教案吧 > 学科教案 > 数学教案 >

初中数学教案反思模板

时间: 新华 数学教案

教案可以帮助教师及时了解学生的学习情况和学习成果,从而针对性地调整教学策略。优秀的初中数学教案反思模板是什么样的?下面给大家带来初中数学教案反思模板,供大家参考。

初中数学教案反思模板篇1

一元一次方程——初中数学第一册教案(精选2篇)

一元一次方程——初中数学第一册篇1

一元一次方程的复习

复习目标:

(1)了解方程、一元一次方程以及方程的解等基本概念。

(2)会解一元一次方程。

(3)会根据具体问题中的数量关系列出一元一次方程并求解。

重点、难点:

1.重点:

一元一次方程及方程的解的基本概念。

一元一次方程的解法。

会用一元一次方程解决实际问题。

2.难点:

一元一次方程的解法的灵活应用。

寻找实际问题中的等量关系。

【典型例题】

例1.

分析:明确一元一次方程的概念。方程中含有一个未知数,未知数的次数是1,且含有未知数的式子为整式,未知数的系数不为0。

在这里特别注意:未知数的次数及系数。

这三个方程中含有两个未知数x、y,要想成为一元一次方程就要使其中一个未知数的系数为0。

解:

例2.

分析:此题要明确两点:(1)当方程中含有多个字母时,指出关于哪个字母的方程,这个字母就是方程的未知数,而其它的字母是代替已知数的字母系数,这类方程也叫字母系数方程。(2)方程的解,即使方程左右两边相等的未知数的值。

此题从问题出发,求解关于x的方程即要求出x的值,而要求x的值要先求出m的值,如何求m的值呢?已知y=1是关于y的方程的解,即关于y的方程中字母y=1,因此可将y=1代入方程,从而求出m的值。

解:

将m=1代入关于x的方程,得:

例3.

解:

注意:解一元一次方程的一般步骤为以上五步,但在解方程时,要注意灵活运用。

例4.

分析:此题的括号较多,如果按照一般的做法先去小括号,再去中括号,最后去大括号的方法比较麻烦,所以要观察分析方程找一种比较简单的方法。

解:

例5.

分析:此题中分母出现小数,如果用一般的方法先去分母,则比较麻烦,公分母就不好找,所以采取一个巧妙的方法,先利用“分数的基本性质”将方程中分母中的小数化为整数,再用去分母……解之。

解:

注:用分数的基本性质化简用的是分子、分母扩大相同倍数分数值不变,与去分母不同。

解:

例6.已知某铁路桥长1000米,现有列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整个火车完全在桥上的时间为40秒,求火车的速度。

分析:列方程解应用题的关键要找出题目中的等量关系,而由题意可知,此题有两个不变的量,即车的速度和车身的长度。在题目中不变的量,即可为等量,从而列出方程。例如以车身长度为等量,可列方程,设车的速度为xm/s,60x-1000=1000-40x,以车的速度为等量,可列方程,设车身长为xm

解一:设车的速度为xm/s

经检验,符合题意。

答:车的速度为20m/s。

解二:设车身的长度为xm

经检验,符合题意。

答:车的速度为(1000+200)/60=20m/s

例7.某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票

售票的一半。如果在六月份内,团体票按每张16元出售,并计划在六月份售完全部余票,那么零售票应按每张多少元出售才能使两个月的票款收入持平?

分析:此题的等量关系比较好找,即五六月份的票款相等,但团体票及零售票的张数不知道,可用字母表示出来,设而不求。

解:设团体票共2a张,零售票共a张,零售票价x元

经检验,符合题意。

答:零售票价为19.2元。

【模拟试题】

一.填空题。

1.已知方程的解比关于x的方程的解大2,则_________。

2.关于x的方程的解为整数,则__________。

3.若是关于x的一元一次方程,则k=_________,x=_________。

4.若代数式与的值互为相反数,则m=_________。

5.一元一次方程的解为x=0,那么a、b应满足的条件是__________。

二.解方程。

1.

2.

3.

4.

三.列方程解应用题。

1.一商贩以每个鸡蛋0.24元购进一批鸡蛋,但在途中不慎碰坏12个,剩下的鸡蛋以每个0.28元售出,结果获利11.2元,问该商贩当初买进多少个鸡蛋?

2.分别戴着红色和黄色旅行帽的若干同学坐一只船,在公园内划船,突然间,一个戴红帽子的同学说:“我看到的我们船上的红帽子和黄帽子一样多。”这时一个戴黄帽子的同学说:“不对,你错了,我看到的红帽子是黄帽子的2倍。”问:戴红帽子和黄帽子的同学各有多少人?

【试题答案】

一.填空题。

1.                   2.

3.1,1                    4.                 5.

二.解方程。

1.                    2.

3.                  4.

三.列方程解应用题。

1.买364个鸡蛋

2.戴红帽子4人,黄帽子3人

一元一次方程的复习

复习目标:

(1)了解方程、一元一次方程以及方程的解等基本概念。

(2)会解一元一次方程。

(3)会根据具体问题中的数量关系列出一元一次方程并求解。

重点、难点:

1.重点:

一元一次方程及方程的解的基本概念。

一元一次方程的解法。

会用一元一次方程解决实际问题。

2.难点:

一元一次方程的解法的灵活应用。

寻找实际问题中的等量关系。

【典型例题】

例1.

分析:明确一元一次方程的概念。方程中含有一个未知数,未知数的次数是1,且含有未知数的式子为整式,未知数的系数不为0。

在这里特别注意:未知数的次数及系数。

这三个方程中含有两个未知数x、y,要想成为一元一次方程就要使其中一个未知数的系数为0。

解:

例2.

分析:此题要明确两点:(1)当方程中含有多个字母时,指出关于哪个字母的方程,这个字母就是方程的未知数,而其它的字母是代替已知数的字母系数,这类方程也叫字母系数方程。(2)方程的解,即使方程左右两边相等的未知数的值。

此题从问题出发,求解关于x的方程即要求出x的值,而要求x的值要先求出m的值,如何求m的值呢?已知y=1是关于y的方程的解,即关于y的方程中字母y=1,因此可将y=1代入方程,从而求出m的值。

解:

将m=1代入关于x的方程,得:

例3.

解:

注意:解一元一次方程的一般步骤为以上五步,但在解方程时,要注意灵活运用。

例4.

分析:此题的括号较多,如果按照一般的做法先去小括号,再去中括号,最后去大括号的方法比较麻烦,所以要观察分析方程找一种比较简单的方法。

解:

例5.

分析:此题中分母出现小数,如果用一般的方法先去分母,则比较麻烦,公分母就不好找,所以采取一个巧妙的方法,先利用“分数的基本性质”将方程中分母中的小数化为整数,再用去分母……解之。

解:

注:用分数的基本性质化简用的是分子、分母扩大相同倍数分数值不变,与去分母不同。

解:

例6.已知某铁路桥长1000米,现有列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整个火车完全在桥上的时间为40秒,求火车的速度。

分析:列方程解应用题的关键要找出题目中的等量关系,而由题意可知,此题有两个不变的量,即车的速度和车身的长度。在题目中不变的量,即可为等量,从而列出方程。例如以车身长度为等量,可列方程,设车的速度为xm/s,60x-1000=1000-40x,以车的速度为等量,可列方程,设车身长为xm

解一:设车的速度为xm/s

经检验,符合题意。

答:车的速度为20m/s。

解二:设车身的长度为xm

经检验,符合题意。

答:车的速度为(1000+200)/60=20m/s

例7.某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票

售票的一半。如果在六月份内,团体票按每张16元出售,并计划在六月份售完全部余票,那么零售票应按每张多少元出售才能使两个月的票款收入持平?

分析:此题的等量关系比较好找,即五六月份的票款相等,但团体票及零售票的张数不知道,可用字母表示出来,设而不求。

解:设团体票共2a张,零售票共a张,零售票价x元

经检验,符合题意。

答:零售票价为19.2元。

【模拟试题】

一.填空题。

1.已知方程的解比关于x的方程的解大2,则_________。

2.关于x的方程的解为整数,则__________。

3.若是关于x的一元一次方程,则k=_________,x=_________。

4.若代数式与的值互为相反数,则m=_________。

5.一元一次方程的解为x=0,那么a、b应满足的条件是__________。

二.解方程。

1.

2.

3.

4.

三.列方程解应用题。

1.一商贩以每个鸡蛋0.24元购进一批鸡蛋,但在途中不慎碰坏12个,剩下的鸡蛋以每个0.28元售出,结果获利11.2元,问该商贩当初买进多少个鸡蛋?

2.分别戴着红色和黄色旅行帽的若干同学坐一只船,在公园内划船,突然间,一个戴红帽子的同学说:“我看到的我们船上的红帽子和黄帽子一样多。”这时一个戴黄帽子的同学说:“不对,你错了,我看到的红帽子是黄帽子的2倍。”问:戴红帽子和黄帽子的同学各有多少人?

