初中最新数学教案
教案通过明确教学目标、确定教学内容和教学方法,为教师提供了全面而系统的指导。如何写出优秀的初中最新数学教案?下面给大家分享一些初中最新数学教案,希望对大家有所帮助。
初中最新数学教案篇1
教材分析
立体图形的翻折问题是高二《代数》(下)中立体几何的一个学习内容,它融会贯通于各种立体几何和几何体中,对学生进一步理解立体图形起着至关重要的作用。立体图形的翻折是从学生生活周围熟悉的物体入手,使学生进一步认识立体图形于平面图形的关系;不仅要让学生了解几何体可由平面图形折叠而成,更重要的是让学生通过观察、思考和自己动手操作、经历和体验图形的变化过程,使学生了解研究立体图形的方法。
教学重点
了解平面图形于折叠后的立体图形之间的关系,找到变化过程中的不变量。
教学难点
转化思想的运用及发散思维的培养。
学生分析
学生在前面已经对一些简单几何体有了一定的认识,对于求解空间角及空间距离已具备了一定的能力,并且在班级中已初步形成合作交流,敢于探索与实践的良好习惯。学生间相互评价、相互提问的互动的气氛较浓。
设计理念
根据教育课程改革的具体目标,结合“注重开放与生成,构建充满生命活力的课堂教学运行体系”的要求,改变课程过于注重知识传授的倾向,强调形成积极生动的学习态度,关注学生的学习兴趣和经验,实施开放式教学,让学生主动参与学习活动,并引导学生在课堂活动中感悟知识的生成、发展与变化。
教学目标
1、使学生掌握翻折问题的解题方法,并会初步应用。
2、培养学生的动手实践能力。在实践过程中,使学生提高对立体图形的分析能力,并在设疑的同时培养学生的发散思维。
3、通过平面图形与折叠后的立体图形的对比,向学生渗透事物间的变化与联系观点,在解题过程中,使学生理解,将立体图形中的问题化归到平面图形中去解决的`转化思想。
教学流程
一、创设问题情境,引导学生观察、设想、导入课题。
1、如图(图略),是一个正方体的展开图,在原正方体中,有下列命题
(1)AB与EF所在直线平行
(2)AB与CD所在直线异面
(3)MN与EF所在直线成60度
(4)MN与CD所在直线互相垂直其中正确命题的序号是
2、引入课题----翻折
二、学生通过直观感知、操作确认等实践活动,加强对图形的认识和感受(引导学生在解题的过程中如何突破难点,从而体现在平面图形中求解一些不变量对于解空间问题的重要性)。
1、给学生一个展示自我的空间和舞台,让学生自己讲解。教师根据学生的讲解进一步提出问题。
(1)线段AE与EF的夹角为什么不是60度呢?
(2)AE与FG所成角呢?
(3)AE与GC所成角呢?
(4)在此正四棱柱上若有一小虫从A点爬到C点最短路径是什么?经过各面呢?
(通过对发散问题的提出培养学生的培养精神及转化的教学思想方法,让学生体会折叠图与展开图的不同应用。)
2、让学生观察电脑演示折叠过程后,再亲自动手折叠,针对问题做出回答。
(1)E、F分别处于G1G2、G2G3的什么位置?
(2)选择哪种摆放方式更利于求解体积呢?
(3)如何求G点到面PEF的距离呢?
(4)PG与面PEF所成角呢?
(5)面GEF与面PEF所成角呢?
(学生会发现这几个问题可在同一个直角三角形中找到答案,然后让学生在折纸中找到这个三角形的位置,既而发现折叠过程中的不变量。)
3、演示MN的运动过程,让学生观察分析解题过程强调证PN垂直AB的困难性。与学生共同品位解出这道2002高考题的喜悦的同时,引导学生用上题的思路能否更快捷地解出此题呢?
