(2)∵bn=nan,bn=n3n.

Sn=3+232+333++n3n,③

3Sn=32+233+334++n3n+1.④

④-③得2Sn=n3n+1-(3+32+33++3n),

即2Sn=n3n+1-3(1-3n)1-3,Sn=(2n-1)3n+14+34.

小结与拓展:

题型2并项求和法

例2求=1002-992+982-972++22-12

解:=1002-992+982-972++22-12=(100+99)+(98+97)++(2+1)=5050.

变式训练2数列{(-1)nn}的前20__项的和S2010为(D)

A.-20__B.-1005C.20__D.1005

解:S2010=-1+2-3+4-5++2008-2009+2010

=(2-1)+(4-3)+(6-5)++(2010-2009)=1005.

小结与拓展:

题型3累加(乘)法及其它方法:归纳、猜想、证明;周期数列的求和等等

例3(1)求之和.

(2)已知各项均为正数的数列{an}的前n项的乘积等于Tn=(nN__),

,则数列{bn}的前n项和Sn中最大的一项是(D)

A.S6B.S5C.S4D.S3

解:(1)由于(找通项及特征)

=(分组求和)==

=

(2)D.

变式训练3(1)(20__福州八中)已知数列则,。答案:100.5000。

(2)数列中,,且,则前20__项的和等于(A)

A.1005B.20__C.1D.0

小结与拓展:

四、归纳与总结(以学生为主,师生共同完成)

以上一个8种方法虽然各有其特点,但总的原则是要善于改变原数列的形式结构,使

其能进行消项处理或能使用等差数列或等比数列的求和公式以及其它已知的基本求和公式来解决,只要很好地把握这一规律,就能使数列求和化难为易,迎刃而解。

2024年高中数学的教案篇11

教学目标

1.明确等差数列的定义.

2.掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题

3.培养学生观察、归纳能力.

教学重点

1.等差数列的概念;

2.等差数列的通项公式

教学难点

等差数列“等差”特点的理解、把握和应用

教具准备

投影片1张(内容见下面)

教学过程

(I)复习回顾

师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。这两个公式从不同的角度反映数列的特点,下面看一些例子。(放投影片)

(Ⅱ)讲授新课

师:看这些数列有什么共同的特点?

1,2,3,4,5,6;①

10,8,6,4,2,…;②

生:积极思考,找上述数列共同特点。

对于数列①(1≤n≤6);(2≤n≤6)

对于数列②-2n(n≥1)(n≥2)

对于数列③(n≥1)(n≥2)

共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。

师:也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列,我们把它叫做等差数。

一、定义:

等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。

如:上述3个数列都是等差数列,它们的公差依次是1,-2,。

二、等差数列的通项公式

师:等差数列定义是由一数列相邻两项之间关系而得。若一等差数列的首项是,公差是d,则据其定义可得:

若将这n-1个等式相加,则可得:

即:即:即:……

由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。

如数列①(1≤n≤6)

数列②:(n≥1)

数列③:(n≥1)

由上述关系还可得:即:则:=如:三、例题讲解

例1:(1)求等差数列8,5,2…的第20项

(2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?

解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立解之得n=100,即-401是这个数列的第100项。

(Ⅲ)课堂练习

生:(口答)课本P118练习3

(书面练习)课本P117练习1

师:组织学生自评练习(同桌讨论)

(Ⅳ)课时小结

师:本节主要内容为:①等差数列定义。

即(n≥2)

②等差数列通项公式(n≥1)

推导出公式:(V)课后作业

一、课本P118习题3.21,2

二、1.预习内容:课本P116例2P117例4

2.预习提纲:

①如何应用等差数列的定义及通项公式解决一些相关问题?

②等差数列有哪些性质?

板书设计

课题

一、定义

1.(n≥2)

一、通项公式

2.公式推导过程

例题

教学后记

2024年高中数学的教案篇12

教学准备

1.教学目标

1、知识与技能:

函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依

赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想与意识.

2、过程与方法:

(1)通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;

(2)了解构成函数的要素;

(3)会求一些简单函数的定义域和值域;

(4)能够正确使用“区间”的符号表示函数的定义域;

3、情感态度与价值观,使学生感受到学习函数的必要性和重要性,激发学习的积极性.

教学重点/难点

重点:理解函数的模型化思想,用集合与对应的语言来刻画函数;

难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;

教学用具

多媒体

4.标签

函数及其表示

教学过程

(一)创设情景,揭示课题

1、复习初中所学函数的概念,强调函数的模型化思想;

2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:

(1)炮弹的射高与时间的变化关系问题;

(2)南极臭氧空洞面积与时间的变化关系问题;

(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题.

3、分析、归纳以上三个实例,它们有什么共同点;

4、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;

5、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.

(二)研探新知

1、函数的有关概念

(1)函数的概念:

设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).