【试题答案】

一.填空题。

1.                   2.

3.1,1                    4.                 5.

二.解方程。

1.                    2.

3.                  4.

三.列方程解应用题。

1.买364个鸡蛋

2.戴红帽子4人,黄帽子3人

一元一次方程——初中数学第一册教案篇2

一元一次方程

一、教学目标 :

1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。

2、通过观察,归纳一元一次方程的概念

3、积累活动经验。

二、重点和难点

重点:归纳一元一次方程的概念

难点:感受方程作为刻画现实世界有效模型的意义

三、教学过程 

1、课前训练一

(1)如果=9,则 =           ;如果2=9,则 =            

(2)在数轴上距离原点4个单位长度的数为                    

(3)下列关于相反数的说法不正确的是(    )

A、两个相反数只有符号不同,并且它们到原点的距离相等。

B、互为相反数的两个数的绝对值相等

C、0的相反数是0 

D、互为相反数的两个数的和为0(字母表示为、互为相反数则)

E、有理数的相反数一定比0小

(4)乘积为1的两个数互为倒数 ,如:

(5)如果,则(     )

A、,互为倒数  B、,互为相反数   C、,都是0   D、,至少有一个为0

(6)小明种了一棵高度为40厘米的树苗,栽种后每周树苗长高约为12厘米,问大约经过几周后树苗长高到1米?设大约经过周后树苗长高到1米,依题意得方程(    )

A、  B、  C、 D、00

2、由课本P149卡通图画引入新课

3、分组讨论P149两个练习

4、P150:某长方形的足球场的周长为310米,长与宽的差为25米,求这个足球场的长与宽各是多少米?设这个足球场的宽为米,那么长为(+25)米,依题意可列得方程为:(     )

A、+25=310  B、+(+25)=310  C、2[+(+25)]=310  D、[+(+25)]2=310

课本的宽为3厘米,长比宽多4厘米,则课本的面积为            平方厘米。

5、小芳买了2个笔记本和5个练习本,她递给售货员10元,售货员找回0.8元。已知每个笔记本比练习本贵1.2元,求每个练习本多少元?

解:设每个练习本要元,则每个笔记本要        元,依题意可列得方程:

6、归纳方程、一元一次方程的概念

7、随堂练习PO151

8、达标测试

(1)下列式子中,属于方程的是(    )

A、  B、   C、 D、

(2)下列方程中,属于一元一次方程的是(      )

A、   B、   C、  D、

(3)甲、乙两队开展足球对抗比赛,规定每队胜一场得3分,平一场得1分,负一场得0分。甲队与乙队一共进行了10场比赛,且甲队保持了不败记录,甲队一共得22分。求甲队胜了多少场?平了多少场?

解:设甲队胜了场,则平了         场,依题意可列得方程:                   

解得=                

答:甲队胜了       场,平了       场。

(4)根据条件“一个数比它的一半大2”可列得方程为                      

(5)根据条件“某数的与2的差等于最大的一位数”可列得方程为              

四、课外作业 P151习题5.1 

一元一次方程

一、教学目标 :

1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。

2、通过观察,归纳一元一次方程的概念

3、积累活动经验。

二、重点和难点

重点:归纳一元一次方程的概念

难点:感受方程作为刻画现实世界有效模型的意义

三、教学过程 

1、课前训练一

(1)如果=9,则 =           ;如果2=9,则 =            

(2)在数轴上距离原点4个单位长度的数为                    

(3)下列关于相反数的说法不正确的是(    )

A、两个相反数只有符号不同,并且它们到原点的距离相等。

B、互为相反数的两个数的绝对值相等

C、0的相反数是0 

D、互为相反数的两个数的和为0(字母表示为、互为相反数则)

E、有理数的相反数一定比0小

(4)乘积为1的两个数互为倒数 ,如:

(5)如果,则(     )

A、,互为倒数  B、,互为相反数   C、,都是0   D、,至少有一个为0

(6)小明种了一棵高度为40厘米的树苗,栽种后每周树苗长高约为12厘米,问大约经过几周后树苗长高到1米?设大约经过周后树苗长高到1米,依题意得方程(    )

A、  B、  C、 D、00

2、由课本P149卡通图画引入新课

3、分组讨论P149两个练习

4、P150:某长方形的足球场的周长为310米,长与宽的差为25米,求这个足球场的长与宽各是多少米?设这个足球场的宽为米,那么长为(+25)米,依题意可列得方程为:(     )

A、+25=310  B、+(+25)=310  C、2[+(+25)]=310  D、[+(+25)]2=310

课本的宽为3厘米,长比宽多4厘米,则课本的面积为            平方厘米。

5、小芳买了2个笔记本和5个练习本,她递给售货员10元,售货员找回0.8元。已知每个笔记本比练习本贵1.2元,求每个练习本多少元?

解:设每个练习本要元,则每个笔记本要        元,依题意可列得方程:

6、归纳方程、一元一次方程的概念

7、随堂练习PO151

8、达标测试

(1)下列式子中,属于方程的是(    )

A、  B、   C、 D、

(2)下列方程中,属于一元一次方程的是(      )

A、   B、   C、  D、

(3)甲、乙两队开展足球对抗比赛,规定每队胜一场得3分,平一场得1分,负一场得0分。甲队与乙队一共进行了10场比赛,且甲队保持了不败记录,甲队一共得22分。求甲队胜了多少场?平了多少场?

解:设甲队胜了场,则平了         场,依题意可列得方程:                   

解得=                

答:甲队胜了       场,平了       场。

(4)根据条件“一个数比它的一半大2”可列得方程为                      

(5)根据条件“某数的与2的差等于最大的一位数”可列得方程为              

四、课外作业 P151习题5.1 

初中数学教案反思模板篇2

一、素质教育目标

(一)知识教学点

1.理解有理数乘方的意义.

2.掌握有理数乘方的运算.

(二)能力训练点

1.培养学生观察、分析、比较、归纳、概括的能力.

2.渗透转化思想.

(三)德育渗透点:培养学生勤思、认真和勇于探索的精神.

(四)美育渗透点

把记成,显示了乘方符号的简洁美.

二、学法引导

1.教学方法:引导探索法,尝试指导,充分体现学生主体地位.

2.学生学法:探索的性质→练习巩固

三、重点、难点、疑点及解决办法

1.重点:运算.

2.难点:运算的符号法则.

3.疑点:①乘方和幂的区别.

②与的区别.

四、课时安排

1课时

五、教具学具准备

投影仪、自制胶片.

六、师生互动活动设计

教师引导类比,学生讨论归纳乘方的概念,教师出示探索性练习,学生讨论归纳乘方的性质,教师出示巩固性练习,学生多种形式完成.

七、教学步骤

(一)创设情境,导入 新课

师:在小学我们已经学过:记作,读作的平方(或的二次方);记作,读作的立方(或的三次方);那么可以记作什么?读作什么?

生:可以记作,读作的四次方.

师:呢?

生:可以记作,读作的五次方.

师:(为正整数)呢?

生:可以记作,读作的次方.

师:很好!把个相乘,记作,既简单又明确.

【教法说明】教师给学生创设问题情境,鼓励学生积极参与,大大调动了学生学习的积极性.同时,使学生认识到数学的发展是不断进行推广的,是由计算正方形的面积得到的,是由计算正方体和体积得到的,而,……是学生通过类推得到的.

师:在小学对底数,我们只能取正数.进入中学以后我们学习了有理数,那么还可取哪些数呢?请举例说明.

生:还可取负数和零.例如:0×0×0记,(-2)×(-2)×(-2)×(-2)记作.

非常好!对于中的,不仅可以取正数,还可以取0和负数,也就是说可以取任意有理数,这就是我们今天研究的课题:(板书).

【教法说明】对于的范围,是在教师的引导下,学生积极动脑参与,并且根据初一学生的认知水平,分层逐步说明可以取正数,可以取零,可以取负数,最后总结出可以取任意有理数.

(二)探索新知,讲授新课

1.求个相同因数的积的运算,叫做乘方.

乘方的结果叫做幂,相同的因数叫做底数,相同的因数的个数叫做指数.一般地,在中,取任意有理数,取正整数.

注意:乘方是一种运算,幂是乘方运算的结果.看作是的次方的结果时,也可读作的次幂.

巩固练习(出示投影1)

(1)在中,底数是__________,指数是___________,读作__________或读作___________;

(2)在中,-2是__________,4是__________,读作__________或读作__________;

(3)在中,底数是_________,指数是__________,读作__________;

(4)5,底数是___________,指数是_____________.

【教法说明】此组练习是巩固乘方的有关概念,及时反馈学生掌握情况.(2)、(3)小题的区别表示底数是-2,指数是4的幂;而表示底数是2,指数是4的幂的相反数.为后面的计算做铺垫.通过第(4)小题指出一个数可以看作这个数本身的一次方,如5就是,指数1通常省略不写.