(学生大胆想象,并通过模型制作确认想象结果的正确性,从而开辟一条简捷的翻折思想解题思路。)
三、小结
1、画平面图,并折前图与折后图中的字母尽量保持一致。
2、寻找立体图形中的不变量到平面图形中求解是关键。
3、注意培养转化思想和发散思维。
(通过提问方式引导学生小结本节主要知识及学习活动,养成学习、总结、学习的良好学习习惯,发散自我评价的作用,培养学生的语言表达能力。)
四、课外活动
1、完成课上未解决的问题。
2、对与1题折成正三棱柱结果会怎样?对于2题改变E、F两点位置剪成正三棱柱呢?
(通过课外活动学习本节知识内容,培养学生的发散思维。)
课后反思
本课设计中,有梯度性的先安排三个小题,让学生经历先动手、思考、预习这一学习过程,然后在课堂上给学生一个充分展示自我的空间,并且适时发问的同时帮助学生找到解决方法。归纳总结解翻折问题的技巧和作为解题方法的优越性。在实施开放式教学的过程中,注重引导学生在课堂活动过程中感悟知识的生成、发展与变化,培养学生主动探索、敢于实践、善于发现的科学精神以及合作交流的精神和创新意识,将创新的教材、创新的教法与创新的课堂环境有机地结合起来,将学生自主学习与创新意识的培养落到实处。
初中最新数学教案篇2
一、教材分析
1、教材的地位和作用
本节教材是初中数学____年级册的内容,是初中数学的重要内容之一。一方面,这是在学习了____的基础上,对____的进一步深入和拓展;另一方面,又为学习-__X等知识奠定了基础,是进一步研究____的工具性内容。因此本节课在教材中具有承上启下的作用。
2、学情分析
学生在此之前已经学习了____,对____已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于____的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。
3、教学重难点
根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:
难点确定为:__
二、教学目标分析
根据新课标的教学理念,培养学生的数学素养和终身学习的能力,我确立了如下的三维目标:
1.知识与技能目标:
2.过程与方法目标:
3.情感态度与价值目标:
三、教学方法分析
本节课我将采用启发式、讨论式结合的教学方法,以问题的提出、问题的解决为主线,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。
另外,在教学过程中,采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。
四、教学过程分析
为有序、有效地进行教学,本节课我主要安排以下教学环节:
(1)复习就知,温故知新
设计意图:建构主义主张教学应从学生已有的知识体系出发,____是本节课深入研究____的认知基础,这样设计有利于引导学生顺利地进入学习情境。
(2)创设情境,提出问题
设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望。
通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节———
(3)发现问题,探求新知
设计意图:现代数学教学论指出,教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过观察分析、独立思考、小组交流等活动,引导学生归纳。
(4)分析思考,加深理解
设计意图:数学教学论指出,数学概念(定理等)要明确其内涵和外延(条件、结论、应用范围等),通过对定义的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。
通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第____环节。
(5)强化训练,巩固双基
设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,其中例1……例2……,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。
(6)小结归纳,拓展深化
小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体地位,让学生畅谈本节课的收获.
(7)当堂检测对比反馈
(8)布置作业,提高升华
以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。
以上是我对本节课的见解,不足之处敬请各位评委谅解!