记作:y=f(x),x∈A.

其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的.集合{f(x)x∈A}叫做函数的值域(range).

注意:

①“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.

(2)构成函数的三要素是什么?

定义域、对应关系和值域

(3)区间的概念

①区间的分类:开区间、闭区间、半开半闭区间;

②无穷区间;

③区间的数轴表示.

(4)初中学过哪些函数?它们的定义域、值域、对应法则分别是什么?

通过三个已知的函数:y=ax+b(a≠0)

y=ax2+bx+c(a≠0)

y=(k≠0)比较描述性定义和集合,与对应语言刻画的定义,谈谈体会.

师:归纳总结

(三)质疑答辩,排难解惑,发展思维。

1、如何求函数的定义域

例1:已知函数f(x)=+

(1)求函数的定义域;

(2)求f(-3),f()的值;

(3)当a>0时,求f(a),f(a-1)的值.

分析:函数的定义域通常由问题的实际背景确定,如前所述的三个实例.如果只给出解析式y=f(x),而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数的集合,函数的定义域、值域要写成集合或区间的形式.

例2、设一个矩形周长为80,其中一边长为x,求它的面积关于x的函数的解析式,并写出定义域.

分析:由题意知,另一边长为x,且边长x为正数,所以0<x<40.

所以s==(40-x)x(0<x<40)

引导学生小结几类函数的定义域:

(1)如果f(x)是整式,那么函数的定义域是实数集R.

(2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合.

(3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合.

(4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合.(即求各集合的交集)

(5)满足实际问题有意义.

巩固练习:课本P19第1

2、如何判断两个函数是否为同一函数

例3、下列函数中哪个与函数y=x相等?

分析:

1、构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)

2、两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

解:

课本P18例2

(四)归纳小结

①从具体实例引入了函数的概念,用集合与对应的语言描述了函数的定义及其相关概念;

②初步介绍了求函数定义域和判断同一函数的基本方法,同时引出了区间的概念.

(五)设置问题,留下悬念

1、课本P24习题1.2(A组)第1—7题(B组)第1题

2、举出生活中函数的例子(三个以上),并用集合与对应的语言来描述函数,同时说出函数的定义域、值域和对应关系.

课堂小结

2024年高中数学的教案篇13

尊敬的各位专家、评委:

下午好!

我的抽签序号是___,今天我说课的课题是《______》第__课时。我尝试利用新课标的理念来指导教学,对于本节课,我将以“教什么,怎么教,为什么这样教”为思路,从教材分析、教法学法分析、教学过程分析和评价分析四方面来谈谈我对教材的理解和教学的设计,敬请各位专家、评委批评指正。

一、教材分析

(一)地位与作用

数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面数列作为一种特殊的函数与函数思想密不可分;另一方面学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。

(二)学情分析

(1)学生已熟练掌握_________________。

(2)学生的知识经验较丰富,具备了教强的抽象思维能力和演绎推理能力。

(3)学生思维活泼,积极性高,已初步形成对数学问题的合作探究能力。

(4)学生层次参次不齐,个体差异比较明显。

二、目标分析

新课标指出“三维目标”是一个密切联系的有机整体,应该以获得知识与技能的过程,同时成为学会学习和正确价值观。这要求我们在教学中以知识技能的培养为主线,透情感态度与价值观,并把这两者充分体现在教学过程中,新课标指出教学的主体是学生,因此目标的制定和设计必须从学生的角度出发,根据__在教材内容中的地位与作用,结合学情分析,本节课教学应实现如下教学目标:

(一)教学目标

(1)知识与技能

使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;。

(2)过程与方法

引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。

(3)情感态度与价值观

在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

(二)重点难点

本节课的教学重点是________,教学难点是_________。

三、教法、学法分析

(一)教法

基于本节课的内容特点和高二学生的年龄特征,按照临沂市高中数学“三五四”课堂教学策略,采用探究――体验教学法为主来完成教学,为了实现本节课的教学目标,在教法上我采取了:

1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性.

2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念.

3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达.

(二)学法在学法上我重视了:1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃。2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。

四、教学过程分析

(一)教学过程设计

教学是一个教师的“导”,学生的“学”以及教学过程中的“悟”构成的和谐整体。教师的“导”也就是教师启发、诱导、激励、评价等为学生的学习搭建支架,把学习的任务转移给学生,学生就是接受任务,探究问题、完成任务。如果在教学过程中把“教与学”完美的结合也就是以“问题”为核心,通过对知识的发生、发展和运用过程的演绎、解释和探究来组织和推动教学。

(1)创设情境,提出问题。新课标指出:“应该让学生在具体生动的情境中学习数学”。在本节课的教学中,从我们熟悉的生活情境中提出问题,问题的

设计改变了传统目的明确的设计方式,给学生最大的思考空间,充分体现学生主体地位。

(2)引导探究,建构概念。数学概念的形成来自解决实际问题和数学自身发展的需要.但概念的高度抽象,造成了难懂、难教和难学,这就需要让学生置身于符合自身实际的学习活动中去,从自己的经验和已有的知识基础出发,经历“数学化”、“再创造”的活动过程.

