教案吧 > 学科教案 > 数学教案 >

高中数学教案免费模板

时间: 新华 数学教案

编写教案可以帮助教师更好地掌握教学目标和教学内容,从而提高教学质量和效果。优秀的高中数学教案免费模板要怎么写?下面给大家整理高中数学教案免费模板,希望对大家能有帮助。

高中数学教案免费模板篇1

教学内容:

简单的排列组合

教学目标:

1.使学生通过观察、猜测、实验、验证等活动,找出简单事件的排列数或组合数。

2.培养学生有序地、全面地思考问题的意识和习惯。

教学过程:

1.借助操作活动或学生易于理解的事例来帮助学生找出组合数。师生共同分析练习二十五第1题。让学生小组讨论,充分发表自己的意见。

2.利用直观图示帮助学生有序地、不重不漏地找出早餐搭配的组合数。

3、出示练习二十五第3题。

学生看题后,四人小组讨论出有多少种求组合数的方法。

4、学生汇报。

(1)图示表示法(两种)。引导学生用画简图的方式来表示抽象的数学知识。

(2)其他的方法,例如聪聪或明明分别可以和每一个小朋友合影(分步时,可以把确定聪聪作为第一步,也可以把确定明明作为第一步),教学时充分发挥学生的创造性。至于学生用哪种方法求出来,都没关系。但要引导学生思考如何才能不重不漏,发展学生有序地思考问题的意识和能力。

(3)学生自己用图示表示时,可以很开放,比如,可以用正方形表示聪聪,圆形表示明明,并分别在正方形和圆形里标上序号。实际这是发展学生用数学化的符号表示具体事件的能力的一个体现。

(4)如果学生用简图的方式来表示有困难,也可以让学生回忆一下二年级上册的例子或借助学具卡片摆一摆。

2.“做一做”

(1)练习二十五第7题。

通过活动的方式让学生不重不漏地把所有取钱的情况写出来。

(2)练习二十五第9题。

用两种图示法表示两两组合的方式(比较简单的两种方式)。在教学中也要允许有的学生把所有的情况逐一罗列出来,只要他通过自己的方法探索出所有的组合数,都是应该鼓励的。

高中数学教案免费模板篇2

高中数学的内容多,抽象性、理论性强,高中很注重自学能力的培养,谁的自学能力强,那么在一定程度上影响着你的成绩以及将来你发展的前途。同时还要注意以下几点:

第一、对数学学科特点有清楚的认识

数学的概念、方法、思想都是人类长期实践中自然发展形成的,以数域的发展为例,从自然数到有理数到实数再到复数,都是由自然的认知冲突引起的。因此,在学习过程中我们有必要了解知识产生的背景,它的形成过程以及它的应用,让数学显得合情合理,浑然天成。数学中没有含糊不清的词,对错分明,凡事都要讲个为什么,只要按照数学规则去学去想就能融会贯通,但是如果不把来龙去脉想清楚而是“想当然”的`话,那就学不下去了。

第二、要改变一个观念。

有人会说自己的基础不好。那什么是基础?今天所学的知识就是明天的基础。明天学习的知识就是后天的基础,

所以只要学好每一天的内容,那么你打的基础就是最扎实的了。所以现在你们是在同一个起跑线上的,无所谓基础好不好。

第三、学数学要摸索自己的学习方法

学习重在方法,好的学习方法让学生事半功倍。学习、掌握并能灵活应用数学的途径有很多,做习题、用数学知识解决各种问题是必需的,理解、学会证明、领会思想、掌握方法也是必需的。同时,要注意前后知识的衔接,类比地学、联系地学,既要从概念中看到它的具体背景,又要在具体的例子中想到它蕴含的一般概念。

相关文章推荐:

1.高中开学第一周教学反思

2.开学第一课教学反思精选

3.20--初中开学第一课教学反思【精选】

4.高三开学教学反思

5.高一信息技术教学反思

6.开学第一课语文教学反思

7.幼儿园开学第一课反思

8.高中英语教学反思精选

9.高中生物教育反思

10.20--开学第一课教学反思

高中数学教案免费模板篇3

直线的方程

教学目标

(1)掌握由一点和斜率导出直线方程的方法,掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出直线的方程.

(2)理解直线方程几种形式之间的内在联系,能在整体上把握直线的方程.

(3)掌握直线方程各种形式之间的互化.

(4)通过直线方程一般式的教学培养学生全面、系统、周密地分析、讨论问题的能力.

(5)通过直线方程特殊式与一般式转化的教学,培养学生灵活的思维品质和辩证唯物主义观点.

(6)进一步理解直线方程的概念,理解直线斜率的意义和解析几何的思想方法.

教学建议

1.教材分析

(1)知识结构

由直线方程的概念和直线斜率的概念导出直线方程的点斜式;由直线方程的点斜式分别导出直线方程的斜截式和两点式;再由两点式导出截距式;最后都可以转化归结为直线的一般式;同时一般式也可以转化成特殊式.

(2)重点、难点分析

①本节的重点是直线方程的点斜式、两点式、一般式,以及根据具体条件求出直线的方程.

解析几何有两项根本性的任务:一个是求曲线的方程;另一个就是用方程研究曲线.本节内容就是求直线的方程,因此是非常重要的内容,它对以后学习用方程讨论直线起着直接的作用,同时也对曲线方程的学习起着重要的作用.

直线的点斜式方程是平面解析几何中所求出的第一个方程,是后面几种特殊形式的源头.学生对点斜式学习的效果将直接影响后继知识的学习.

②本节的难点是直线方程特殊形式的限制条件,直线方程的整体结构,直线与二元一次方程的关系证明.

2.教法建议

(1)教材中求直线方程采取先特殊后一般的思路,特殊形式的方程几何特征明显,但局限性强;一般形式的方程无任何限制,但几何特征不明显.教学中各部分知识之间过渡要自然流畅,不生硬.

(2)直线方程的一般式反映了直线方程各种形式之间的统一性,教学中应充分揭示直线方程本质属性,建立二元一次方程与直线的对应关系,为继续学习“曲线方程”打下基础.

直线一般式方程都是字母系数,在揭示这一概念深刻内涵时,还需要进行正反两方面的分析论证.教学中应重点分析思路,还应抓住这一有利时使学生学会严谨科学的分类讨论方法,从而培养学生全面、系统、辩证、周密地分析、讨论问题的能力,特别是培养学生逻辑思维能力,同时培养学生辩证唯物主义观点

(3)在强调几种形式互化时要向学生充分揭示各种形式的特点,它们的几何特征,参数的意义等,使学生明白为什么要转化,并加深对各种形式的理解.