初中最新数学教案篇3
一、教材分析
1、教材的地位和作用
本课位于人民教育出版社义务教育课程标准实验教科书七年级下册第五章第二节第一课时。主要内容是让学生在充分感性认识的基础上体会平行线的三种判定方法,它是空间与图形领域的基础知识,是《相交线与平行线》的重点,学习它会为后面的学行线性质、三角形、四边形等知识打下坚实的“基石”。同时,本节学习将为加深“角与平行线”的认识,建立空间观念,发展思维,并能让学生在活动的过程中交流分享探索的成果,体验成功的乐趣,提高运用数学的能力。
2、教学重难点
重 点 三种位置关系的角的特征;会根据三种位置关系的角来判断两直线平行的方法。
难 点 “转化”的数学思想的培养。
由“说点儿理”到“用符号表示推理”的逐层加深。
二、教学目标
知识目标 了解同位角、内错角、同旁内角等角的特征,认识“直线平行”的三个充分条件及在实际生活中的应用。
能力目标 ①通过观察、思考探索等活动归纳出三种判定方法,培养学生转化的数学思想,培养学生动手、分析、解决实际问题的能力。
②通过活动及实际问题的研究引导学生从数学角度发现和提出问题,并用数学方法探索、研究和解决问题。
情感目标 ①感受数学与生活的紧密联系,体会数学的价值,激发学生学习数学的兴趣,培养敢想、敢说、敢解决实际问题的学习习惯。
通过学生体验、猜想并证明,让学生体会数学充满着探索和创造,培养学生团结协作,勇于创新的精神。
②通过“转化”数学思想方法的运用,让学生认识事物之间是普遍联系,相互转化的辩证唯物主义思想。
三、教学方法
1、采用指导探究法进行教学,主要通过二个师生双边活动:①动——师生互动,共同探索。②导——知识类比,合理引导等突出学生主体地位,让教师成为学生学习的组织者、引导者、合作者,让学生亲自动手、动脑、动口参与数学活动,经历问题的发生、发展和解决过程,在解决问题的过程中完成教学目标。
2、根据学生实际情况,整堂课围绕“情景问题——学生体验——合作交流”模式,鼓励学生积极合作,充分交流,既满足了学生对新知识的强烈探索欲望,又排除学生学习几何方法的缺乏,和学无所用的思想顾虑。对学习有困难的学生及时给予帮助,让他们在学习的过程中获得愉快和进步。
3、利用课件辅助教学,突破教学重难点,扩大学生知识面,使每个学生稳步提高。
四、教学流程:
我的教学流程设计是:从创设情境,孕育新知开始,经历探索新知,构建模式;解释新知,落实新知;总结新知,布置作业等过程来完成教学。
创设情境,孕育新知:
①师生欣赏三幅图片,让学生观察、思考从几何图形上看有什么共同点。
②从学生经历过的事入手,让学生比较两张奖状粘贴的好坏,并说明理由,让学生留心实际生活,欣赏木工画平行线的方法。
③落实到学生是否会画平行线?本环节教师展示图片,学生观察思考,交流回答问题,了解实际生活中平行线的广泛应用。
设计意图:通过图片和动画展示,贴近学生生活,激发学生的学习兴趣。从学生经历过的事入手。让学生知道数学知识无处不在,应用数学无时不有。符合“数学教学应从生活经验出发”的新课程标准要求。
2、实验操作,探索新知1
①由学生是否会画平行线导入,用小学学过的方法过点P画直线AB的平行线CD,学生动手画并展示。
②学生思考三角尺起什么作用(教师点拨)?
③学生动手操作:用学具塑料条摆两条平行线被第三条直线所截的模型,并探讨图中角的关系(同位角)。
④教师把学生画平行线的过程和塑料条模型抽象成几何图形,指明同位角的位置关系是截线,被截线的同旁,
归纳:两直线平行条件1
教师展示一组练习,学生独立完成,巩固新知。
在这一环节中,教师应关注:
①学生能否画平行线,动手操作是否准确
②学生能否独立探究、参与、合作、交流
设计意图:复习提问,利用教具、学具让学生动手,提高学生学习兴趣,调动学生思考和积极性,提高学生合作交流的能力和质量,教师有的放矢,让学生掌握重点,培养学生自主探究的学习习惯和能力。及时练习巩固,,体现学以致用的观念,消除学生学无所用的思想顾虑。
3、大胆猜想,探究新知
⑴学生分组讨论:
①∠2和∠3是什么位置关系?
∠3和∠4是什么位置关系?
②直线CD绕O旋转是否还保持上述位置关系?
③∠2与∠3,∠2与∠4一定相等吗?猜想,展示讨论成果。
⑵学生探究:
问题:①∠2=∠3能得到AB∥CD吗?
②∠2+∠4=180可以判定AB∥CD吗?