(3)自我尝试,初步应用。有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此。让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究.

(4)当堂训练,巩固深化。通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对知识识的再次深化。

(5)小结归纳,回顾反思。小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。我设计了三个问题:(1)通过本节课的学习,你学到了哪些知识?(2)通过本节课的学习,你最大的体验是什么?(3)通过本节课的学习,你掌握了哪些技能?

(二)作业设计

作业分为必做题和选做题,必做题对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与,注重知识的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成.

我设计了以下作业:(1)必做题(2)选做题

(三)板书设计板书要基本体现整堂课的内容与方法,体现课堂进程,能简明扼要反映知识结构及其相互联系;能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。

五、评价分析

学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价。我采用及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对____是否有一个完整的集训,并进行及时的调整和补充。以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。谢谢!

2024年高中数学的教案篇14

教学目标

(1)了解用坐标法研究几何问题的方法,了解解析几何的基本问题.

(2)理解曲线的方程、方程的曲线的概念,能根据曲线的已知条件求出曲线的方程,了解两条曲线交点的概念.

(3)通过曲线方程概念的教学,培养学生数与形相互联系、对立统一的辩证唯物主义观点.

(4)通过求曲线方程的教学,培养学生的转化能力和全面分析问题的能力,帮助学生理解解析几何的思想方法.

(5)进一步理解数形结合的思想方法.

教学建议

教材分析

(1)知识结构

曲线与方程是在初中轨迹概念和本章直线方程概念之后的解析几何的基本概念,在充分讨论曲线方程概念后,介绍了坐标法和解析几何的思想,以及解析几何的基本问题,即由曲线的已知条件,求曲线方程;通过方程,研究曲线的性质.曲线方程的概念和求曲线方程的问题又有内在的逻辑顺序.前者回答什么是曲线方程,后者解决如何求出曲线方程.至于用曲线方程研究曲线性质则更在其后,本节不予研究.因此,本节涉及曲线方程概念和求曲线方程两大基本问题.

(2)重点、难点分析

①本节内容教学的重点是使学生理解曲线方程概念和掌握求曲线方程方法,以及领悟坐标法和解析几何的思想.

②本节的难点是曲线方程的概念和求曲线方程的方法.

教法建议

(1)曲线方程的概念是解析几何的核心概念,也是基础概念,教学中应从直线方程概念和轨迹概念入手,通过简单的实例引出曲线的点集与方程的解集之间的对应关系,说明曲线与方程的对应关系.曲线与方程对应关系的基础是点与坐标的对应关系.注意强调曲线方程的完备性和纯粹性.

(2)可以结合已经学过的直线方程的知识帮助学生领会坐标法和解析几何的思想,学习解析几何的意义和要解决的问题,为学习求曲线的方程做好逻辑上的和心理上的准备.

(3)无论是判断、证明,还是求解曲线的方程,都要紧扣曲线方程的概念,即始终以是否满足概念中的两条为准则.

(4)从集合与对应的观点可以看得更清楚:

设 表示曲线 上适合某种条件的点 的集合;

表示二元方程的解对应的点的坐标的集合.

可以用集合相等的概念来定义“曲线的方程”和“方程的曲线”,即

(5)在学习求曲线方程的方法时,应从具体实例出发,引导学生从曲线的几何条件,一步步地、自然而然地过渡到代数方程(曲线的方程),这个过渡是一个从几何向代数不断转化的过程,在这个过程中提醒学生注意转化是否为等价的,这将决定第五步如何做.同时教师不要生硬地给出或总结出求解步骤,应在充分分析实例的基础上让学生自然地获得.教学中对课本例2的解法分析很重要.

这五个步骤的实质是将产生曲线的几何条件逐步转化为代数方程,即

文字语言中的几何条件 数学符号语言中的等式 数学符号语言中含动点坐标 , 的代数方程 简化了的 , 的代数方程

由此可见,曲线方程就是产生曲线的几何条件的一种表现形式,这个形式的特点是“含动点坐标的代数方程.”

(6)求曲线方程的问题是解析几何中一个基本的问题和长期的任务,不是一下子就彻底解决的,求解的方法是在不断的学习中掌握的,教学中要把握好“度”.