师:到目前为止,对有理数业说,我们已经学过几种运算?分别是什么?其运算结果叫什么?

学生活动:同学们思考,前后桌同学互相讨论交流,然后举手回答.

生:到目前为止,已经学习过五种运算,它们是:

运算:加、减、乘、除、乘方;

运算结果:和、差、积、商、幂;

教师对学生的回答给予评价并鼓励.

【教法说明】注重学生在认知过程中的思维.主动参与,通过学生讨论、归纳得出的知识,比教师的单独讲解要记得牢,同时也培养学生归纳、总结的能力.

师:我们知道,乘方和加、减、乘、除一样,也是一种运算,如何进行乘方运算?请举例说明.

学生活动:学生积极思考,同桌相互讨论,并在练习本上举例.

【教法说明】通过学生积极动脑,主动参与,得出可以利用有理数的乘法运算来进行有理数乘方的运算.向学生渗透转化的思想.

2.练习:(出示投影2)

计算:1.(1)2, (2), (3), (4).

2.(1),,,.

(2)-2,,.

3.(1)0, (2), (3), (4).

学生活动:学生独立完成解题过程,请三个学生板演,教师巡回指导,待学生完成后,师生共同评价对错,并予以鼓励.

师:请同学们观察、分析、比较这三组题中,每组题中底数、指数和幂之间有什么联系?

先让学生独立思考,教师边巡视边做适当提示.然后让学生讨论,老师加入某一小组.

生:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数,零的任何次幂都是零.

师:请同学们继续观察与,与中,底数、指数和幂之间有何联系?你能得出什么结论呢?

学生活动:学生积极思考,同桌之间、前后桌之间互相讨论.

生:互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等.

师:请同学思考一个问题,任何一个数的偶次幂是什么数?

生:任何一个数的偶次幂是非负数.

师:你能把上述结论用数学符号表示吗?

生:(1)当时,(为正整数);

(2)当

(3)当时,(为正整数);

(4)(为正整数);

(为正整数);

(为正整数,为有理数).

【教法说明】教师把重点放在教学情境的设计上,通过学生自己探索,获取知识.教师要始终给学生创造发挥的机会,注重学生参与.学生通过特殊问题归纳出一般性的结论,既训练学生归纳总结的能力和口头表达的能力,又能使学生对法则记得牢,领会的深刻.

初中数学教案反思模板篇3

课题:

对数函数

(1)——定义、图象、性质目标:

1.了解对数函数的定义、图象及其性质以及它与指数函数间的关系,会求对数函数的定义域。

2.培养培养观察分析、抽象概括能力、归纳总结能力、逻辑推理能力、化归转化能力;

3.培养坚忍不拔的意志,培养发现问题和提出问题的意识、善于独立思考的习惯,体会事物之间普遍联系的辩证观点。

重点:对数函数的定义、图象、性质

难点:对数函数与指数函数间的关系

过程:

一、复习引入:实例引入:回忆学习指数函数时用的实例我们研究指数函数时,曾经讨论过细胞分裂问题,某种细胞分裂时,得到的细胞的个数是分裂次数的函数,这个函数可以用指数函数=表示。现在,我们来研究相反的问题,如果要求这种细胞经过多少次分裂,大约可以得到1万个,10万个……细胞,那么,分裂次数就是要得到的细胞个数的函数。根据对数的定义,这个函数可以写成对数的形式就是如果用表示自变量,表示函数,这个函数就是由反函数概念可知,与指数函数互为反函数这一节,我们来研究指数函数的反函数对数函数

二、新课

1.对数函数的定义:函数叫做对数函数;它是指数函数的反函数。对数函数的定义域为,值域为。

2.对数函数的图象由于对数函数与指数函数互为反函数,所以的图象与的图象关于直线对称。因此,我们只要画出和的图象关于对称的曲线,就可以得到的图象,然后根据图象特征得出对数函数的性质。

活动设计:由学生任意取底数作图,观察分析讨论,教师引导、整理3.对数函数的性质由对数函数的图象,观察得出对数函数的性质。见P87表图象性质定义域:(0,+∞)值域:R过点(1,0),即当时,时时时时在(0,+∞)上是增函数在(0,+∞)上是减函数活动设计:学生观察、分析讨论,教师引导、整理4.应用例1.(课本第94页)求下列函数的定义域:(1);(2);(3)分析:此题主要利用对数函数的定义域(0,+∞)求解。解:(1)由>0得,∴函数的定义域是;(2)由得,∴函数的定义域是(3)由9-得-3,∴函数的定义域是注:此题只是对数函数性质的简单应用,应强调学生注意书写格式。例2.求下列函数的反函数①②解:①∴②∴

三、小结:对数函数定义、图象、性质四、作业:课本第95页练习1,2习题2.81,2

初中数学教案反思模板篇4

一、素质教育目标

(一)知识教学点

1.理解画两个角的差,一个角的几倍、几分之一的方法.

2.掌握用量角器画两个角的和差,一个角的几倍、几分之一的画法.用三角板画一些特殊角的画法.

(二)能力训练点

通过画角的和、差、倍、分,三角板和量角器的使用,培养学生动手能力和操作技巧.

(三)德育渗透点

通过利用三角板画特殊角的方法,说明几何知识常用来解决实际问题,进行几何学在生产、生活中起着重要作用的教育,鼓励他们努力学习。

(四)美育渗透点

通过学生动手操作,使学生体会到简单几何图形组合的多样性,领会几何图形美.

二、学法引导

1.教师教法:尝试指导,以学生操作为主.

2.学生学法:在教师的指导下,积极动手参与,认真思考领会归纳.

三、重点、难点、疑点及解决办法

(一)重点

用量角器画角的和、差、倍、分及用三角板画特殊角.

(二)难点

准确使用量角器画一个角的几分之一.

(三)疑点

量角器的正确使用.

(四)解决办法

通过正确指导,规范操作,使学生掌握画法要领,并以练习加以巩固,从而解决重难点及疑点.

四、课时安排

1课时

五、教具学具准备

一副三角板、量角器.

六、师生互动活动设计

1.通过教师设,学生动手及思考创设出情境,引出课题.

2.通过学生尝试解决、教师把握几何语言美的方法,放手由学生自己解决有关角的画法.

3.通过提问的形式完成小结.

七、教学步骤

(一)明确目标

使学生会用量角器画角及角的和、差、倍、分,培养学生动手能力和操作能力.

(二)整体感知

通过教师指导,学生动手操作完成对画图能力和操作能力的掌握.

图1

(三)教学过程

创设情境,引出课题

教师在黑板上画出(如图1).

师:现有工具量角器和三角板,谁到黑板上画一个角等于呢?请同学们观察他的操作,老师要找同学说明他的画法.

【教法说明】有上节课的基础,学生会先用量角器测量的度数,再画一个度数等于这个度数的角,学生也会叙述其画法.

提出问题:若老师想画的余角、补角呢?

学生会想到画、减去的度数后的角,即为的余角、补角.

师:是否还有别的方法?

这时学生一定会积极思考,立刻回答还有困难.教师抓住时机点明课题:同学们不用着急,今天我们就研究角的画法,学习用三角板、量角器画角的和、差、倍、分以及一些特殊角.老师提出的问题你们会解决的.另外,角的画法在我们日常生活中应用广泛,希望同学们认真学习.(板书课题……)

[板书]1.7角的画法

探究新知

1.画一个角等于已知角

找学生再次叙述方法:用量角器量出已知角的度数,再画一个等于这个度数的角.

操作:略.

注意:量角器使用三要素:对中、重合、读数.

2.用三角板画特殊角

师:请同学们准备好练习本和一副三角板,再找同学说出一副三角板中各角度数.

学生活动:用三角板在练习本上画出直角、角、角、角.

提出问题:你能利用一副三角板画出、的角吗?

学生活动:讨论画、的角的方法,在练习本上画出图形,同桌可相互交换检查,找学生到黑板上画.

【教法说明】有前一节角的和、差的理解和、、角的画法,学生对画、的角不会有困难.因此,教师要敢于放手,让学生自己去尝试解决问题的方法,也培养他们的动手操作的能力,但对于画法学生不会叙述得太严密,教师要把关,培养学生几何语言的严密性.

教师根据前面学生所画图形,引导学生写出画法.(以角的画法为例,与例题相符.)

图1

画法如图l,①利用三角板,画

②在的外部,再画就是要画的的角.

反馈练习:用三角板画、的角.

【教法说明】由学生独立完成以上三个角的画图.教师不给任何提示,只要求写出画角的方法,注意观察画法,是否写出了“在角的内部画的角”.区别例题中两角和的画法.

提出问题:由一副三角板可以画出多少度的角?

学生讨论得出可以画出的角.

这些角都是的倍数,用三角板也只限画这样的角.由此得出:由量角器画任意角的和、差、倍、分角.

3.画任意两个角的和差及一个角的几倍、几分之一.