学生用语言表述推理过程,教师深入学生中并点拨将未知的转化为已知,并规范推理过程。和学生一起归纳直线平行的条件2,3。
⑶学生独立完成练习。
本环节教师关注:
①学生能否主动参与数学活动,敢于发表个人观点。
②小组团结协作程度,创新意识。
③表扬优秀小组
设计意图:猜想、交流、归纳,符合知识的形成过程,培养学生转化的数学思想,学会将陌生的转化为熟悉的,将未知的转化为已知的。并用练习及时巩固,落实新知与方法,增强学生运用数学的能力。
4、解释运用,巩固新知
本环节共有五个练习,第一题落实同位角、内错角、同旁内角位置特征。第二、三题落实三种判定方法的应用。第四、五题是注重学生动手操作,解决实际问题的训练。
本环节教师应关注:
①深入学生当中,对学习有困难学生进行鼓励,帮助。
②学生的思维角度是否合理。
设计意图:加强学生运用新知的意识,培养学生解决实际问题的能力和学习数学的兴趣,让学生巩固所学内容,并进行自我评价,既面向全体学生,又照顾个别学有余力的学生,体现因材施教的原则。
5、总结新知,布置作业
通过设问回答补充的方式小结,学生自主回答三个问题,教师关注全体学生对本节课知识的程度,学生是否愿意表达自己的观点,采用必做题和选做题的方式布置作业。
设计意图:通过提问方式引导学生进行小结,养成学习——总结——再学习的良好习惯,发挥自我评价作用,同时可培养学生的语言表达能力。作业分层要求,做到面向全体学生,给基础好的学生充分的空间,满足他们的求知欲。
五、教学设计
初中最新数学教案篇4
学习目标:
1、能借助数轴初步理解绝对值的概念,会求一个数的绝对值。
2、正确理解绝对值的代数意义和几何意义,渗透数形结合与分类讨论思想。重点和难点:理解绝对值的概念,能求一个数的绝对值。
学习过程:
任务一、复习旧知:
1、什么叫互为相反数?在数轴上表示互为相反数的两点和原点的位置关系怎样?
2、数轴上与原点的距离是2的点表示的数有_____个,他们表示的数是_____;与原点的距离是5的点有____个、任务二、新知理解:
1、自读课本p11-p12,体会绝对值的意义。
绝对值的几何意义:____________________________________、
a的绝对值记作_______,如5的绝对值记作______,结果是_____、
试一试:(1)+6=______,0、2=________,+8、2=_______
(2)0=_______;
(3)-3=_____,-0、2=_____,-8、2=________、
绝对值的代数意义:(1)一个正数的绝对值是__________;
(2)一个负数的绝对值是___________(3)0的绝对值是___________。
上述可以用式子表示为:(1)当a是正数时,a=_______,
(2)当a是负数时,a=_______,(2)当a=0时,a=________,
任务三:巩固练习
1、求下列各数的绝对值:?7
12,?
110
,?4、75,10、5
2.计算-2++834??815
-20??45
3、绝对值是3的数是_______,有____个绝对值是1、5的数?4、判断:(1)有理数的绝对值一定是正数;
(2)如果一个数是正数,那么这个数的绝对值是它本身;(3)如果一个数的绝对值是它本身,那么这个数是正数(4)一个数的绝对值越大,表示它的点在数轴上越靠右。归纳:(1)不论有理数a取何值,它的绝对值总是______。
(2)两个互为相反数的绝对值____。能力提升:
(1)-35、6=________;a=_____(a<0);若x=5,则x=______(2)绝对值小于4的整数有________;绝对值大于2小于5的整数有________;
(3)绝对值等于本身的数是_______,绝对值等于它的相反数的数是_________,绝对值最小的有理数是_______、(
4)若a-2=3,则a=______
归纳总结:
略
初中最新数学教案篇5
教学目的
1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。
2.使学生会列一元一次方程解决一些简单的应用题。
3.会判断一个数是不是某个方程的解。
重点、难点
1.重点:会列一元一次方程解决一些简单的应用题。
2.难点:弄清题意,找出“相等关系”。
教学过程
一、复习提问
一本笔记本1.2元。小红有6元钱,那么她最多能买到几本这样的笔记本呢?