(4)教学中要使学生明白两个独立条件确定一条直线,如两个点、一个点和一个方向或其他两个独立条件.两点确定一条直线,这是学生很早就接触的几何公理,然而在解析几何,平面向量等理论中,直线或向量的方向是极其重要的要素,解析几何中刻画直线方向的量化形式就是斜率.因此,直线方程的两点式和点斜式在直线方程的几种形式中占有很重要的地位,而已知两点可以求得斜率,所以点斜式又可推出两点式(斜截式和截距式仅是它们的特例),因此点斜式最重要.教学中应突出点斜式、两点式和一般式三个教学高潮.

求直线方程需要两个独立的条件,要依不同的几何条件选用不同形式的方程.根据两个条件运用待定系数法和方程思想求直线方程.

(5)注意正确理解截距的概念,截距不是距离,截距是直线(也是曲线)与坐标轴交点的相应坐标,它是有向线段的数量,因而是一个实数;距离是线段的长度,是一个正实数(或非负实数).

(6)本节中有不少与函数、不等式、三角函数有关的问题,是函数、不等式、三角与直线的重要知识交汇点之一,教学中要适当选择一些有关的问题指导学生练习,培养学生的综合能力.

(7)直线方程的理论在其他学科和生产生活实际中有大量的应用.教学中注意联系实际和其它学科,教师要注意引导,增强学生用数学的意识和能力.

(8)本节不少内容可安排学生自学和讨论,还要适当增加练习,使学生能更好地掌握,而不是仅停留在观念上.

高中数学教案免费模板篇4

一、教学内容分析

本节内容是学生在学习了乘法原理、排列、排列数公式和加法原理以后的知识,学生已经掌握了排列问题,并且对顺序与排列的关系已经有了一个比较清晰的认识.因此关键是排列与组合的区别在于问题是否与顺序有关.与顺序有关的是排列问题,与顺序无关是组合问题,顺序对排列、组合问题的求解特别重要.排列与组合的区别,从定义上来说是简单的,但在具体求解过程中学生往往感到困惑,分不清到底与顺序有无关系,指导学生根据生活经验和问题的内涵领悟其中体现出来的顺序.教的秘诀在于度,学的真谛在于悟,只有学生真正理解了,才能举一反三、融会贯通.

二、教学目标设计

1.理解组合的意义,掌握组合数的计算公式;

2.能正确认识组合与排列的联系与区别

3.通过练习与训练体验并初步掌握组合数的计算公式

三、教学重点及难点

组合概念的理解和组合数公式;组合与排列的区别.

四、教学用具准备

多媒体设备

五、教学流程设计



六、教学过程设计

一、 复习引入

1.复习

我们在前几节中学习了排列、排列数以及排列数公式

定 义

特 点

相同排列

公 式



排 列























 以上由学生口答.

2.引入

那么请问:平面上有7个点,问以这7点中任何两个为端点,构成有向线段有几条?

这是一个排列问题 

若改为:构成的线段有几条?则为 ,

其实亦可用另一种方法解决,这就是组合.

二、学习新课

探究性质

1. 组合定义: P16

一般地,从个不同元素中取出个元素并成一组,叫做从个不同元素中取出个元素的一个组合.

【说明】:⑴不同元素; ⑵“只取不排”——无序性;

⑶相同组合:元素相同.

2.组合数定义:

从个不同元素中取出个元素的所有组合的个数,叫做从个不同元素中取出个元素的组合数.用符号表示.

如:引入中的例子可表示为 

== 这是为什么呢?

因为 构成有向线段的问题可分成2步来完成:

第一步,先从7个点中选2个点出来,共有种选法;

第二步,将选出的2个点做一个排列,有种次序;

根据乘法原理,共有·= 所以

·判断何为排列、组合问题: 利用书本P16~P17例题请学生判断

·这个公式叫组合数公式

3.组合数公式:

如= =

用计算器求  、  、  、 

可发现= =

由此猜想: 

用实际例子说明:比如要从50人中挑选4个出来参加迎春长跑的选择方案有,就相当于挑46个人不参加长跑的选择方案一样.“取法”与“剩法”是“一 一对应”的.

证明:∵

又 ,∴

当m=n时,

此性质作用:当时,计算可变为计算,能够使运算简化.

4. 组合数性质:

1、

2、=  

可解释为:从这n 1个不同元素中取出m个元素的组合数是,这些组合可以分为两类:一类含有元素,一类不含有.含有的组合是从这n个元素中取出m (1个元素与组成的,共有个;不含有的组合是从这n个元素中取出m个元素组成的,共有个.根据加法原理,可以得到组合数的另一个性质.在这里,主要体现从特殊到一般的归纳思想,“含与不含其元素”的分类思想.

证明:





得证.

【说明】1( 公式特征:下标相同而上标差1的两个组合数之和,等于下标比原下标多1而上标与高的相同的一个组合数.

2( 此性质的作用:恒等变形,简化运算.在今后学习“二项式定理”时,我们会看到它的主要应用.

2.例题分析

例1、(1),求x

(2)

(3)

略解:(1) 





(2) 

(3)



例2、应用题:

有15本不同的书,其中6本是数学书,问:

分给甲4本,且都不是数学书;

略解:(1)

3.问题拓展

例3.题设同例2:

(2)平均分给3人;

(3)若平均分为3份;

(4)甲分2本,乙分7本,丙分6本;

(5)1人2本,1人7本,1人6本.

略解:(2) (3)

(4) (5)

三、课堂小结

指导学生根据生活经验和问题的内涵领悟其中体现出来的顺序.教的秘诀在于度,学的真谛在于悟,只有学生真正理解了,才能举一反三、融会贯通.

能列举出某种方法时,让学生通过交换元素位置的办法加以鉴别.

学生易于辨别组合、全排列问题,而排列问题就是先组合后全排列.在求解排列、组合问题时,可引导学生找出两定义的关系后,按以下两步思考:首先要考虑如何选出符合题意要求的元素来,选出元素后再去考虑是否要对元素进行排队,即第一步仅从组合的角度考虑,第二步则考虑元素是否需全排列,如果不需要,是组合问题;否则是排列问题.