问题:如图1,已知、(),如何画出与的和?与的差?

图1

学生活动:讨论画,的方法,并在练习本上根据自己的想法画图.

根据学生的讨论回答,老师归纳以下方法:

(1)用量角器量出、的度数,计算出它们度数的和、差,再用量角器画出等于它们度数和、差的角.

(2)用量角器把移到上,如果本方法.

图1

教师示范,写出两种画法:

画法一:(1)用量角器量得,.

(2)画,就是要画的角如图1.

图2

画法二:(1)用量角器画.

(2)以点为顶点,射为一边,在的外部画.

就是要画的角如图2.

学生活动:叙述用两种方法画的画法.出示例1由学生完成,要求用两种方法,找同学板演.

例1?已知,画出它们的余角.

画法一:(1)量得.

图1图2

(2)画,就是所要画的角,见图1.

画法二:利用三角板,以的顶点为顶点,一边为边,画直角,使的另一边在直角的内部,如图2,就是所要画的角.

【教法说明】第二种画法学生可能叙述或书写不太完整,教师要注意其严密性.

反馈练习

1.已知,画出它的补角.

2.已知,画它们的角平分线.

3.画的角,并把它分成三等份.

【教法说明】本练习只要求图形正确即可,不要求写出画法.

(四)总结、扩展

以提问的形式归纳出以下知识脉络:

八、布置作业

课本第46页习题1.5A组第2、3题.

初中数学教案反思模板篇5

教学目标

1、使学生能说出有理数大小的比较法则

2、能熟练运用法则结合数轴比较有理数的大小,特别是应用绝对值概念比较两个负数的大小,能利用数轴对多个有理数进行有序排列。

3、能正确运用符号"<"">""∵""∴"写出表示推理过程中简单的因果关系。

三、教学重点与难点

重点:运用法则借助数轴比较两个有理数的大小。

难点:利用绝对值概念比较两个负分数的大小。

四、教学准备

多媒体课件

五、教学设计

(一)交流对话,探究新知

1、说一说

(多媒体显示)某一天我们5个城市的最低气温    从刚才的图片中你获得了哪些信息?(从常见的气温入手,激发学生的求知欲望,可能有些学生会说从中知道广州的最低气温10℃比上海的最低气温0℃高,有些学生会说哈尔滨的最低气温零下20℃比北京的最低气温零下10℃低等;不会说的,老师适当点拔,从而学生在合作交流中不知不觉地完成了以下填空。

比较这一天下列两个城市间最低气温的高低(填"高于"或"低于")

广州_______上海;北京________上海;北京________哈尔滨;武汉________哈尔滨;武汉__________广州。

2、画一画:(1)把上述5个城市最低气温的数表示在数轴上,(2)观察这5个数在数轴上的位置,从中你发现了什么?

(3)温度的高低与相应的数在数轴上的位置有什么?

(通过学生自己动手操作,观察、思考,发现原点左边的数都是负数,原点右边的数都是正数;同时也发现5在0右边,5比0大;10在5右边,10比5大,初步感受在数轴上原点右边的两个数,右边的数总比左边的数大。教师趁机追问,原点左边的数也有这样的规律吗?从而激发学生探索知识的欲望,进一步验证了原点左边的数也有这样的规律。从而使学生亲身体验探索的乐趣,在探究中不知不觉获得了知识。)由小组讨论后,教师归纳得出结论:

在数轴上表示的两个数,右边的数总比左边的数大。

正数都大于零,负数都小于零,正数大于负数。

(二)应用新知,体验成功

1、练一练(师生共同完成例1后,学生完成随堂练习1)

例1:在数轴上表示数5,0,-4,-1,并比较它们的大小,将它们按从小到大的顺序用"<"号连接。(师生共同完成)

分析:本题意有几层含义?应分几步?

要点总结:小组讨论归纳,本题解题时的一般步骤:①画数轴②描点;③有序排列;④不等号连接。

随堂练习: P19 T1

2、做一做

(1)在数轴上表示下列各对数,并比较它们的大小

①2和7   ②-6和-1  ③-6和-36  ④-和-1.5

(2)求出图中各对数的绝对值,并比较它们的大小。

(3)由①、②从中你发现了什么?

(学生小组讨论后,代表站起来发言,口述自己组的发现,说明自己组发现的过程,逐步培养学生观察、归纳、用数学语言表达数学规律的能力。)

要点总结:两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小。

在学生讨论的基础上,由学生总结得出有理数大小的比较法则。

(1)正数都大于零,负数都小于零,正数大于负数。

(2)两个正数比较大小,绝对值大的数大。

(3)两个负数比较大小,绝对值大的数反而小。

3、师生共同完成例2后,学生完成随堂练习2、3、4。

例2比较下列每对数的大小,并说明理由:(师生共同完成)

(1)1与-10,(2)-0.001与0,(3)-8与+2;(4)-与-;(5)-(+)与-|-0.8|

分析:第(4)(5)题较难,第(4)题应先通分,第(5)题应先化简,再比较。同时在讲解时,要注意格式。

注:绝对值比较时,分母相同,分子大的数大;分子相同,则分母大的数反而小;分子分母都不相同时,则应先通分再比较,或把分子化相同再比较。

两个负数比较大小时的一般步骤:①求绝对值;②比较绝对值的大小;③比较负数的大小。

思考:还有别的方法吗?(分组讨论,积极思考)

4、想一想:我们有几种方法来判断有理数的大小?你认为它们各有什么特点?

由学生讨论后,得出比较有理数的大小共有两种方法,一种是法则,另一种是利用数轴,当两个数比较时一般选用第一种,当多个有理数比较大小时,一般选用第二种较好。

练一练:P19 T2、3、4

5、考考你:请你回答下列问题:

(1)有没有的有理数,有没有最小的有理数,为什么?

(2)有没有绝对值最小的有理数?若有,请把它写出来?

(3)在于-1.5且小于4.2的整数有_____个,它们分别是____。

(4)若a>0,b<0,a<|b|,则你能比较a、b、-a、-b这四个数的大小吗?(本题属提高题,不要求全体学生掌握)

(新颖的问题会激发学生的好奇心,通过合作交流,自主探究等活动,培养学生思维的习惯和数学语言的表达能力)

6、议一议,谈谈本节课你有哪些收获

(由师生共同完成本节课的小结)本节课主要学习了有理数大小比较的两种方法,一种是按照法则,两两比较,另一种是利用数轴,运用这种方法时,首先必须把要比较的数在数轴上表示出来,然后按照它们在数轴上的位置,从左到右(或从右到左)用"<"(或">")连接,这种方法在比较多个有理数大小时非常简便。

六、布置作业:P19 A组、B组

基础好的A、B两组都做

基础较差的同学选做A组。

初中数学教案反思模板篇6

案例主题:学生参与教学,体现了现代教学理念:活动、合作、自由、民主、创新。

背景:我在进行数学七年级上册图形的认识的应用教学时,处理定理时,随着教学过程的深入,很有感想:??

例题:课本p123证明两个角之间的关系,

请同学们总结一下他们可能出现的情况。

活动过程:师:谁能总结一下判定两个角比较大小的方法?(学生都在紧张的思考中)(突然间,我发现一名平时学习较困难的学生闫家衔这次第一个举起了手,很惊奇,便马上让他发言了。也有了我思想上的一次飞跃。)

生:我认为前面,度量,而刚才第一条,第二条的叠合法。(这时,教室里鸦雀无声,个别同学在讥笑,这位学生顿时有些难堪,想坐下去,我赶紧制止。)

师:很好!那你准备应该怎么做呢?生:嗯,(一下子来劲了):接着这位同学上黑板画了图,写出自己度量的方法和自己的想法。

师:刚才闫家衔同学真的不错,不但提出了新的方法,而且还给出了说理,我和全班同学都为你今天的表现感到非常高兴(教室里响起一片掌声)。要有勇气展示自己,你今天的表现就非常非常地出色,你今后的表现一定会更出色。好,下面我就让我们一同来总结一下菱形的证明方法。

在师生的共同研讨下得出了这些方法。

师:今天的课程内容还有一项,那就是请闫家衔同学谈谈这堂课的感想。

生:以前我不敢发言,我怕说的不对会被同学们笑话,而今天的他的方法恰好是我前几天才预习过的,所以一下子??我今天才发现不是这样??我今后还会努力发言的??