解:设小红能买到工本笔记本,那么根据题意,得
1.2x=6
因为1.2×5=6,所以小红能买到5本笔记本。
二、新授:
问题1:某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆?(让学生思考后,回答,教师再作讲评)
算术法:(328-64)÷44=264÷44=6(辆)
列方程:设需要租用x辆客车,可得。
44x+64=328(1)
解这个方程,就能得到所求的结果。
问:你会解这个方程吗?试试看?
问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”
通过分析,列出方程:13+x=(45+x)
问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?
把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,
因为左边=右边,所以x=3就是这个方程的解。
这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。
问:若把例2中的“三分之一”改为“二分之一”,那么答案是多少?动手试一试,大家发现了什么问题?
同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?
三、巩固练习
教科书第3页练习1、2。
四、小结。
本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。
五、作业。
教科书第3页,习题6.1第1、3题。
初中最新数学教案篇6
一、教材的地位与作用
《二元一次方程》是九年义务教育人教版教材七年级下册第四章《二元一次方程组》的第一节。在此之前学生已经学习了一元一次方程,这为本节的学习起了铺垫的作用。本节内容是二元一次方程的起始部分,因此,在本章的教学中,起着承上启下的地位。
二、教学目标
(一)知识与技能:
1.了解二元一次方程概念;
2.了解二元一次方程的解的概念和解的不唯一性;
3.会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。
(二)数学思考:
体会学习二元一次方程的必要性,学会独立思考,体会数学的转化思想和主元思想。
(三)问题解决:
初步学会利用二元一次方程来解决实际问题,感受二元一次方程解的不唯一性。获得求二元一次方程解的思路方法。
(四)情感态度:
培养学生发现意识和能力,使其具有强烈的好奇心和求知欲。
三、教学重点与难点
教学重点:二元一次方程及其解的概念。
教学难点:二元一次方程的概念里“含未知数的项的次数”的理解;把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。
四、教法与学法分析
教法:情境教学法、比较教学法、阅读教学法。
学法:阅读、比较、探究的学习方式。
五、教学过程
1.创设情境,引入新课
从学生熟悉的姚明受伤事件引入。
师:火箭队最近取得了20连胜,姚明参加了前面的12场比赛,是球队的顶梁柱。
(1)连胜的第12场,火箭对公牛,在这场比赛中,姚明得了12分,其中罚球得了2分,你知道姚明投中了几个两分球?(本场比赛姚明没投中三分球)师:能用方程解决吗?列出来的方程是什么方程?
(2)连胜的第1场,火箭对勇士,在这场比赛中,姚明得了36分,你知道姚明投中了几个两分球,罚进了几个球吗?(罚进1球得1分,本场比赛姚明没投中三分球)师:这个问题能用一元一次方程解决吗?,你能列出方程吗?
设姚明投进了x个两分球,罚进了y个球,可列出方程。
(3)在雄鹿队与火箭队的比赛中易建联全场总共得了19分,其中罚球得了3分。你知道他分别投进几个两分球、几个三分球吗?
设易建联投进了x个两分球,y个三分球,可列出方程。
师:对于所列出来的三个方程,后面两个你觉的是一元一次方程吗?那这两个方程有什么相同点吗?你能给它们命一个名称吗?
从而揭示课题。
(设计意图:第一个问题主要是让学生体会一元一次方程是解决实际问题的数学模型,从而回顾一元一次方程的概念;第二、三问题设置的主要目的是让学生体会到当实际问题不能用一元一次方程来解决的时候,我们可以试着列出二元一次方程,渗透方程模型的通用性。另外,数学来源于生活,又应用于生活,通过创设轻松的问题情境,点燃学习新知识的“导火索”,引起学生的学习兴趣,以“我要学”的主人翁姿态投入学习,而且“会学”“乐学”。)
2.探索交流,汲取新知
概念思辨,归纳二元一次方程的特征
师:那到底什么叫二元一次方程?(学生思考后回答)
师:翻开书本,请同学们把这个概念划起来,想一想,你觉得和我们自己归纳出来的概念有什么区别吗?(同学们思考后回答)
师:根据概念,你觉得二元一次方程应具备哪几个特征?