2024年高中数学的教案篇15

1、教学目标:

一、借助单位圆理解任意角的三角函数的定义。

二、根据三角函数的定义,能够判断三角函数值的符号。

三、通过学生积极参与知识的"发现"与"形成"的过程,培养合情猜测的能力,从中感悟数学概念的严谨性与科学性。

四、让学生在任意角三角函数概念的形成过程中,体会函数思想,体会数形结合思想。

2、教学重点与难点:

重点:任意角的正弦、余弦、正切的定义;三角函数值的符号。

难点:任意角的三角函数概念的建构过程。

授课过程:

一、引入

在我们的现实世界中的许多运动变化都有循环往复、周而复始的现象,这种变化规律称为周期性。如何用数学的方法来刻画这种变化?从这节课开始,我们要来学习刻画这种规律的数学模型之一――三角函数。

二、创设情境

三角函数是与角有关的函数,在学习任意角概念时,我们知道在直角坐标系中研究角,可以给学习带来许多方便,比如我们可以根据角终边的位置把它们进行归类,现在大家考虑:若在直角坐标系中来研究锐角,则锐角三角函数又可怎样定义呢?

学生情况估计:学生可能会提出两种定义的方式,一种定义为边之比,另一种定义在比值中引入了终边上的一点P的坐标。

问题:

1、锐角三角函数能否表示成第二种比值方式?

2、点P能否取在终边上的其它位置?为什么?

3、点P在哪个位置,比值会更简洁?(引出单位圆的定义)。指出sina=mP的函数依旧表示一个比值,不过其分母为1而已。

练习:计算的各三角函数值。

三、任意角的三角函数的定义

角的概念已经推广道了任意角,那么三角函数的定义在任意角的范围里改怎么定义呢?

尝试:根据锐角三角函数的定义,你能尝试着给出任意角三角函数的定义吗?

评价学生给出的定义。给出任意角三角函数的定义。

四、解析任意角三角函数的定义

三角函数首先是函数。你能从函数观点解析三角函数吗?(定义域)

对于确定的角a,上面三个函数值都是唯一确定的,所以,正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数。由于角的集合和实数集之间可以建立一一对应的关系,三角函数可以看成是自变量为实数的函数。

五、三角函数的应用。

1、已知角,求a的三角函数值。

2、已知角a终边上的一点P(-3,-4),求各三角函数值。

以上两道书上的例题,让学生自习看书,学生看书的同时,老师提出问题:

1、已知角如何求三角函数值?

2、利用角a的终边上任意一点的坐标也可以定义三角函数,你能给出这种定义吗?(这种定义与课本中给出的定义各有什么特点?)

3、变式:已知角a终边上点P(-3b,-4b),(b0),求角a的各三角函数值。

4、探究:三角函数的值在各象限的符号。

六、小结及作业

教案设计说明:

新教材的教学理念之一是让学生去体验新知识的发生过程,这节《任意角三角函数》的教案,主要围绕这一点来设计。

首先,角的概念推广了,那么锐角三角函数的定义是否也该推广到任意角的三角函数的定义呢?通过这个问题,让学生体会到新知识的发生是可能的,自然的。

其次,到底应该怎样去合理定义任意角的三角函数呢?让学生提出自己的想法,同时让学生去辨证这个想法是否是科学的?因为一个概念是严谨的,科学的,不能随心所欲地编造,必须去论证它的合理性,至少这种概念不能和锐角三角函数的定义有所冲突。在这个立-破的过程中,让学生去体验一个新的数学概念可能是如何形成,在形成的过程中可以从哪些角度加以科学的辩思。这样也有助于学生对任意角三角函数概念的理解。

再次,让学生充分体会在任意角三角函数定义的推广中,是如何将直角三角形这个"形"的问题,转换到直角坐标系下点的坐标这个"数"的过程的。培养数形结合的思想。

2024年高中数学的教案篇16

六年级,让好习惯不离身

一、目标

“要做事,先做人”,“好习惯使人终生收益”。

二、数学学科行为训导内容

1、专心听

讲的习惯。

2、勤思好问的习惯。

3、预习习惯。

4、主动探究的习惯。

5、自觉作笔记的习惯。

6、独立完成作业的习惯。

三、教学过程

“同学们,为了能在20__年6月顺利毕业,你准备好了吗?”

老师知道,你们都是很优秀的,相信你们以后会做得更优秀。有没有信心?

(一)讲故事,感悟

第一个故事:一个人在高山之巅的鹰巢里,抓到了一只幼鹰,他把幼鹰带回家,养在鸡笼里。这只幼鹰和鸡一起啄食、嬉闹和休息,它以为自己是一只鸡。这只鹰渐渐长大,羽翼丰满了,主人想把它训练成猎鹰,可是由于终日和鸡混在一起,它已经变得和鸡完全一样,根本没有飞的愿望了。主人试了各种办法,都毫无效果,最后把它带到山顶上,一把将它扔了出去。这只鹰像块石头似的,直掉下去,慌乱之中它拼命地扑打翅膀,就这样,它终于飞了起来!(——相信自己是一只雄鹰,勇敢面对一切挑战和失败。)