理念反思:从这一个学生的举手发言到说得头头是道的“意外”中,我明白了:学生需要一个能充分展示自我的自由空间,作为老师,我们需要给学生一个自由的民主的氛围,能充分培养学生的自信,使“学困生”也能产生发言的欲望,也能对问题畅所欲言,教师还应能及时捕捉到这一闪光点,给每一位学生都有展示的机会。也就是说要使学生全部积极参与教学,因为它集中体现了现代课程理念:活动、合作、自由、民主、创新。

1、活动、合作是现代课程中的新的理念,只有参与,才能合作创新。

2、民主是现代课程中的重要理念。民主最直接的体现是在课程实施中学生能够平等地参与。没有主动参与,只有被动接受,就没有民主可言。相反,如果没有民主,学生的`参与

就不是主动性参与,而是被动的、消极的参与。

3、在提问时,应设计开放性的问题,如:“请你帮助设计一下,有几种方案等问题?这样才没有限制学生的思维,给学生创设一个自由的空间,学生在这个空间中可以按自己的方式展开想象,才能畅所欲言。

4、在课堂上,老师应不只关注“优等生”,而应平等地对待每一个学生,让学困生”和“学优生”同时享有尊严和拥有一份自信。特别是发现到一个学困生在举了手时,应及时给“学困生”展示的机会,让他们发言,学生在发言中,虽然有时不能把问题完全解决,老师也要充分的肯定这个学生的成绩和能够大胆发言的勇气。

初中数学教案反思模板篇7

一、课题引入

为了让学生更好地理解正数与负数的概念,作为教师有必要了解数系的发展.从数系的发展历程来看,微积分的基础是实数理论,实数的基础是有理数,而有理数的基础则是自然数.自然数为数学结构提供了坚实的基础.

对于“数的发展”(也即“数的扩充”),有着两种不同的认知体系.一是数的自然扩充过程,如图1所示,即数系发展的自然的、历史的体系,它反映了人类对数的认识的历史发展进程;另一是数的逻辑扩充过程,如图2所示,即数系发展所经历的理论的、逻辑的体系,它是策墨罗、冯诺伊曼、皮亚诺、高斯等数学家构造的一种逻辑体系,其中综合反映了现代数学中许多思想方法.

二、课题研究

在实际生活中,存在着诸如上升5m,下降5m;收入5000元,支出5000元等各种具体的数量.这些数量不仅与5、5000等数量有关,而且还含有上升与下降、收入与支出等实际的意义.显然上升5m与下降5m,收入5000元与支出5000元的实际意义是不同的.

为了准确表达诸如此类的一些具有相反意义的量,仅用小学学过的正整数、正分数、零,是不够的.如果把收入5000元记作5000元,那么支出5000元显然是不可以也同样记作5000元的.收入与支出是“意义相反”的两回事,是不能用同一个数来表达的.因此,为了准确表达支出5000元,就有必要引入了一种新数—负数.

我们把所学过的大于零的数,都称为正数;而且还可以在正数的前面添加一个“+”号,比如在5的前面添加一个“+”号就成了“+5”,把“+5”称为一个正数,读作“正5”.

在正数的前面添加一个“-”号,比如在5的前面添加一个“-”号,就成了“-5”,所有按这种形式构成的数统称为负数.“-5”读作“负5”,“-5000”读作“负5000”.

于是“收入5000元”可以记作“5000元”,也可以记作“+5000元”,同时“支出5000元”就可以记作“-5000元”了.这样具有相反意义的两个数量就有了不同的表达方式.

利用正数与负数可以准确地表达或记录诸如上升与下降、收入与支出、海平面以上与海平面以下、零上与零下等一些“具有相反意义的量”.再如,某个机器零件的实际尺寸比设计尺寸大0.5mm就可以表示成“0.5mm”,或“+0.5mm”;如果“另一个机器零件的实际尺寸比设计尺寸小0.5mm”,那么就可以表示成“-0.5mm”了.在一次足球比赛中,如果甲队赢了乙队2个球,那么可以把甲队的净胜球数记作“+2”,把乙队的净胜球数记作“-2”.

借助实际例子能够让学生较好地理解为什么要引入负数,认识到负数是为了有效表达与实际生活相关的一些数量而引入的一种新数,而不是人为地“硬造”出来的一种“新数”.

三、巩固练习

例1博然的父母6月共收入4800元,可以将这笔收入记作+4800元;由于天气炎热,博然家用其中的1600元钱买了一台空调,又该怎样记录这笔支出呢?

思路分析:“收入”与“支出”是一对“具有相反意义的量”,可以用正数或负数来表示.一般来说,把“收入4800元”记作+4800元,而把与之具有相反意义的量“支出1600元”记作-1600元.

特别提醒:通常具有“增加、上升、零上、海平面以上、盈余、上涨、超出”等意义的数量,都用正数来表示;而与之相对的、具有“减少、下降、零下、海平面以下、亏损、下跌、不足”等意义的数量则用负数来表示.

再如,若游泳池的水位比正常水位高5cm,则可以将这时游泳池的水位记作+5cm;若游泳池的水位比正常的水位低3cm,则可以将这时游泳池的水位记作-3cm;若游泳池的水位正好处于正常水位的位置,则将其水位记作0cm.

例2周一证券交易市场开盘时,某支股票的开盘价为18.18元,收盘时下跌了2.11元;周二到周五开盘时的价格与前一天收盘价相比的涨跌情况及当天的收盘价与开盘价的涨跌情况如下表:单位:元

日期周二周三周四周五

开盘+0.16+0.25+0.78+2.12

收盘-0.23-1.32-0.67-0.65

当日收盘价

试在表中填写周二到周五该股票的收盘价.

思路分析:以周二为例,表中数据“+0.16”所表示的实际意义是“周二该股票的开盘价比周一的收盘价高出了0.16元”;而表中数据“-0.23”则表示“周二该股票收盘时的收盘价比当天的开盘价降低了0.23元”.

因此,这五天该股票的开盘价与收盘价分别应该按如下的方式进行计算:

周一该股票的收盘价是18.18-2.11=16.07元;周二该股票的收盘价为16.07+0.16-0.23=16.00元;周三该股票的收盘价为16.00+0.25-1.32=14.93元;周四的该股票的收盘价为14.93+0.78-0.67=15.04元;周五该股票的收盘价为15.04+2.12-0.65=16.51元.

例3甲、乙、丙三支球队以主客场的形式进行双循环比赛,每两队之间都比赛两场,下表是这三支球队的比赛成绩,其中左栏表示主队,上行表示客队,比分中前后两数分别是主客队的进球数,例如3∶2表示主队进3球客队进2球.

初中数学教案反思模板篇8

学习目标:

1、会推导完全平方公式,并能用几何图形解释公式;

2、利用公式进行熟练地计算;

3、经历探索完全平方公式的推导过程,发展符号感,体会特殊一般特殊的认知规律。

学习过程:

(一)自主探索

1、计算:(1)(a+b)2(2)(a-b)2

2、你能用文字叙述以上的结论吗?

(二)合作交流:

你能利用下图的面积关系解释公式(a+b)2=a2+2ab+b2吗?与同学交流。

(三)试一试,我能行。

1、利用完全平方公式计算:

(1)(x+6)2(2)(a+2b)2(3)(3s-t)2[来源:中.考.资.源.网]

(四)巩固练习

利用完全平方公式计算:

A组:

(1)(x+y)2(2)(-2m+5n)2

(3)(2a+5b)2(4)(4p-2q)2

B组:

(1)(x-y2)2(2)(1.2m-3n)2

(3)(-a+5b)2(4)(-x-y)2

C组:

(1)1012(2)542(3)9972

(五)小结与反思

我的.收获:

我的疑惑:

(六)达标检测

1、(a-b)2=a2+b2+.

2、(a+2b)2=.

3、如果(x+4)2=x2+kx+16,那么k=.

4、计算:

(1)(3m-)2(2)(x2-1)2

(2)(-a-b)2(4)(s+t)2

初中数学教案反思模板篇9

教学目标

1.经历不同的拼图方法验证公式的过程,在此过程中加深对因式分解、整式运算、面积等的认识。

2.通过验证过程中数与形的结合,体会数形结合的思想以及数学知识之间内在联系,每一部分知识并不是孤立的。

3.通过丰富有趣的拼图活动,经历观察、比较、拼图、计算、推理交流等过程,发展空间观念和有条理地思考和表达的能力,获得一些研究问题与合作交流方法与经验。

4.通过获得成功的体验和克服困难的经历,增进数学学习的信心。通过丰富有趣拼的图活动增强对数学学习的兴趣。

重点1.通过综合运用已有知识解决问题的过程,加深对因式分解、整式运算、面积等的认识。

2.通过拼图验证公式的过程,使学习获得一些研究问题与合作交流的方法与经验。

难点利用数形结合的方法验证公式

教学方法动手操作,合作探究课型新授课教具投影仪

教师活动学生活动

情景设置:

你已知道的关于验证公式的拼图方法有哪些?(教师在此给予学生独立思考和讨论的时间,让学生回想前面拼图。)

新课讲解:

把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子。美国第二十任总统伽菲尔德就由这个图(由两个边长分别为a、b、c的直角三角形和一个两条直角边都是c的直角三角形拼成一个新的图形)得出:c2=a2+b2他的证法在数学史上被传为佳话。他是这样分析的,如图所示:

教师接着在介绍教材第94页例题的拼法及相关公式

提问:还能通过怎样拼图来解决以下问题

(1)任意选取若干块这样的硬纸片,尝试拼成一个长方形,计算它的面积,并写出相应的等式;

(2)任意写出一个关于a、b的二次三项式,如a2+4ab+3b2

试用拼一个长方形的方法,把这个二次三项式因式分解。

这个问题要给予学生充足的时间和空间进行讨论和拼图,教师在这要引导适度,不要限制学生思维,同时鼓励学生在拼图过程中进行交流合作

了解学生拼图的情况及利用自己的拼图验证的情况。教师在巡视过程中,及时指导,并让学生展示自己的拼图及让学生讲解验证公式的方法,并根据不同学生的不同状况给予适当的引导,引导学生整理结论。

小结:

从这节课中你有哪些收获?