排列、组合问题大都来源于同学们生活和学习中所熟悉的情景,解题思路通常是依据具体做事的过程,用数学的原理和语言加以表述.也可以说解排列、组合题就是从生活经验、知识经验、具体情景的出发,正确领会问题的实质,抽象出“按部就班”的处理问题的过程.据观察,有些同学之所以学习中感到抽象,不知如何思考,并不是因为数学知识跟不上,而是因为平时做事、考虑问题就缺乏条理性,或解题思路是自己主观想象的做法(很可能是有悖于常理或常规的做法).要解决这个问题,需要师生一道在分析问题时要根据实际情况,怎么做事就怎么分析,若能借助适当的工具,模拟做事的过程,则更能说明问题.久而久之,学生的逻辑思维能力将会大大提高.

四、作业布置

(略)

七、教学设计说明

在学习过程中,从排列问题引入,随即自然地过渡到组合问题.由此让学生对于排列与组合两者的异同有深刻理解,并能自如地进行判断.

本节课在教学技术上通过多媒体课件大大缩短了教师板书抄题的时间,让学生能够更加连贯的思考以及探索问题.

在例题的设计上从最基本的组合数公式的利用,到简单的应用题,再到组合中较难的分组分配以及平均不平均分配问题的训练,由浅入深,层层递进,以积极发挥课堂教学的基础型和研究型功能,培养学生的基础性学力和发展性学力.

在课堂教学中教师遵循“以学生为主体”的思想,鼓励学生善于观察和发现;鼓励学生积极思考和探究;鼓励学生大胆猜想,努力营造一个民主和谐、平等交流的课堂氛围,采取对话式教学,调动学生学习的积极性,激发学生学习的热情,使学生开阔思维空间,让学生积极参与教学活动,提高学生的数学思维能力.

高中数学教案免费模板篇5

分享目标:

1、通过与学生交流《课程纲要》,使学生了解本学期的课程内容、课程目标及课程评价。

2、通过了解教师对学生的评价方法,激发学生自主学习的主动性。

分享重点:

了解本学期的学习内容和评价方法。

分享难点:

通过分享《课程纲要》明确学习目标。

分享时间:一课时

分享准备:《三年级综实课程纲要》PPT

分享过程:

一、谈话导入

1、师:同学们,新年新气象,新的学期又是新的开始。本学期的第二节综实课,老师要带领大家认识一个新朋友,它就像向导一样,能够指引大家在本学期的学习中找准学习目标,理清学习内容、了解学习安排,真正成为学习的小主人,它就是课程纲要。(板书课题)

二、内容新授

1、师:怎样才能做学习的小主人呢?首先我们要了解本学期的学习内容。我们本学期将会学习那些内容呢?《课程纲要》来一一为我们介绍。

2、师:本学期我们只进行一个综合实践活动课的主题,它就是有趣的姓氏。

3、师:主题确定了,那么课下就需要你们想想,围绕这些主题可以引出什么呢?(生说)

4、师:对,是子课题。说明大家上学期上课大家认真听讲了。除了想一想可以确定哪些子课题,还要想想你准备怎样做,使用哪些方法等等。

5、师:接下来我来说说我们这学期综实课分组的问题。这学期分组,以主题确定后,你们自己找搭档,找助手,一起同心协力更好的完成各个主题活动。

6、师:本学期的课程内容大家都了解了,那本学期的评奖方式是什么呢?

①每节课课余1-3分钟,根据本节举手回答问题的次数,以及课堂表现,来老师这里为个人加分,各组组长也负责记录并统计出每星期、每个月加分最多的组员上报老师,老师会授予这些同学优秀之星的称号,获得优秀之星称号的同学会得到学习星以及才艺星的奖励。

②课前准备综实成长记录袋以及A4白纸15张,作为平时作业及记录板书内容的笔记本。老师批阅,每月月末总检,作为评分奖励的内容之一。

③平时按照老师要求,准备工具、材料,期末奖励进步奖。

三、课堂小结

师:同学们,通过对本学期《课程纲要》的学习,你是否对本学期的学习充满信心呢?老师相信,每个孩子都能成为学习的小主人。

高中数学教案免费模板篇6

上个学期,根据需要,学校安排我上高二数学文科,在这一学期里我从各方面严格要求自己,在教学上虚心向老教师请教,结合本校和班级学生的实际状况,针对性的开展教学工作,使工作有计划,有组织,有步骤。经过了一学期,我对教学工作有了如下感想:

一、认真备课,做到既备学生又备教材与备教法。

上学期我根据教材资料及学生的实际状况设计课程教学,拟定教学方法,并对教学过程中遇到的问题尽可能的预先思考到,认真写好教案。每一课都做到“有备而去”,每堂课都在课前做好充分的准备,课后及时对该课作出小结,并认真整理每一章节的知识要点,帮忙学生进行归纳总结。

二、增强上课技能,提高教学质量。

增强上课技能,提高教学质量是我们每一名新教师不断努力的目标。因为应对的是文科生,基础普遍比较差,所以我主要是立足于基础,让学生学得简单,学得愉快。注意精讲精练,在课堂上讲得尽量少些,而让学生自己动口动手动脑尽量多些;同时在每一堂课上都充分思考每一个层次的学生学习需求和理解潜力,让各个层次的学生都得到提高。

三、虚心向其他老师学习,在教学上做到有疑必问。

在每个章节的学习上都用心征求其他有经验老师的意见,学习他们的方法。同时多听老教师的课,做到边听边学,给自己不断充电,弥补自己在教学上的不足,征求他们的意见,改善教学工作。

四、认真批改作业、布置作业有针对性,有层次性。

作业是学生对所学知识巩固的过程。为了做到布置作业有针对性,有层次性,我常常多方面的搜集资料,对各种辅导资料进行筛选,力求每一次练习都能让学生起到的效果。同时对学生的作业批改及时、认真,并分析学生的作业状况,将他们在作业过程出现的问题及时评讲,并针对反映出的状况及时改善自己的教学方法,做到有的放矢。

然而,在肯定成绩、总结经验的同时,我清楚地认识到我所获得的教学经验还是肤浅的,在教学中存在的问题也不容忽视,也有一些困惑有待解决今后我将努力工作,用心向老老师学习以提高自己的教学水平。

以上几点便是我的一点心得,期望能发扬优点,克服不足,总结经验教训,为今后的教育教学工作积累经验,以便尽快地提高自己的水平。

高中数学教案免费模板篇7

在前一段我讲了30度、45度、60度特殊角的三角函数值,它是北师大版九年级数学下册的一节课,在前一节刚讲过正弦、余弦、正切三角函数的定义和求法。现把我对本节课的做法和想法与大家交流一下,希望能得到同行和专家的指点,以期取得更大的进步。