活动:你自己构造一个二元一次方程。
快速判断:下列式子中哪些是二元一次方程?
①x2+y=0②y=2x+
4③2x+1=2x④ab+b=4
(设计意图:这一环节是本课设计的重点,为加深学生对“含有未知数的项的次数”的内涵的理解,我采取的是阅读书本中二元一次方程的概念,形成学生的认知冲突,激发学生对“项的次数”的.思考,进而完善学生对二元一次方程概念的理解,通过学生自己举例子的活动去把“项的次数”形象化。)
二元一次方程解的概念
师:前面列的两个方程2x+y=36,2x+3y=16真的是二元一次方程吗?通过方程2x+3y=16,你知道易建联可能投中几个两分球,几个三分球吗?
师:你是怎么考虑的?(让学生说说他是如何得到x和y的值的,怎么证明自己的这对未知数的取值是对的)利用一个学生合理的解释,引导学生类比一元一次方程的解的概念,让学生归纳出二元一次方程的解的概念及其记法。(学生看书本上的记法)
使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的一个解。(设计意图:通过引导学生自主取值,猜x和y的值,从而更深刻的体会二元一次方程解的本质:使方程左右两边相等的一对未知数的取值。引导学生看书本,目的是让学生在记法上体会“一对未知数的取值”的真正含义。)
二元一次方程解的不唯一性
对于2x+3y=16,你觉得这个方程还有其它的解吗?你能试着写几个吗?师:这些解你们是如何算出来的?
(设计意图:设计此环节,目的有三个:首先,是让学生学会如何检验一对未知数的取值是二元一次方程的解;其次是让学生体会到二元一次方程的解的不唯一性;最后让学生感受如何得到一个正确的解:只要取定一个未知数的取值,就可以代入方程算出另一个未知数的值,这也就是求二元一次方程的解的方法。)如何去求二元一次方程的解
例:已知方程3x+2y=10,
(1)当x=2时,求所对应的y的值;
(2)取一个你自己喜欢的数作为x的值,求所对应的y的值;
(3)用含x的代数式表示y;
(4)用含y的代数式表示x;
(5)当x=负2,0时,所对应的y的值是多少?
(6)写出方程3x+2y=10的三个解.
(设计意图:此处设计主要是想让学生形成求二元一次方程的解的一般方法,先让学生展示他们的思维过程,再从他们解一元一次方程的重复步骤中提炼出用一个未知数的代数式表示另一个未知数,然后把它与原方程比较,把一个未知数的值代入哪一个方程计算会更简单,形成“正迁移”,引导学生体会“用关于一个未知数的代数式表示另一个未知数”的过程,实质是解一个关于y的一元一次方程,渗透数学的主元思想。以此突破本节课的难点。)
大显身手:
课内练习第2题
梳理知识,课堂升华
本节课你有收获吗?能和大家说说你的感想吗?3.作业布置
必做题:书本作业题1、2、3、4。
选做题:书本作业题5、6。
设计说明
本节授课内容属于概念课教学。数学学科的内容有其固有的组成规律和逻辑结构,它总是由一些最基本的数学概念作为核心和逻辑起点,形成系统的数学知识,所以数学概念是数学课程的核心。只有真正理解数学概念,才能理解数学。二元一次方程作为初中阶段接触的第二类方程,形成概念并不难,关键如何理解它的概念,因此本节课采用先让同学自己试着下定义,然后与教材中的完整定义相互比较,发现不同点,进而理解“含有未知数的项的次数都是一次”这句话的内涵。在二元一次方程的解的教学过程中,采用的是让学生体会“一个解、不止一个解、无数个解”的渐进过程,感受到用一个二元一次方程并不能求出一对确定的未知数的取值,从而让学生产生有后续学习的愿望。
在讲授用含一个未知数的代数式表示另一个未知数的时候,采用“特殊、一般、特殊”的教学流程,以期突破难点。首先抛出问题“这几个解你是如何求的”,
此时注意的聚焦点是二元一次方程;其次学生归纳先定一个未知数的取值,代入原方程求另一个未知数的值,此时注意的聚焦点是一元一次方程;然后教师引导回到二元一次方程,假如x是一个常数,那么这个方程可以看成是一个关于谁的一元一次方程,此时注意的聚焦点是原来的二元一次方程;最后代入求值,此时注意的聚焦点是等号右边的那个算式,体会“用含一个未知数的代数式表示另一个未知数”在求值过程中的简洁性,强化这种代数形式。另外,在引导学生推导“用含一个未知数的代数式表示另一个未知数”的过程中,渗透数学的主元思想和转化思想。
初中最新数学教案篇7
教学目标
1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;
2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系;
3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;
4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。
教学建议
1.知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出代数式的概念。
2.教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。运用算术的方法解决问题,是小学学生的思维方法,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。对代数式的概念课文没有直接给出,而是用实例形象地说明了代数式的概念。对代数式的概念可以从三个方面去理解:
(1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性.