(教师应给予学生充分的时间鼓励学生畅所欲言,只要是学生的感受和想法,教师要多鼓励、多肯定。最后,教师要对学生所说的进行全面的总结。)

学生回答

a(b+c+d)=ab+ac+ad

(a+b)(c+d)=ac+ad+bc+bd

(a+b)2=a2+2ab+b2

学生拿出准备好的硬纸板制作

给学生充分的时间进行拼图、思考、交流经验,对于有困难的学生教师要给予适当引导。

作业第95页第3题

板书设计

复习例1板演

………………

………………

……例2……

………………

………………

教学后记

初中数学教案反思模板篇10

课题名称:完全平方公式(1)

一、内容简介

本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。

关键信息:

1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。

2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。

二、学习者分析:

1、在学习本课之前应具备的基本知识和技能:

①同类项的定义。

②合并同类项法则

③多项式乘以多项式法则。

2、学习者对即将学习的内容已经具备的水平:

在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。

三、教学/学习目标及其对应的课程标准:

(一)教学目标:

1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。

2、会推导完全平方公式,并能运用公式进行简单的计算。

(二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理

数、实数、代数式、防城、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、防城、不等式、函数等进行描述。

(四)解决问题:能结合具体情景发现并提出数学问题;尝试从不同

角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。

(五)情感与态度:敢于面对数学活动中的困难,并有独立克服困难

和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解;能从交流中获益。

四、教育理念和教学方式:

1、教师是学生学习的组织者、促进者、合作者:学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。

教学是师生交往、积极互动、共同发展的过程。当学生迷路的时

候,教师不轻易告诉方向,而是引导他怎样去辨明方向;当学生登山畏惧了的时候,教师不是拖着他走,而是唤起他内在的精神动力,鼓励他不断向上攀登。

2、采用“问题情景—探究交流—得出结论—强化训练”的模式

展开教学。

3、教学评价方式:

(1)通过课堂观察,关注学生在观察、总结、训练等活动中的主

动参与程度与合作交流意识,及时给与鼓励、强化、指导和矫正。

(2)通过判断和举例,给学生更多机会,在自然放松的状态下,

揭示思维过程和反馈知识与技能的掌握情况,使老师可以及时诊断学情,调查教学。

(3)通过课后访谈和作业分析,及时查漏补缺,确保达到预期的

教学效果。

五、教学媒体:多媒体六、教学和活动过程:

教学过程设计如下:

〈一〉、提出问题

[引入]同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,通过运算下列四个小题,你能总结出结果与多项式中两个单项式的关系吗?

(2m+3n)2=_______________,(-2m-3n)2=______________,

(2m-3n)2=_______________,(-2m+3n)2=_______________。

〈二〉、分析问题

1、[学生回答]分组交流、讨论

(2m+3n)2=4m2+12mn+9n2,(-2m-3n)2=4m2+12mn+9n2,

(2m-3n)2=4m2-12mn+9n2,(-2m+3n)2=4m2-12mn+9n2。

(1)原式的特点。

(2)结果的项数特点。

(3)三项系数的特点(特别是符号的特点)。

(4)三项与原多项式中两个单项式的关系。

2、[学生回答]总结完全平方公式的语言描述:

两数和的平方,等于它们平方的和,加上它们乘积的两倍;

两数差的平方,等于它们平方的和,减去它们乘积的两倍。

3、[学生回答]完全平方公式的数学表达式:

(a+b)2=a2+2ab+b2;

(a-b)2=a2-2ab+b2.

〈三〉、运用公式,解决问题

1、口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性)

(m+n)2=____________,(m-n)2=_______________,

(-m+n)2=____________,(-m-n)2=______________,

(a+3)2=______________,(-c+5)2=______________,

(-7-a)2=______________,(0.5-a)2=______________.

2、判断:

()①(a-2b)2=a2-2ab+b2

()②(2m+n)2=2m2+4mn+n2

()③(-n-3m)2=n2-6mn+9m2

()④(5a+0.2b)2=25a2+5ab+0.4b2

()⑤(5a-0.2b)2=5a2-5ab+0.04b2

()⑥(-a-2b)2=(a+2b)2

()⑦(2a-4b)2=(4a-2b)2

()⑧(-5m+n)2=(-n+5m)2

3、小试牛刀

①(x+y)2=______________;②(-y-x)2=_______________;

③(2x+3)2=_____________;④(3a-2)2=_______________;

⑤(2x+3y)2=____________;⑥(4x-5y)2=______________;

⑦(0.5m+n)2=___________;⑧(a-0.6b)2=_____________.

〈四〉、[学生小结]

你认为完全平方公式在应用过程中,需要注意那些问题?

(1)公式右边共有3项。

(2)两个平方项符号永远为正。

(3)中间项的符号由等号左边的两项符号是否相同决定。

(4)中间项是等号左边两项乘积的2倍。

〈五〉、冒险岛:

(1)(-3a+2b)2=________________________________

(2)(-7-2m)2=__________________________________

(3)(-0.5m+2n)2=_______________________________

(4)(3/5a-1/2b)2=________________________________

(5)(mn+3)2=__________________________________

(6)(a2b-0.2)2=_________________________________

(7)(2xy2-3x2y)2=_______________________________

(8)(2n3-3m3)2=________________________________

〈六〉、学生自我评价

[小结]通过本节课的学习,你有什么收获和感悟?

本节课,我们自己通过计算、分析结果,总结出了完全平方公式。在知识探索的过程中,同学们积极思考,大胆探索,团结协作共同取得了进步。

〈七〉[作业]P34随堂练习P36习题

初中数学教案反思模板篇11

教学目标:运用平方差公式和完全平方公式分解因式,能说出平方差公式和完全平方公式的特点,会用提公因式法与公式法分解因式.培养学生的观察、联想能力,进一步了解换元的思想方法.并能说出提公因式在这类因式分解中的作用,能灵活应用提公因式法、公式法分解因式以及因式分解的标准.

教学重点和难点:1.平方差公式;2.完全平方公式;3.灵活运用3种方法.

教学过程:

一、提出问题,得到新知

观察下列多项式:x24和y225

学生思考,教师总结:

(1)它们有两项,且都是两个数的平方差;(2)会联想到平方差公式.

公式逆向:a2b2=(a+b)(ab)

如果多项式是两数差的.形式,并且这两个数又都可以写成平方的形式,那么这个多项式可以运用平方差公式分解因式.

二、运用公式

例1:填空

①4a2=()2②b2=()2③0.16a4=()2

④1.21a2b2=()2⑤2x4=()2⑥5x4y2=()2

解答:①4a2=(2a)2;②b2=(b)2③0.16a4=(0.4a2)2

④1.21a2b2=(1.1ab)2⑤2x4=(x2)2⑥5x4y2=(x2y)2

例2:下列多项式能否用平方差公式进行因式分解

①1.21a2+0.01b2②4a2+625b2③16x549y4④4x236y2

解答:①1.21a2+0.01b2能用

②4a2+625b2不能用

③16x549y4不能用

④4x236y2不能用

初中数学教案反思模板篇12

一、目的要求

1、使学生初步理解一次函数与正比例函数的概念。

2、使学生能够根据实际问题中的条件,确定一次函数与正比例函数的解析式。

二、内容分析

1、初中主要是通过几种简单的函数的初步介绍来学习函数的,前面三小节,先学习函数的概念与表示法,这是为学习后面的几种具体的函数作准备的,从本节开始,将依次学习一次函数(包括正比例函数)、二次函数与反比例函数的有关知识,大体上,每种函数是按函数的解析式、图象及性质这个顺序讲述的,通过这些具体函数的学习,学生可以加深对函数意义、函数表示法的认识,并且,结合这些内容,学生还会逐步熟悉函数的知识及有关的数学思想方法在解决实际问题中的应用。

2、旧教材在讲几个具体的函数时,是按先讲正反比例函数,后讲一次、二次函数顺序编排的,这是适当照顾了学生在小学数学中学了正反比例关系的知识,注意了中小学的衔接,新教材则是安排先学习一次函数,并且,把正比例函数作为一次函数的特例予以介绍,而最后才学习反比例函数,为什么这样安排呢?第一,这样安排,比较符合学生由易到难的认识规津,从函数角度看,一次函数的解析式、图象与性质都是比较简单的,相对来说,反比例函数就要复杂一些了,特别是,反比例函数的图象是由两条曲线组成的,先学习反比例函数难度可能要大一些。第二,把正比例函数作为一次函数的特例介绍,既可以提高学习效益,又便于学生了解正比例函数与一次函数的关系,从而,可以更好地理解这两种函数的概念、图象与性质。

3、“函数及其图象”这一章的重点是一次函数的概念、图象和性质,一方面,在学生初次接触函数的有关内容时,一定要结合具体函数进行学习,因此,全章的主要内容,是侧重在具体函数的讲述上的。另一方面,在大纲规定的几种具体函数中,一次函数是最基本的,教科书对一次函数的讨论也比较全面。通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。

三、教学过程

复习提问:

1、什么是函数?