一、说教学目标

1、经历探索30°、45°、60°角的三角函数值的过程,能够进行有关的推理。进一步体会三角函数的意义;能够进行30°、45°、60°角的三角函数值的计算;能够根据30°、45°、60°的三角函数值说明相应的锐角的大小。

2、发展学生观察、分析、发现的能力;培养学生把实际问题转化为数学问题的能力。

3、积极参与数学活动,对数学产生好奇心。培养学生独立思考问题的习惯。

二、说教学重点

教学重点:探索特殊锐角三角函数值的过程,进行这些三角函数值的计算并会比较不同锐角三角函数值大小

在引入时我采用创设情境法,“为了测量一棵大树的高度,准备了如下测量工具:(1)含30、60度角的直角三角尺(2)皮尺。请你设计一个方案,来测量一棵大树的高度。这样会增强学生的学习欲望,使学生对本节内容更感兴趣。

三、说教学设计:

1、让学生自主研习,独立探究。

(1)观察一副三角尺,其中有几个锐角?他们分别等于多少度?

(2)sin30度等于多少呢?你是怎样得到的?cos30度呢,tan30度呢?

2、让学生合作学习、生生互动

(1)请同学们完成下表:30°、45°、60°角的三角函数值(表格略)

(2)观察表格中函数值的特点。先看第一列30°、45°、60°角的正弦值,你能发现什么规律呢?第二列、第三列呢?

(3)同桌之间可互相检查一下对30°、45°、60°角的三角函数值的记忆情况。

3、精讲细评,师生合作(先由学生独立完成)

(1)计算:sin30°+cos45°;sin260°+cos260°—tan45°。

(2)钟表上的钟摆长度为25Cm,当钟摆向两边摆动时,摆角恰好为60°,且两边的摆动角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差。(结果精确到0。1Cm)

分析:引导学生自己根据题意画出示意图,培养学生把实际问题转化为数学问题的能力

4、延伸迁移,形成技能

(1)计算:sin60°—tan45°;cos60°+tan60°;

(2)某商场有一自动扶梯,其倾斜角为30°。高为7m,扶梯的长度是多少?

自主小结:

讲课后我让学生自主小结本节收获,并给他们提出困惑的时间和机会

在本节课中我感觉学生整体来说收获不小,有百分之八十的学生都会进行计算,只是对这些三角函数值的记忆还有欠缺,课下还需时间加以巩固。课堂中学生积极性也很高,能体会到数学在生活中的应用广泛,学习数学对解决实际生活问题的帮助,体会到学习数学的重要性。

高中数学教案免费模板篇8

教学目标

1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单的求最值问题;理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;培养学生探究能力以及分析问题解决问题的能力。

2、过程与方法目标:按照创设情景,提出问题→剖析归纳证明→几何解释→应用(最值的求法、实际问题的解决)的过程呈现。启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律的方法,体验成功的乐趣。

3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。

教学重难点

1、基本不等式成立时的三个限制条件(简称一正、二定、三相等);

2、利用基本不等式求解实际问题中的.最大值和最小值。

教学过程

一、创设情景,提出问题;

设计意图:数学教育必须基于学生的“数学现实”,现实情境问题是数学教学的平台,数学教师的任务之一就是帮助学生构造数学现实,并在此基础上发展他们的数学现实.基于此,设置如下情境:

上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。

[问]你能在这个图中找出一些相等关系或不等关系吗?

本背景意图在于利用图中相关面积间存在的数量关系,抽象出不等式

在此基础上,引导学生认识基本不等式。

三、理解升华:

1、文字语言叙述:

两个正数的算术平均数不小于它们的几何平均数。

2、联想数列的知识理解基本不等式

已知a,b是正数,A是a,b的等差中项,G是a,b的正的等比中项,A与G有无确定的大小关系?

两个正数的等差中项不小于它们正的等比中项。

3、符号语言叙述:

4、探究基本不等式证明方法:

[问]如何证明基本不等式?

(意图在于引领学生从感性认识基本不等式到理性证明,实现从感性认识到理性认识的升华,前面是从几何图形中的面积关系获得不等式的,下面用代数的思想,利用不等式的性质直接推导这个不等式。)

方法一:作差比较或由

展开证明。

方法二:分析法(完成课本填空)

设计依据:课本是学生了解世界的窗口和工具,所以,课本必须成为学生赖以学会学习的文本.在教学中要让学生学会认真看书、用心思考,养成讲讲议议、

动手动笔、仔细观察、用心体会的好习惯,真正学会读“数学书”。

点评:证明方法叫做分析法,实际上是寻找结论的充分条件,执果索因的一种思维方法.

5、探究基本不等式的几何意义:

借助初中阶段学生熟知的几何图形,引导学生

几何解释实质可认为是:在同一半圆中,半径不小于半弦(直径是最长的弦);或者认为是,直角三角形斜边的一半不小于斜边上的高。

四、探究归纳

下列命题中正确的是

结论:

若两正数的乘积为定值,则当且仅当两数相等时,它们的和有最小值;

若两正数的和为定值,则当且仅当两数相等时,它们的乘积有最大值。

简记为:“一正、二定、三相等”。

五、领悟练习:

公式应用之二:(最优化问题)

设计意图:新颖有趣、简单易懂、贴近生活的问题,不仅极大地增强学生的兴趣,拓宽学生的视野,更重要的是调动学生探究钻研的兴趣,引导学生加强对生活的关注,让学生体会:数学就在我们身边的生活中

(1)在学农期间,生态园中有一块面积为100m2的矩形茶地,为了保护茶叶的健康生长,学校决定用篱笆围起来,问这个矩形的长、宽各为多少时,所用篱笆最短。最短的篱笆是多少?

(2)现在学校仓库有一段长为36m的篱笆,要围成一个矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大。最大面积是多少?

六、反思总结,整合新知:

通过本节课的学习你有什么收获?取得了哪些经验教训?还有哪些问题需要

请教?

设计意图:通过反思、归纳,培养概括能力;帮助学生总结经验教训,巩固知识技能,提高认知水平.

老师根据情况完善如下:

两种思想:数形结合思想、归纳类比思想。

三个注意:基本不等式求函数的最大(小)值是注意:“一正二定三相等”

高中数学教案免费模板篇9

教学目标:

1·进一步理解对数函数的性质,能运用对数函数的相关性质解决对数型函数的常见问题·

2·培养学生数形结合的思想,以及分析推理的能力·

教学重点:

对数函数性质的应用·

教学难点:

对数函数的性质向对数型函数的演变延伸·

教学过程:

一、问题情境

1·复习对数函数的性质·

2·回答下列问题·

(1)函数y=log2x的值域是;

(2)函数y=log2x(x≥1)的值域是;

(3)函数y=log2x(0

3·情境问题·

函数y=log2(x2+2x+2)的定义域和值域分别如何求呢?