第二个故事:开学第一天,大哲学家苏格拉底对学生们说:“今天,我们只做一件最简单也是最容易做的事儿:每个人把胳膊尽量都往前甩,然后再尽量往后甩。”说着,苏格拉底示范了一遍,“从今天开始,每天做300下,大家能做到吗?”学生们都笑了,这么简单的事情,有什么做不到的?过了一个月,苏格拉底问学生们:“每天甩手300下,哪些同学坚持了?”有90%的同学骄傲地举起了手。又过了一个月,苏格拉底再问,这回,坚持下来的同学只剩下了八成。一年过后,苏格拉底再一次问大家:“请大家告诉我,最简单的甩手运动,还有哪几位同学坚持了?”这时候,整个教室里,只有一个人举起了手。这个学生就是后来成为古希腊另一位大哲学家的柏拉图。(——成功在于坚持,这是一个并不神秘的秘诀。)

第三个故事:有个老人在河边钓鱼,一个小孩走过去看他钓鱼,老人技巧纯熟,所以没多久就钓上了满篓的鱼,老人见小孩很可爱,要把整篓的鱼送给他,小孩摇摇头,老人惊异的问道你为何不要?小孩回答:“我想要你手中的钓竿。”老人问:“你要钓竿做什么?小孩说:“这篓鱼没多久就吃完了,要是我有钓竿,我就可以自己钓,一辈子也吃不完。”你们说,这个小孩是不是很聪明?(——重要的还在钓技。学习,不能只记住知识,更重要的是掌握方法,形成能力。)

第四个故事:某人在屋檐下躲雨,看见观音正撑伞走过。这人说:“观音菩萨,普度一下众生吧,带我一段如何?”观音说:“我在雨里,你在檐下,而檐下无雨,你不需要我度。”这人立刻跳出檐下,站在雨中:“现在我也在雨中了,该度我了吧?”观音说:“你在雨中,我也在雨中,我不被淋,因为有伞;你被雨淋,因为无伞。所以不是我度自己,而是伞度我。你要想度,不必找我,请自找伞去!”说完便走了。第二天,这人遇到了难事,便去寺庙里求观音。走进庙里,才发现观音的像前也有一个人在拜,那个人长得和观音一模一样,丝毫不差。这人问:“你是观音吗?”那人答道:“我正是观音。”这人又问:“那你为何还拜自己?”观音笑道:“我也遇到了难事,但我知道,求人不如求己。”第五个故事:一头驮着沉重货物的驴,气喘吁吁地请求只驮了一点货物的马:“帮我驮一点东西吧。对你来说,这不算什么;可对我来说,却可以减轻不少负担。”马不高兴地回答:“你凭什么让我帮你驮东西,我乐得轻松呢。”不久,驴累死了。主人将驴背上的所有货物全部加在马背上,马懊悔不已。

膨胀的自我使我们忽略了一个基本事实,那就是:我们同在生活这条大船上,别人的好坏与我们休戚相关。别人的不幸不能给我们带来快乐,相反,在帮助别人的时候,其实也是在帮助我们自己。一位信佛的老人告诉我,人好比一只空杯,里面的水满了,你得施一半给人家,待杯子里又满了,再施一半给人家。只有不断进、不断出,你这个杯子才会有价值,你这里的水才会是活水。如果只进不出,你那只杯子也就再也装不进了。当你得到一杯水的时候,你别忘记,其中的一半是奉献。假如你不愿奉献,你就再也得不到了。

小结:

第一,相信自己,勇敢面对

第二、养成习惯,重在坚持

第三、注重方法,培养能力

第四、求人不如求己

第五、帮助别人,追求双蠃

(二)六年级学生必须养成的学习习惯

1、专心听讲的习惯

课堂上全神贯注、静心聆听、积极思考、勇于发言是学习高效的前提条件,希望各位同学能够充分利用每天课堂上的40分钟时间漂亮地完成当天的学习任务。让自己的课余时间更轻松、更自由。

2、勤思好问的习惯

在课堂上除了认真听讲以外,还要勤于思考,善于提问,这样的学习才是更有效的学习,学习能力才会提升,学习成绩才会提高。

3、预习习惯。

预习可以培养和提高我们的自学能力、提高听课效率。学习新知识以前,老师会设计几个问题,让大家带着问题去预习。我们可用彩笔勾划出书中的重要内容,在不理解的地方标上记号,

(1)通过自学,将自己看到的,想到的用笔在书中某个地方规范地记录下来,能初步理解书中的概念,并能举例说明。

(2)会叙述书中阐明的算理,并尝试完成“做一做”中的习题。

(3)自拟思考题,在小组内交流并讨论。

4、主动探究的习惯。

(1)观察:观察要仔细、全面,要有目的、有条理,通过观察发现问题并提出问题、讨论问题、解决问题;