2、函数有哪几种表示方法?

3、举出几个函数的例子。

新课讲解:

可以选用提问时学生举出的例子,也可以直接采用教科书中的四个函数的例子。然后让学生观察这些例子(实际上均是一次函数的解析式),y=x,s=3t等。观察时,可以按下列问题引导学生思考:

(1)这些式子表示的是什么关系?(在学生明确这些式子表示函数关系后,可指出,这是函数。)

(2)这些函数中的自变量是什么?函数是什么?(在学生分清后,可指出,式子中等号左边的y与s是函数,等号右边是一个代数式,其中的字母x与t是自变量。)

(3)在这些函数式中,表示函数的自变量的式子,分别是关于自变量的什么式呢?(这题牵扯到有关整式的基本概念,表示函数的自变量的式子也就是等号右边的式子,都是关于自变量的一次式。)

(4)x的&39;一次式的一般形式是什么?(结合一元一次方程的有关知识,可以知道,x的一次式是kx+b(k≠0)的形式。)

由以上的层层设问,最后给出一次函数的定义。

一般地,如果y=kx+b(k,b是常数,k≠0)那么,y叫做x的一次函数。

对这个定义,要注意:

(1)x是变量,k,b是常数;

(2)k≠0(当k=0时,式子变形成y=b的形式。b是x的0次式,y=b叫做常数函数,这点,不一定向学生讲述。)

由一次函数出发,当常数b=0时,一次函数kx+b(k≠0)就成为:y=kx(k是常数,k≠0)我们把这样的函数叫正比例函数。

在讲述正比例函数时,首先,要注意适当复习小学学过的正比例关系,小学数学是这样陈述的:

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

写成式子是(一定)

需指出,小学因为没有学过负数,实际的例子都是k>0的例子,对于正比例函数,k也为负数。

其次,要注意引导学生找出一次函数与正比例函数之间的关系:正比例函数是特殊的一次函数。

课堂练习:

教科书13、4节练习第1题.

初中数学教案反思模板篇13

各位专家领导:

你们好!

今天我说课的内容是人教版七年级上册1、2、4绝对值内容。

首先,我对本节教材进行一些分析:

一、教材分析(说教材):

(一)、教材所处的地位与作用:

本节内容在全书及章节的地位是:《绝对值》是七年级数学教材上册1、2、4节内容。在此之前,学生已学习了有理数,数轴与相反数等基础内容,这为过渡到本节的学习起着铺垫作用。绝对值不仅可以使学生加深对有理数的认识,还为以后学习两个负数的比较大小以及有理数的运算作好必要的准备!所以说本讲内容在有理数这一节中,占据了一个承上启下的位置。

(二)、教育教学目标:

根据新课标的要求及七年级学生的认知水平我特制定的本节课的教学目标如下:

1、知识目标:

1)使学生了解绝对值的表示法,会计算有理数的绝对值。

2)能利用数形结合思想来理解绝对值的几何定义;理解绝对值非负的意义。

3)能利用分类讨论思想来理解绝对值的代数定义;理解字母a的任意性。

2、能力目标:

通过教学初步培养学生分析问题,解决实际问题,读图分析、收集处理信息、团结协作、语言表达的能力,以及通过师生双边活动,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力。

3、思想目标:

通过对绝对值的教学,让学生初步认识到数学知识来源于实践,引导学生从现实生活的经历与体验出发,激发学生对数学问题的兴趣,使学生了解数学知识的功能与价值,形成主动学习的态度。

(三):重点,难点以及确定的依据:

本课中绝对值的两种定义是重点,绝对值的代数定义是本课的难点,其理论依据是如何突破绝对值符号里字母a的任意性这一难点,由于学生年龄小,解决实际问题能力弱,对数学分类讨论思想理解难度大。

下面,为了讲清重难点,使学生能达到本节课设定的教学目标,我再从教法与学法上谈谈:

二、教学策略(说教法)

(一)、教学手段:

由于七年级学生的理解能力与思维特征,他们往往需要依赖直观具体形象的图形的年龄特点,以及七年级学生刚刚学习有理数中的正负数,相反数,对正负数,相反数的概念理解不一定非常深刻,许多学生容易造成知识遗忘,也为使课堂生动、有趣、高效,特将整节课以观察、思考、讨论贯穿于整个教学环节之中,采用启发式教学法与师生互动式教学模式,注意师生之间的情感交流,并教给学生“多观察、动脑想、大胆猜、勤钻研”的研讨式学习方法。

教学中积极利用多媒体课件,向学生提供更多的活动机会和空间,使学生在动脑、动手的过程中获得充足的体验与发展,从而培养学生的数形结合的思想。

为充分发挥学生的主体性与教师的主导辅助作用,教学过程中我设计了七个教学环节:

1、温故知新,激发情趣

2、得出定义,揭示内涵

3、手脑并用,深入理解

4、启发诱导,初步运用

5、反馈矫正,注重参与

6、归纳小结,强化思想

7、布置作业,引导预习

(二)、教学方法及其理论依据:

坚持“以学生为主体,以教师为主导”的原则,即“以学生活动为主,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则,根据七年级学生的心理发展规律,联系实际安排教学内容。采用学生参与程度高的学导式讨论教学法。在学生看书、讨论基础上,在教师启发引导下,运用问题解决式教学法,师生交谈法、问答法、课堂讨论法,引导学生来理解教材中的理论知识。

在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现的机会,培养其自信心,激发其学习热情。有效地开发各层次学生的潜在智能,力求使每个学生都能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践,学以致用,落实教学目标。

三:学情分析:(说学法)

1、知识掌握上,七年级学生刚刚学习有理数中的相反数,对相反数的概念理解不一定非常深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述。

2、学生学习本节课的知识障碍。学生对绝对值两种概念,不易理解,容易出错,所以教学中教师应予以简单明白、深入浅出的分析。

3、由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用多媒体课件,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

4、心理上,学生对数学课的重视与兴趣,老师应抓住这有利因素,引导学生认识到数学课的科学性,学好数学有利于其他学科的学习以及学科知识的渗透性。

最后我来具体谈一谈这一堂课的教学过程:

四、教学程序设计

(一)、温故知新,激发情趣:

首先打出第一张幻灯片复习提问:什么叫做相反数?学生回答后让大家讨论:你能找出互为相反数的两个数在数轴上表示的点的共同特点吗?学生会积极回答第一个问题,但第二个问题学生可能难以准确回答,于是打出第二张幻灯片引导学生仔细观察,认真思考。从而引出课题:绝对值。结合实例使学生以轻松愉快的心情进入了本节课的学习,也使学生体会到数学来源于实践,同时对新知识的学习有了期待,为顺利完成教学任务作了思想上的准备。

(二)、得出定义,揭示内涵:

由于学生是第一次接触绝对值这样比较深奥的数学名词,所以我利用数轴在第三张幻灯片里直接给出绝对值的几何定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,(absolutevalue)这个定义学生接受起来比较容易。

给出定义后引导学生讨论:“定义里的数a可以表示什么样的数?

(通过教师亲切的语言启发学生,以培养师生间的默契)通过讨论由师生共同得到绝对值定义里的数a可以是正数,负数和0。

然后再回到第一张幻灯片里提出的问题:互为相反数的两个数的绝对值有什么关系?

(三)、手脑并用,深入理解:

1、在上一环节与学生一起理解了绝对值的定义后,我再提出问题:如何由文字语言向数学符号语言的转化,即如何简单地标记绝对值,而不用汉字?在此不用提问学生,采取自问自答形式给出绝对值的记法。

2、为进一步强化概念,在对绝对值有了正确认识的基础上,请学生做教材的课堂练习第一题,写出一些数的绝对值。可以请学生起立回答。我就学生的回答情况给出评价,如“非常好”“非常规范”“老师相信你,你一定行”等语言来激励学生,以促进学生的发展;并再次强调绝对值的定义。

3、在完成第一题的练习后,我又给出一新的幻灯片,并提出问题:议一议一个数的绝对值与这个数有什么关系?启发学生举一些实际的例子来发现规律,并总结规律。从而引出绝对值的第二个定义。

(四)、启发诱导,初步运用:

有了绝对值的两个定义后,我安排了10道不同层次的判断题让学生思考。特别注重对于不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现的机会,培养其自信心,激发其学习热情。

(五)、反馈矫正,注重参与:

为巩固本节的教学重点我再次给出三道问题:

1)绝对值是7的数有几个?各是什么?有没有绝对值是-2的数?