二、学生活动

探究完成情境问题·

三、数学运用

例1求函数y=log2(x2+2x+2)的定义域和值域·

练习:

(1)已知函数y=log2x的值域是[—2,3],则x的范围是________________·

(2)函数,x(0,8]的值域是·

(3)函数y=log(x2—6x+17)的值域·

(4)函数的.值域是_______________·

例2判断下列函数的奇偶性:

(1)f(x)=lg(2)f(x)=ln(—x)

例3已知loga0·75>1,试求实数a取值范围·

例4已知函数y=loga(1—ax)(a>0,a≠1)·

(1)求函数的定义域与值域;

(2)求函数的单调区间·

练习:

1·下列函数(1)y=x—1;(2)y=log2(x—1);(3)y=;(4)y=lnx,其中值域为R的有(请写出所有正确结论的序号)·

2·函数y=lg(—1)的图象关于对称·

3·已知函数(a>0,a≠1)的图象关于原点对称,那么实数m=·

4·求函数,其中x[,9]的值域·

四、要点归纳与方法小结

(1)借助于对数函数的性质研究对数型函数的定义域与值域;

(2)换元法;

(3)能画出较复杂函数的图象,根据图象研究函数的性质(数形结合)·

五、作业

课本P70~71—4,5,10,11·

高中数学教案免费模板篇10

六年级,让好习惯不离身

一、目标

“要做事,先做人”,“好习惯使人终生收益”。

二、数学学科行为训导内容

1、专心听

讲的习惯。

2、勤思好问的习惯。

3、预习习惯。

4、主动探究的习惯。

5、自觉作笔记的习惯。

6、独立完成作业的习惯。

三、教学过程

“同学们,为了能在20__年6月顺利毕业,你准备好了吗?”

老师知道,你们都是很优秀的,相信你们以后会做得更优秀。有没有信心?

(一)讲故事,感悟

第一个故事:一个人在高山之巅的鹰巢里,抓到了一只幼鹰,他把幼鹰带回家,养在鸡笼里。这只幼鹰和鸡一起啄食、嬉闹和休息,它以为自己是一只鸡。这只鹰渐渐长大,羽翼丰满了,主人想把它训练成猎鹰,可是由于终日和鸡混在一起,它已经变得和鸡完全一样,根本没有飞的愿望了。主人试了各种办法,都毫无效果,最后把它带到山顶上,一把将它扔了出去。这只鹰像块石头似的,直掉下去,慌乱之中它拼命地扑打翅膀,就这样,它终于飞了起来!(——相信自己是一只雄鹰,勇敢面对一切挑战和失败。)

第二个故事:开学第一天,大哲学家苏格拉底对学生们说:“今天,我们只做一件最简单也是最容易做的事儿:每个人把胳膊尽量都往前甩,然后再尽量往后甩。”说着,苏格拉底示范了一遍,“从今天开始,每天做300下,大家能做到吗?”学生们都笑了,这么简单的事情,有什么做不到的?过了一个月,苏格拉底问学生们:“每天甩手300下,哪些同学坚持了?”有90%的同学骄傲地举起了手。又过了一个月,苏格拉底再问,这回,坚持下来的同学只剩下了八成。一年过后,苏格拉底再一次问大家:“请大家告诉我,最简单的甩手运动,还有哪几位同学坚持了?”这时候,整个教室里,只有一个人举起了手。这个学生就是后来成为古希腊另一位大哲学家的柏拉图。(——成功在于坚持,这是一个并不神秘的秘诀。)

第三个故事:有个老人在河边钓鱼,一个小孩走过去看他钓鱼,老人技巧纯熟,所以没多久就钓上了满篓的鱼,老人见小孩很可爱,要把整篓的鱼送给他,小孩摇摇头,老人惊异的问道你为何不要?小孩回答:“我想要你手中的钓竿。”老人问:“你要钓竿做什么?小孩说:“这篓鱼没多久就吃完了,要是我有钓竿,我就可以自己钓,一辈子也吃不完。”你们说,这个小孩是不是很聪明?(——重要的还在钓技。学习,不能只记住知识,更重要的是掌握方法,形成能力。)

第四个故事:某人在屋檐下躲雨,看见观音正撑伞走过。这人说:“观音菩萨,普度一下众生吧,带我一段如何?”观音说:“我在雨里,你在檐下,而檐下无雨,你不需要我度。”这人立刻跳出檐下,站在雨中:“现在我也在雨中了,该度我了吧?”观音说:“你在雨中,我也在雨中,我不被淋,因为有伞;你被雨淋,因为无伞。所以不是我度自己,而是伞度我。你要想度,不必找我,请自找伞去!”说完便走了。第二天,这人遇到了难事,便去寺庙里求观音。走进庙里,才发现观音的像前也有一个人在拜,那个人长得和观音一模一样,丝毫不差。这人问:“你是观音吗?”那人答道:“我正是观音。”这人又问:“那你为何还拜自己?”观音笑道:“我也遇到了难事,但我知道,求人不如求己。”第五个故事:一头驮着沉重货物的驴,气喘吁吁地请求只驮了一点货物的马:“帮我驮一点东西吧。对你来说,这不算什么;可对我来说,却可以减轻不少负担。”马不高兴地回答:“你凭什么让我帮你驮东西,我乐得轻松呢。”不久,驴累死了。主人将驴背上的所有货物全部加在马背上,马懊悔不已。

膨胀的自我使我们忽略了一个基本事实,那就是:我们同在生活这条大船上,别人的好坏与我们休戚相关。别人的不幸不能给我们带来快乐,相反,在帮助别人的时候,其实也是在帮助我们自己。一位信佛的老人告诉我,人好比一只空杯,里面的水满了,你得施一半给人家,待杯子里又满了,再施一半给人家。只有不断进、不断出,你这个杯子才会有价值,你这里的水才会是活水。如果只进不出,你那只杯子也就再也装不进了。当你得到一杯水的时候,你别忘记,其中的一半是奉献。假如你不愿奉献,你就再也得不到了。

小结:

第一,相信自己,勇敢面对

第二、养成习惯,重在坚持

第三、注重方法,培养能力

第四、求人不如求己

第五、帮助别人,追求双蠃

(二)六年级学生必须养成的学习习惯

1、专心听讲的习惯

课堂上全神贯注、静心聆听、积极思考、勇于发言是学习高效的前提条件,希望各位同学能够充分利用每天课堂上的40分钟时间漂亮地完成当天的学习任务。让自己的课余时间更轻松、更自由。

2、勤思好问的习惯

在课堂上除了认真听讲以外,还要勤于思考,善于提问,这样的学习才是更有效的学习,学习能力才会提升,学习成绩才会提高。

3、预习习惯。

预习可以培养和提高我们的自学能力、提高听课效率。学习新知识以前,老师会设计几个问题,让大家带着问题去预习。我们可用彩笔勾划出书中的重要内容,在不理解的地方标上记号,

(1)通过自学,将自己看到的,想到的用笔在书中某个地方规范地记录下来,能初步理解书中的概念,并能举例说明。

(2)会叙述书中阐明的算理,并尝试完成“做一做”中的习题。

(3)自拟思考题,在小组内交流并讨论。

4、主动探究的习惯。

(1)观察:观察要仔细、全面,要有目的、有条理,通过观察发现问题并提出问题、讨论问题、解决问题;

(2)在老师指导下画图分析或动手操作的习惯。

5、自觉作笔记的习惯。

在课堂上要养成记笔记的好习惯,可以记录在数学书上,但一定要规范,如可在书中某些空白地方画上一些条形格子,然后用工整的书写记录下每节课知识重点和要点,记知识结构与规律,记公式,记补充内容等。

6、独立完成作业的习惯。

(1)细心审题,弄清题目的要求,思考解题的方法

(2)独自去解决问题。

(3)书写格式符合要求。

(4)当天的作业当天完成。

(5)每天作业及时清理、每单元进行评比。

(6)每单元检测后自我查漏补缺的习惯。

高中数学教案免费模板篇11

一、课前检测

1.在数列{an}中,an=1n+1+2n+1++nn+1,又bn=2anan+1,求数列{bn}的前n项的和.

解:由已知得:an=1n+1(1+2+3++n)=n2,

bn=2n2n+12=8(1n-1n+1)数列{bn}的前n项和为

Sn=8[(1-12)+(12-13)+(13-14)++(1n-1n+1)]=8(1-1n+1)=8nn+1.

2.已知在各项不为零的数列中,。

(1)求数列的通项;

(2)若数列满足,数列的前项的和为,求

解:(1)依题意,,故可将整理得:

所以即

,上式也成立,所以

(2)

二、知识梳理

(一)前n项和公式Sn的定义:Sn=a1+a2+an。

(二)数列求和的方法(共8种)

5.错位相减法:适用于差比数列(如果等差,等比,那么叫做差比数列)即把每一项都乘以的公比,向后错一项,再对应同次项相减,转化为等比数列求和。

如:等比数列的前n项和就是用此法推导的.

解读:

6.累加(乘)法

解读:

7.并项求和法:一个数列的前n项和中,可两两结合求解,则称之为并项求和.

形如an=(-1)nf(n)类型,可采用两项合并求。

解读:

8.其它方法:归纳、猜想、证明;周期数列的求和等等。

解读:

三、典型例题分析

题型1错位相减法

例1求数列前n项的和.

解:由题可知{}的通项是等差数列{2n}的通项与等比数列{}的通项之积

设①

②(设制错位)

①-②得(错位相减)

变式训练1(20__昌平模拟)设数列{an}满足a1+3a2+32a3++3n-1an=n3,nN__.

(1)求数列{an}的通项公式;

(2)设bn=nan,求数列{bn}的&39;前n项和Sn.

解:(1)∵a1+3a2+32a3++3n-1an=n3,①

当n2时,a1+3a2+32a3++3n-2an-1=n-13.②

①-②得3n-1an=13,an=13n.

在①中,令n=1,得a1=13,适合an=13n,an=13n.

(2)∵bn=nan,bn=n3n.

Sn=3+232+333++n3n,③

3Sn=32+233+334++n3n+1.④

④-③得2Sn=n3n+1-(3+32+33++3n),

即2Sn=n3n+1-3(1-3n)1-3,Sn=(2n-1)3n+14+34.

小结与拓展:

题型2并项求和法

例2求=1002-992+982-972++22-12

解:=1002-992+982-972++22-12=(100+99)+(98+97)++(2+1)=5050.

变式训练2数列{(-1)nn}的前20__项的和S2010为(D)

A.-20__B.-1005C.20__D.1005

解:S2010=-1+2-3+4-5++2008-2009+2010

=(2-1)+(4-3)+(6-5)++(2010-2009)=1005.

小结与拓展:

题型3累加(乘)法及其它方法:归纳、猜想、证明;周期数列的求和等等

例3(1)求之和.

(2)已知各项均为正数的数列{an}的前n项的乘积等于Tn=(nN__),

,则数列{bn}的前n项和Sn中最大的一项是(D)

A.S6B.S5C.S4D.S3

解:(1)由于(找通项及特征)

=(分组求和)==

=

(2)D.

变式训练3(1)(20__福州八中)已知数列则,。答案:100.5000。

(2)数列中,,且,则前20__项的和等于(A)

A.1005B.20__C.1D.0

小结与拓展:

四、归纳与总结(以学生为主,师生共同完成)

以上一个8种方法虽然各有其特点,但总的原则是要善于改变原数列的形式结构,使

其能进行消项处理或能使用等差数列或等比数列的求和公式以及其它已知的基本求和公式来解决,只要很好地把握这一规律,就能使数列求和化难为易,迎刃而解。

高中数学教案免费模板篇12

数列的相关概念

1.数列概念

①数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N--或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。

②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。图像法;c.解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。

③函数不一定有解析式,同样数列也并非都有通项公式。

高中数学教案免费模板篇13

教学目标:①掌握对数函数的性质。

②应用对数函数的性质可以解决:对数的大小比较,求复合函数的定义域、值 域及单调性。

③ 注重函数思想、等价转化、分类讨论等思想的渗透,提高解题能力。

教学重点与难点:对数函数的性质的应用。

教学过程设计:

⒈复习提问:对数函数的概念及性质。

⒉开始正课

1 比较数的大小

例 1 比较下列各组数的大小。

⑴loga5.1 ,loga5.9 (a>0,a≠1)

⑵log0.50.6 ,logЛ0.5 ,lnЛ

师:请同学们观察一下⑴中这两个对数有何特征?

生:这两个对数底相等。

师:那么对于两个底相等的对数如何比大小?