(2)在老师指导下画图分析或动手操作的习惯。

5、自觉作笔记的习惯。

在课堂上要养成记笔记的好习惯,可以记录在数学书上,但一定要规范,如可在书中某些空白地方画上一些条形格子,然后用工整的书写记录下每节课知识重点和要点,记知识结构与规律,记公式,记补充内容等。

6、独立完成作业的习惯。

(1)细心审题,弄清题目的要求,思考解题的方法

(2)独自去解决问题。

(3)书写格式符合要求。

(4)当天的作业当天完成。

(5)每天作业及时清理、每单元进行评比。

(6)每单元检测后自我查漏补缺的习惯。

2024年高中数学的教案篇17

一.说教材

1.本节课主要内容是线性规划的意义以及线性约束条件、线性目标函数、可行域、可行解、最优解等概念,根据约束条件建立线性目标函数。应用线性规划的图解法解决一些实际问题。

2.地位作用:线性规划是数学规划中理论较完整、方法较成熟、应用较广泛的一个分支,它可以解决科学研究、工程设计、经济管理等许多方面的实际问题。简单的线性规划是在学习了直线方程的基础上,介绍直线方程的一个简单应用。通过这部分内容的学习,使学生进一步了解数学在解决实际问题中的应用,以培养学生学习数学的兴趣、应用数学的意识和解决实际问题的能力。

3.教学目标

(1)知识与技能:了解线性规划的意义以及线性约束条件、线性目标函数、可行域、可行解、最优解等概念,能根据约束条件建立线性目标函数。

了解并初步应用线性规划的图解法解决一些实际问题。

(2)过程与方法:提高学生数学地提出、分析和解决问题的能力,发展学生数学应用意识,力求对现实世界中蕴含的一些数学模式进行思考和作出判断。

(3)情感、态度与价值观:体会数形结合、等价转化等数学思想,逐步认识数学的应用价值,提高学习数学的兴趣,树立学好数学的自信心。

4.重点与难点

重点:理解和用好图解法

难点:如何用图解法寻找线性规划的最优解。

二.说教学方法

教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:

(1)启发引导学生思考、分析、实验、探索、归纳。这能充分调动学生的主动性和积极性。

(2)采用“从特殊到一般”、“化抽象为具体”、“化静为动”的方法。这有利于学生对知识进行主动建构;有利于突出重点、解决难点;也有利于发挥学生的创造性。

(3)体现“等价转化”、“数形结合”的思想方法。这样可发挥学生的主观能动性,有利于提高学生的各种能力。

三.说学法指导

教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:观察分析、联想转化、动手实验、练习巩固。

(1)观察分析:通过引例让学生观察化旧知为新知,造成学生认知冲突。

(2)联想转化:学生通过分析、探索、得出解决问题的方法。

(3)动手实验:通过作图、实验、从而得出一般解题步骤。

(4)练习巩固:让学生知道数学重在运用,从而检验知识的应用情况,找出未掌握的内容及其差距。

四.说教学程序

1、导入课题:由一个不等式组表示平面区域转化为在此平面区域内一二元一次数的最值问题,造成学生认知冲突。

3、导学达标之一:创设情境、形成概念

通过引例的问题让学生探索解决新问题的方法。

(设计意图:利用已经学过的知识逐步分析,学以致用,使学生经历数学知识的形成过程,从而提高学生数学的地提出、分析和解决问题的能力。)

然后老师逐步引导,动手实验,化抽象为直观。从而得到解决此类问题的方法,并对比引例给出相关概念:线性约束条件、目标函数、线性目标函数、线性规划、可行解、可行域、最优解。并能根据引例提炼线性规划问题的解法——图解法。

(设计意图:引导学生观察和分析问题,激发学生的探索欲望,从而培养学生的解决问题和总结归纳的能力。)

4.导学达标之二:针对问题、举例讲解、形成技能

例一:课本61页例3

(创设意境:,练习是使学生明白数学来源于实际又运用于实际,同时使学生进初步应用线性规划的图解法解决一些实际问题。)

6.巩固目标:

练习一:学生做课堂练习P64例4

(叫学生提出解决问题的方法,并用多媒体展示,并根据问题的实际意义,考虑取值范围。造成新的认知冲突,从而研究探索,得到整点最优解的一种求法。)

练习二:为了赚大钱,老张最近承包了一家具厂,可老张却闷闷不乐,原来家具厂有方木料90m3,五合板600m2,老张准备加工成书桌和书厨出售,他通过调查了解到:生产每张书桌需要方木料0.1m3、五合板2m2,生产每个书橱需要方木料0.2m3、五合板1m2,出售一张书桌可获利润80元,出售一个书橱可获利润120元。老张却不知如何安排?(电脑显示问题)

(设计意图:通过实际问题,激发学生兴趣,培养学生的数学应用意识,力求学生能够对现实生活中蕴含的一些数学模式进行思考和作出判断。)

7.归纳与小结:

小结本课的主要学习内容是什么?(由师生共同来完成本课小结)