2)绝对值是0的数有几个?各是什么?

3)绝对值小于3的整数一共有多少个?

先让学生通过小组讨论得出结果,通过以上练习使学生在掌握知识的基础上达到灵活运用,形成一定的能力。

视学生的反馈情况以及剩余时间的多少我还预备了五道课堂升华的思考题,再次强化训练,启发学生的思维。

(六)、归纳小结,强化思想:

(七)、布置作业,引导预习:

1、全体学生必做课本习题1、23,4,5,10。

2、选作两道思考题:

(1)求绝对值不大于2的整数;(2)已知x是整数,且2、5<x<7,求x、

总之,在教学过程中,我始终注意发挥学生的主体作用,让学生通过自主、探究、合作学习来主动发现结论,实现师生互动,通过这样的教学实践取得了良好的教学效果,我认识到教师不仅要教给学生知识,更要培养学生良好的数学素养和学习习惯,让学生学会学习,才能使自己真正成为一名受学生欢迎的好教师。

以上是我对本节课的设想,不足之处请老师们多多批评、指正,谢谢!

初中数学教案反思模板篇14

第6.4因式分解的简单应用

背景材料:

因式分解是初中数学中的一个重点内容,也是一项重要的基本技能和基础知识,更是一种数学的变形方法,在今后的学习中有着重要的作用。因此,除了单纯的因式分解问题外,因式分解在解某些数学问题中有着广泛的作用,因式分解在三角形中的应用,因式分解可以用来证明代数问题,用于代数式的求值,用于求不定方程,用于解应用题解决有关复杂数值的计算,本节课的例题因式分解在数学题中的简单应用。

教材分析:

本节课是本章的最后一节,是学生学习因式分解初步应用,首先要使学生体会到因式分解在数学中应用,其次给学生提供更多机会体验主动学习和探索的“过程”与“经历”,使多数学里拥有一定问题解决的.经验。

教学目标:

1、在整除的情况下,会应用因式分解,进行多项式相除。

2、会应用因式分解解简单的一元二次方程。

3、体验数学问题中的矛盾转化思想。

4、培养观察和动手能力,自主探索与合作交流能力。

教学重点:

学会应用因式分解进行多项式除法和解简单一元二次方程。

教学难点:

应用因式分解解简单的一元二次方程。

设计理念:

根据本节课的内容特点,主要采用师生合作控讨式课堂教学方法,以教师为主导,学生为主体,动手实践训练为主线,创新思维为核心,态度情感能力为目标,引导学生自主探索,动手实践,合作交流。注重使学生经办观察、操作、推理等探索过程。这种教学理念,反映了时代精神,有利于提高学生的数学素养,能有效地激发学生的思维积极性,学生在学习过程中调动各种感官,进行观察与抽象、操作与思考、自主与交流等,进而改进学生的学习方法。

教学过程:

一、创设情境,复习提问

1、将正式各式因式分解

(1)(a+b)2-10(a+b)+25(2)-xy+2x2y+x3y

(3)2a2b-8a2b(4)4x2-9

[四位同学到黑板上演板,本课时用复习“练习引入”也不失为一种好方法,既先复习因式分解的提取分因式和公式法,又为下面解决多项式除法运算作铺垫]

教师订正

提出问题:怎样计算(2a2b-8a2b)÷(4a-b)

二、导入新课,探索新知

(先让学生思考上面所提出的问题,教师从旁启发)

师:如果出现竖式计算,教师可以给予肯定;可能出现(2a2b-8a2b)÷(4a-b)=ab-8a2追问学生怎么得来的,运算的依据是什么?这样暴露学生的思维,让学生自己发现错误之处;观察2a2b-8a2b=2ab(b-4a),其中一个因式正好是除式4a-b的相反数,如果用“换元”思想,我们就可以把问题转化为单项式除以单项式。

(2a2b-8a2b)÷(4a-b)

=-2ab(4a-b)÷(4a-b)

=-2ab

(让学生自己比较哪种方法好)

利用上面的数学解题思路,同学们尝试计算

(4x2-9)÷(3-2x)

学生总结解题步骤:1、因式分解;2、约去公因式)

(全体学生动手动脑,然后叫学生回答,及时表扬,讲练结合,[运用多项式的因式分解和换元的思想,可以把两个多项式相除,转化为单项式的除法]

练习计算

(1)(a2-4)÷(a+2)

(2)(x2+2xy+y2)÷(x+y)

(3)[(a-b)2+2(b-a)]÷(a-b)

三、合作学习

1、以四人为一组讨论下列问题

若A?B=0,下面两个结论对吗?

(1)A和B同时都为零,即A=0且B=0

(2)A和B至少有一个为零即A=0或B=0

[合作学习,四个小组讨论,教师逐步引导,让学生讲自己的想法,及解题步骤,培养语言表达能力,体会运用因式分解的实际运用作用,增加学习兴趣]

2、你能用上面的结论解方程

(1)(2x+3)(2x-3)=0(2)2x2+x=0

解:

∵(2x+3)(2x-3)=0

∴2x+3=0或2x-3=0

∴方程的解为x=-3/2或x=3/2

解:x(2x+1)=0

则x=0或2x+1=0

∴原方程的解是x1=0,x2=-1/2

[让学生先独立完成,再组织交流,最后教师针对性地讲解,让学生总结步骤:1、移项,使方程一边变形为零;2、等式左边因式分解;3、转化为解一元一次方程]

3、练习,解下列方程

(1)x2-2x=04x2=(x-1)2

四、小结

(1)应用因式分解和换元思想可以把某些多项式除法转化为单项式除法。

(2)如果方程的等号一边是零,另一边含有未知数x的多项式可以分解成若干个x的一次式的积,那么就可以应用因式分解把原方程转化成几个一元一次方程来解。

设计理念:

根据本节课的内容特点,主要采用师生合作讨论式课堂教学方法,以教师为主导,学生为主体,动手实践训练为主线,创新思维为核心,态度情感能力为目标,引导学生自主探索,动手实践,合作交流。注重使学生经办观察、操作、推理等探索过程。这种教学理念,反映了时代精神,有利于提高学生的数学素养,能有效地激发学生的思维积极性,学生在学习过程中调动各种感官,进行观察与抽象、操作与思考、自主与交流等,进而改进学生的学习方法。

初中数学教案反思模板篇15

相反数

一、学习目标

1了解相反数的概念。

2给一个数,能求出它的相反数。

3根据a的相反数是-a,能把多重符号化成单一符号。

二、教学过程

师:请同学们画一条数轴,在数轴上找出表示+6和-6的点,看一看表示这两个数的点有什么特点,这两个数本身有什么特点。先独立思考,然后在小组里交流。

生:人人动用手画数轴,独立思考后,在小组内进行交流。

师:深入了解各小组的交流情况,讨论结束后,提问1、2人,帮助全班同学理清思考问题的思路。

师:请同学们阅读课本,知道什么叫相反数,给出一个数能求出它的相反数。

生:阅读课本第59页,并完成练习一第(1)~(4)题。

师:提问检查学生的学习情况,强调“0的相反数是0”也是相反数定义的`一部分。

师:请同学们先想一想,a可以表示一个什么数,a与-a有什么关系。然后阅读课本第60页,并完成剩余的练习题,由小组长负责检查练习情况。

师:认真了解各小组的学习情况,特别是对简化符号的题和学习困难的学生,要重点对待。

生:认真思考,阅读课本,完成练习。小组长、教师对学习困难生及时进行辅导。

师:请同学们先小结一下本节课的学习内容。然后,看一看习题2.3中,哪些题你能不动笔说出结果,请在四人小组里互相说一说。(除A组第2题外都可以直接说出结果)

生:小结。完成习题1.3中的有关练习。

练习

1在下列各式中分别填上适当的符号,使等号左右两端的数相等;

-(+19)=____________19;

____________10.2=+(+10.2);

____________(+12)=-12;

____________(-25)=+25。

2把下面的多重符号化成单一符号:

-[-(-0.3)]=____________;

-[-(+4)]=____________;

+[+(+5)]=____________;

-[+(-50)]=____________。

3根据a+(-a)=0,那么(-8)+x=0可得x=________________________;由y+(+3.75)=0,可得y=____________。

4下面的说法对不对?请举列说明。

(1)一个有理数的相反数的相反数就是这个有理数本身。

(2)一个有理数的相反数一定比原来的有理数小。

(3)-a是一个负数。

作业

在数轴上记出2,-4.5,0各数与它们的相反数,并指出表示这些数的点离开原点的距离是多少。

45362