生:可构造一个以a为底的对数函数,用对数函数的单调性比大小。

师:对,请叙述一下这道题的解题过程。

生:对数函数的单调性取决于底的大小:当0调递减,所以loga5.1>loga5.9 ;当a>1时,函数y=logax单调递增,所以loga5.1

板书:

解:Ⅰ)当0∵5.1<5.9 ∴loga5.1>loga5.9

Ⅱ)当a>1时,函数y=logax在(0,+∞)上是增函数,∵5.1<5.9 ∴loga5.1

师:请同学们观察一下⑵中这三个对数有何特征?

生:这三个对数底、真数都不相等。

师:那么对于这三个对数如何比大小?

生:找“中间量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnЛ>1,log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。

板书:略。

师:比较对数值的大小常用方法:①构造对数函数,直接利用对数函数 的单调性比大小,②借用“中间量”间接比大小,③利用对数函数图象的位置关系来比大小。

2 函数的定义域, 值 域及单调性。

例 2 ⑴求函数y=的定义域。

⑵解不等式log0.2(x2+2x-3)>log0.2(3x+3)

师:如何来求⑴中函数的定义域?(提示:求函数的定义域,就是要使函数有意义。若函数中含有分母,分母不为零;有偶次根式,被开方式大于或等于零;若函数中有对数的形式,则真数大于零,如果函数中同时出现以上几种情况,就要全部考虑进去,求它们共同作用的结果。)生:分母2x-1≠0且偶次根式的被开方式log0.8x-1≥0,且真数x>0。

板书:

解:∵   2x-1≠0      x≠0.5

log0.8x-1≥0 ,  x≤0.8

x>0        x>0

∴x(0,0.5)∪(0.5,0.8〕

师:接下来我们一起来解这个不等式。

分析:要解这个不等式,首先要使这个不等式有意义,即真数大于零,

再根据对数函数的单调性求解。

师:请你写一下这道题的解题过程。

生:<板书>

解:  x2+2x-3>0      x<-3 或 x>1

(3x+3)>0    ,   x>-1

x2+2x-3<(3x+3)    -2

不等式的解为:1

例 3 求下列函数的值域和单调区间。

⑴y=log0.5(x- x2)

⑵y=loga(x2+2x-3)(a>0,a≠1)

师:求例3中函数的的值域和单调区间要用及复合函数的思想方法。

下面请同学们来解⑴。

生:此函数可看作是由y= log0.5u, u= x- x2复合而成。

板书:

解:⑴∵u= x- x2>0, ∴0

u= x- x2=-(x-0.5)2+0.25, ∴0

∴y= log0.5u≥log0.50.25=2

∴y≥2

x    x(0,0.5]   x[0.5,1)

u= x- x2

y= log0.5u

y=log0.5(x- x2)

函数y=log0.5(x- x2)的单调递减区间(0,0.5],单调递 增区间[0.5,1)

注:研究任何函数的性质时,都应该首先保证这个函数有意义,否则函数都不存在,性质就无从谈起。

师:在⑴的基础上,我们一起来解⑵。请同学们观察一下⑴与⑵有什么区别?

生:⑴的底数是常值,⑵的底数是字母。

师:那么⑵如何来解?

生:只要对a进行分类讨论,做法与⑴类似。

板书:略。

⒊小结

这堂课主要讲解如何应用对数函数的性质解决一些问题,希望能通过这堂课使同学们对等价转化、分类讨论等思想加以应用,提高解题能力。

⒋作业

⑴解不等式

①lg(x2-3x-4)≥lg(2x+10);②loga(x2-x)≥loga(x+1),(a为常数)

⑵已知函数y=loga(x2-2x),(a>0,a≠1)

①求它的单调区间;②当0

⑶已知函数y=loga (a>0, b>0, 且 a≠1)

①求它的定义域;②讨论它的奇偶性;  ③讨论它的单调性。

⑷已知函数y=loga(ax-1) (a>0,a≠1),

①求它的定义域;②当x为何值时,函数值大于1;③讨论它的单调性。

5.课堂教学设计说明

这节课是安排为习题课,主要利用对数函数的性质解决一些问题,整个一堂课分两个部分:一 .比较数的大小,想通过这一部分的练习,培养同学们构造函数的思想和分类讨论、数形结合的思想。二.函数的定义域, 值 域及单调性,想通过这一部分的练习,能使同学们重视求函数的定义域。因为学生在求函数的值域和单调区间时,往往不考虑函数的定义域,并且这种错误很顽固,不易纠正。因此,力求学生做到想法正确,步骤清晰。为了调动学生的积极性,突出学生是课堂的主体,便把例题分了层次,由易到难,力求做到每题都能由学生独立完成。但是,每一道题的解题过程,老师都应该给以板书,这样既让学生有了获取新知识的快乐,又不必为了解题格式的不熟悉而烦恼。每一题讲完后,由教师简明扼要地小结,以使好学生掌握地更完善,较差的学生也能够跟上。

高中数学教案免费模板篇14

教学目标:

①掌握对数函数的性质。

②应用对数函数的性质可以解决:对数的大小比较,求复合函数的定义域、值 域及单调性。

③ 注重函数思想、等价转化、分类讨论等思想的渗透,提高解题能力。

教学重点与难点:对数函数的性质的应用。

教学过程设计:

⒈复习提问:对数函数的概念及性质。

⒉开始正课

1 比较数的大小

例 1 比较下列各组数的大小。

⑴loga5.1 ,loga5.9 (a>0,a≠1)

⑵log0.50.6 ,logЛ0.5 ,lnЛ

师:请同学们观察一下⑴中这两个对数有何特征?

生:这两个对数底相等。

师:那么对于两个底相等的对数如何比大小?

生:可构造一个以a为底的对数函数,用对数函数的单调性比大小。

师:对,请叙述一下这道题的解题过程。

生:对数函数的单调性取决于底的大小:当0调递减,所以loga5.1>loga5.9 ;当a>1时,函数y=logax单调递增,所以loga5.1

板书:

解:Ⅰ)当0

∵5.1<5.9 ∴loga5.1>loga5.9

Ⅱ)当a>1时,函数y=logax在(0,+∞)上是增函数,

∵5.1<5.9 ∴loga5.1

师:请同学们观察一下⑵中这三个对数有何特征?

生:这三个对数底、真数都不相等。

师:那么对于这三个对数如何比大小?