(创设意境:让学生参与小结,引导学生对所学知识进行反思,有利于加强学生记忆和形成良好的数学思维习惯)

8.布置作业:

P64.2

五.说板书设计

板书设计为表格式,这样的板书简明清楚,重点突出,加深学生对重点知识的理解和掌握,同时便于记忆,有利于提高教学效果。

2024年高中数学的教案篇18

教学准备

教学目标

o了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量·

o通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别·

o通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力·

教学重难点

教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量·

教学难点:平行向量、相等向量和共线向量的&39;区别和联系·

教学过程

(一)向量的概念:我们把既有大小又有方向的量叫向量。

(二)(教材P74面的四个图制作成幻灯片)请同学阅读课本后回答:(7个问题一次出现)

1、数量与向量有何区别?(数量没有方向而向量有方向)

2、如何表示向量?

3、有向线段和线段有何区别和联系?分别可以表示向量的什么?

4、长度为零的向量叫什么向量?长度为1的向量叫什么向量?

5、满足什么条件的两个向量是相等向量?单位向量是相等向量吗?

6、有一组向量,它们的方向相同或相反,这组向量有什么关系?

7、如果把一组平行向量的起点全部移到一点O,这是它们是不是平行向量?

这时各向量的终点之间有什么关系?

课后小结

1、描述向量的两个指标:模和方向·

2、平面向量的概念和向量的几何表示;

3、向量的模、零向量、单位向量、平行向量等概念。

2024年高中数学的教案篇19

教学内容:

简单的排列组合

教学目标:

1.使学生通过观察、猜测、实验、验证等活动,找出简单事件的排列数或组合数。

2.培养学生有序地、全面地思考问题的意识和习惯。

教学过程:

1.借助操作活动或学生易于理解的事例来帮助学生找出组合数。师生共同分析练习二十五第1题。让学生小组讨论,充分发表自己的意见。

2.利用直观图示帮助学生有序地、不重不漏地找出早餐搭配的组合数。

3、出示练习二十五第3题。

学生看题后,四人小组讨论出有多少种求组合数的方法。

4、学生汇报。

(1)图示表示法(两种)。引导学生用画简图的方式来表示抽象的数学知识。

(2)其他的方法,例如聪聪或明明分别可以和每一个小朋友合影(分步时,可以把确定聪聪作为第一步,也可以把确定明明作为第一步),教学时充分发挥学生的创造性。至于学生用哪种方法求出来,都没关系。但要引导学生思考如何才能不重不漏,发展学生有序地思考问题的意识和能力。

(3)学生自己用图示表示时,可以很开放,比如,可以用正方形表示聪聪,圆形表示明明,并分别在正方形和圆形里标上序号。实际这是发展学生用数学化的符号表示具体事件的能力的一个体现。

(4)如果学生用简图的方式来表示有困难,也可以让学生回忆一下二年级上册的例子或借助学具卡片摆一摆。

2.“做一做”

(1)练习二十五第7题。

通过活动的方式让学生不重不漏地把所有取钱的情况写出来。

(2)练习二十五第9题。

用两种图示法表示两两组合的方式(比较简单的两种方式)。在教学中也要允许有的学生把所有的情况逐一罗列出来,只要他通过自己的方法探索出所有的组合数,都是应该鼓励的。

2024年高中数学的教案篇20

1、教材分析:

集合是现代数学的基本语言,可以简洁、准确地表达数学内容。本节是让学生学会用集合的语言来描述对象,章末我们会用集合和对应的语言来描述函数的概念,可见它是今后数学学习的基础,也是培养学生抽象概括能力的重要素材。

2、教材目标:

根据素质教育的要求和新课改的精神,我确定教学目标如下:

①知识与技能:

(1)了解集合的含义与集合中元素的特征

(2)熟记常用数集符号

(3)能用列举、描述法表示具体集合

②过程与方法:让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.让学生通过观察、归纳、总结的过程,提高抽象概括能力。

③情感态度与价值观:使学生感受到学习集合的必要性,增强学习的积极性.

3、教学重点、难点

教学重点:集合的基本概念与表示方法;

教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;说教法

1.学情分析

《集合的含义及表示》这一课时是学生进入高中阶段学习、接触到高中数学的第一堂课,它直接影响到了学生对高中阶段数学学习的认识;如果我们教学上过于草率,学生很容易对数学失去学习兴趣。再者,这是高中数学课程的第一章的第一课时,是整个高中数学的奠基部分,所以我们不仅要正确地传授知识,更要把握好教学的难度。如果传授得过于简单,那么学生容易麻痹大意,对今后的学习埋下隐患;如果讲得太深,那么学生会有畏难心理,也会对今后的学习造成影响。

2.方法选择

在教学中注意启发引导,通过预习学案的形式把知识问题化,通过实例引导学生观察归纳,上课组织学生分组讨论,让他们经历观察、猜测、推理、交流、反思的理性思维的基本过程,切实改变学生的学习方法。

说学法

让学生通过课前结合学案,阅读教材,自主预习,课上交流、讨论、概括,课后复习巩固三个环节,更好地完成本节课的教学目标。值得提出的是:集合作为一种数学语言,最好的学习方法是使用,所以应该多做转换练习,

说教学程序

(一)创设情境,揭示课题

军训前学校通知:x月x日x点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?