生:找“中间量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnЛ>1,

log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。

板书:略。

师:比较对数值的大小常用方法:①构造对数函数,直接利用对数函数 的单调性比大小,②借用“中间量”间接比大小,③利用对数函数图象的位置关系来比大小。

2 函数的定义域, 值 域及单调性。

高中数学教案免费模板篇15

1、教材分析:

集合是现代数学的基本语言,可以简洁、准确地表达数学内容。本节是让学生学会用集合的语言来描述对象,章末我们会用集合和对应的语言来描述函数的概念,可见它是今后数学学习的基础,也是培养学生抽象概括能力的重要素材。

2、教材目标:

根据素质教育的要求和新课改的精神,我确定教学目标如下:

①知识与技能:

(1)了解集合的含义与集合中元素的特征

(2)熟记常用数集符号

(3)能用列举、描述法表示具体集合

②过程与方法:让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.让学生通过观察、归纳、总结的过程,提高抽象概括能力。

③情感态度与价值观:使学生感受到学习集合的必要性,增强学习的积极性.

3、教学重点、难点

教学重点:集合的基本概念与表示方法;

教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;说教法

1.学情分析

《集合的含义及表示》这一课时是学生进入高中阶段学习、接触到高中数学的第一堂课,它直接影响到了学生对高中阶段数学学习的认识;如果我们教学上过于草率,学生很容易对数学失去学习兴趣。再者,这是高中数学课程的第一章的第一课时,是整个高中数学的奠基部分,所以我们不仅要正确地传授知识,更要把握好教学的难度。如果传授得过于简单,那么学生容易麻痹大意,对今后的学习埋下隐患;如果讲得太深,那么学生会有畏难心理,也会对今后的学习造成影响。

2.方法选择

在教学中注意启发引导,通过预习学案的形式把知识问题化,通过实例引导学生观察归纳,上课组织学生分组讨论,让他们经历观察、猜测、推理、交流、反思的理性思维的基本过程,切实改变学生的学习方法。

说学法

让学生通过课前结合学案,阅读教材,自主预习,课上交流、讨论、概括,课后复习巩固三个环节,更好地完成本节课的教学目标。值得提出的是:集合作为一种数学语言,最好的学习方法是使用,所以应该多做转换练习,

说教学程序

(一)创设情境,揭示课题

军训前学校通知:x月x日x点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?

在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。

通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发了学生求知欲,调动了学生主动参与的积极性。让学生在课堂的一开始就感受到数学就在我们身边,让学生学会用数学的眼光去关注生活。

(二)研探新知,建构概念

让学生阅读课本P2内容,让小组思考讨论,代表发言,师生共同补充答案它们的共同特征:它们都是指定的一组对象。这时我借此引入集合的概念,把一些元素组成的总体叫做集合,简称集,通常用大写字母A,B,C,?表示。把研究的对象称为元素,通常用小写拉丁字母a,b,c,?表示;

接下来,我引导学生把集合的涵义进行拓展,期间结合一些师生互动:我们班上的女生能不能构成一个集合,班上身高在1.75米以上的男生能不能构成一个集合,班上高的男生能不能构成一个集合??,通过身边这些大量例子,让学生了解集合的概念,并切实感受到学习集合语言的重要性。

对于集合元素的特征:确定性、互异性、无序性。我则在学生了解集合概念基础上,通过设置三个问题(1)班里个子高的同学能否构成一个集合?(2)在一个给定的集合中能否有相同的元素?(3)班里的全体同学组成一个集合,调整座位后这个集合有没有变化?调整后的集合和原来的集合是什么关系?让学生思考:任意一组对象是否都能组成一个集合?集合中的元素有什么特征?

这样设计将知识问题化,问题生活化,激发学生学习的主动性,引导学生归纳出集合中元素的三大特性,用简练的语言概括为——确定性、互异性、无序性用两集合相等的概念。

思考3:(1)设集合A表示“1~20以内的所有质数”,那么3,4,5,6这四个元素哪些在集合A中?哪些不在集合A中?

(2)对于一个给定的集合A,那么某元素a与集合A有哪几种可能关系?

(3)如果元素a是集合A中的元素,我们如何用数学化的语言表达?

(4)如果元素a不是集合A中的元素,我们如何用数学化的语言表达?用符号∈或?填空:

[设计说明]这几个问题比较简单,直接提问同学回答,并师生一起完善答案。通过问题的层层深入,目的是引导学生归纳出元素与集合的关系及表示方法。

反馈练习:

(1)设A为所有亚洲国家组成的集合,则

中国____A,美国____A,

印度____A,英国____A;

对于集合中常用的符号,我做了这样处理:简要介绍后,让学生用两三分钟的时间结合符号特点记忆。目的在于给学生一个信号:课堂上能消化的东西要及时记住。

2.集合的表示法:列举法和描述法

让学生自习阅读课本P3——P4的内容5-7分钟,接着让同学试着解决如下三个问题

(1)由大于10小于20的所有整数组成的集合;

(2)表示不等式x-7《3的解集;

(3)由1——20以内的所有素数组成的集合;

把集合的元素一一列举出来,并用花括号“{}”括起来表示的方法叫做列举法。用集合所含元素的共同特征表示集合的方法称为描述法。具体方法是:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

通过三个问题不仅检验了学生的自学效果,同时也让学生明白列举法和描述法两种方法各自的优缺点,更重要的是对集合的列举法和描述法的规范表达做进一步强调,最后,我带领学生分析了课本P4的例题,对集合的列举法和描述法的规范表达做进一

步的强调,让学生完成书上的习题,并请几个学生上台来演练,通过练习达到及时的反馈。

(四)归纳整理,整体认识

1.本节课我们学习了哪些知识内容?

2.你认为学习集合有什么意义?

3.比较列举法与描述法的优缺点。

(五)布置作业

作业:习题1.1A组:2、3、4.

作业的布置是要突出本节课的重点——集合概念的理解以及集合的表示法,让学生对数学符号的适用在课外进行延伸和巩固。

说板书

在教学中我把黑板分为三部分,把知识要点写在左侧,中间是课本例题演练,右侧是实例应用。在左侧的知识要点主要列出了集合、元素的概念、元素的特性:确定性,互异性,无序性,和集合的表示法:列举法和描述法。

以上是我对《集合的含义与表示》这节教材的认识和对教学过程的设计。对这节课的设计,我始终在努力贯彻一教师为主导,以学生为主题,以问题为基础,以能力、方法为主线,有计划培养学生的自学能力、观察和实践能力、思维能力为指导思想,利用各种教学手段激发学生的学习兴趣,体现了对学生创新意识的培养。

45131