在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。

通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发了学生求知欲,调动了学生主动参与的积极性。让学生在课堂的一开始就感受到数学就在我们身边,让学生学会用数学的眼光去关注生活。

(二)研探新知,建构概念

让学生阅读课本P2内容,让小组思考讨论,代表发言,师生共同补充答案它们的共同特征:它们都是指定的一组对象。这时我借此引入集合的概念,把一些元素组成的总体叫做集合,简称集,通常用大写字母A,B,C,?表示。把研究的对象称为元素,通常用小写拉丁字母a,b,c,?表示;

接下来,我引导学生把集合的涵义进行拓展,期间结合一些师生互动:我们班上的女生能不能构成一个集合,班上身高在1.75米以上的男生能不能构成一个集合,班上高的男生能不能构成一个集合??,通过身边这些大量例子,让学生了解集合的概念,并切实感受到学习集合语言的重要性。

对于集合元素的特征:确定性、互异性、无序性。我则在学生了解集合概念基础上,通过设置三个问题(1)班里个子高的同学能否构成一个集合?(2)在一个给定的集合中能否有相同的元素?(3)班里的全体同学组成一个集合,调整座位后这个集合有没有变化?调整后的集合和原来的集合是什么关系?让学生思考:任意一组对象是否都能组成一个集合?集合中的元素有什么特征?

这样设计将知识问题化,问题生活化,激发学生学习的主动性,引导学生归纳出集合中元素的三大特性,用简练的语言概括为——确定性、互异性、无序性用两集合相等的概念。

思考3:(1)设集合A表示“1~20以内的所有质数”,那么3,4,5,6这四个元素哪些在集合A中?哪些不在集合A中?

(2)对于一个给定的集合A,那么某元素a与集合A有哪几种可能关系?

(3)如果元素a是集合A中的元素,我们如何用数学化的语言表达?

(4)如果元素a不是集合A中的元素,我们如何用数学化的语言表达?用符号∈或?填空:

[设计说明]这几个问题比较简单,直接提问同学回答,并师生一起完善答案。通过问题的层层深入,目的是引导学生归纳出元素与集合的关系及表示方法。

反馈练习:

(1)设A为所有亚洲国家组成的集合,则

中国____A,美国____A,

印度____A,英国____A;

对于集合中常用的符号,我做了这样处理:简要介绍后,让学生用两三分钟的时间结合符号特点记忆。目的在于给学生一个信号:课堂上能消化的东西要及时记住。

2.集合的表示法:列举法和描述法

让学生自习阅读课本P3——P4的内容5-7分钟,接着让同学试着解决如下三个问题

(1)由大于10小于20的所有整数组成的集合;

(2)表示不等式x-7《3的解集;

(3)由1——20以内的所有素数组成的集合;

把集合的元素一一列举出来,并用花括号“{}”括起来表示的方法叫做列举法。用集合所含元素的共同特征表示集合的方法称为描述法。具体方法是:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

通过三个问题不仅检验了学生的自学效果,同时也让学生明白列举法和描述法两种方法各自的优缺点,更重要的是对集合的列举法和描述法的规范表达做进一步强调,最后,我带领学生分析了课本P4的例题,对集合的列举法和描述法的规范表达做进一

步的强调,让学生完成书上的习题,并请几个学生上台来演练,通过练习达到及时的反馈。

(四)归纳整理,整体认识

1.本节课我们学习了哪些知识内容?

2.你认为学习集合有什么意义?

3.比较列举法与描述法的优缺点。

(五)布置作业

作业:习题1.1A组:2、3、4.

作业的布置是要突出本节课的重点——集合概念的理解以及集合的表示法,让学生对数学符号的适用在课外进行延伸和巩固。

说板书

在教学中我把黑板分为三部分,把知识要点写在左侧,中间是课本例题演练,右侧是实例应用。在左侧的知识要点主要列出了集合、元素的概念、元素的特性:确定性,互异性,无序性,和集合的表示法:列举法和描述法。

以上是我对《集合的含义与表示》这节教材的认识和对教学过程的设计。对这节课的设计,我始终在努力贯彻一教师为主导,以学生为主题,以问题为基础,以能力、方法为主线,有计划培养学生的自学能力、观察和实践能力、思维能力为指导思想,利用各种教学手段激发学生的学习兴趣,体现了对学生创新意识的培养。

45007