(2)代数式中并不要求数和表示数的字母同时出现,单独的一个数和字母也是代数式.如:2,m都是代数式.
等都不是代数式.
3.教学难点分析:能正确说出一个代数式的数量关系,即用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序。用语言表达代数式的意义,具体说法没有统一规定,以简明而不引起误会为出发点。
如:说出代数式7(a-3)的意义。
分析7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。代数式7(a-3)的最后运算是积,应把a-3作为一个整体。所以,7(a-3)的意义是7与(a-3)的积。
4.书写代数式的注意事项:
(1)代数式中数字与字母或者字母与字母相乘时,通常把乘号简写作“·”或省略不写,同时要求数字应写在字母前面.
如3×a,应写作3.a或写作3a,a×b应写作3.a或写作ab.带分数与字母相乘,应把带分数化成假分数,
FormatImgID_0
.数字与数字相乘一般仍用“×”号.
(2)代数式中有除法运算时,一般按照分数的写法来写.
(3)含有加减运算的代数式需注明单位时,一定要把整个式子括起来.
5.对本节例题的分析:
例1是用代数式表示几个比较简单的数量关系,这些小学都学过.比较复杂一些的数量关系的代数式表示,课文安排在下一节中专门介绍.
例2是说出一些比较简单的`代数式的意义.因为代数式中用字母表示数,所以把字母也看成数,一种特殊的数,就可以像看待原来比较熟悉的数式一样,说出一个代数式所表示的数量关系,只是另外还要考虑乘号可能省略等新规定而已.
6.教法建议
(1)因为这一章知识大部分在小学学习过,讲授新课之前要先复习小学学过的运算律,在学生原有的认知结构上,提出新的问题。这样即复习了旧知识,又引出了新知识,能激发学生的学习兴趣。在教学中,一定要注意发挥本章承上启下的作用,搞好小学数学与初中代数的衔接,使学生有一个良好的开端。
(2)在本节的学习过程中,要使学生理解代数式的概念,首先要给学生多举例子(学生比较熟悉、贴近现实生活的例子),使学生从感性上认识什么是代数式,理清代数式中的运算和运算顺序,才能正确说出一个代数式所表示的数量关系,从而认识字母表示数的意义——普遍性、简明性,也为列代数式做准备。
(3)条件比较好的学校,老师可选用一些多媒体课件,激发学生的学习兴趣,增强学生自主学习的能力。
(4)老师在讲解第一节之前,一定要对全章内容和课时安排有一个了解,注意前后知识的衔接,只有这样,我们老师才能教给学生系统的而不是一些零散的知识,久而久之,学生头脑中自然会形成一个完整的知识体系。
(5)因为是新学期代数的第一节课,老师一定要给学生一个好印象,好的开端等于成功了一半。那么,怎么才能给学生留下好印象呢?首先,你要尽量在学生面前展示自己的才华。比,英语口语好的老师,可以用英语做一个自我介绍,然后为学生说一段祝福语。第二,上课时尽量使用多种语言与学生交流,其中包括情感语言(眉目语言、手势语言等),让学生感受到老师对他的关心。
7.教学重点、难点:
重点:用字母表示数的意义
难点:学会用字母表示数及正确说出一个代数式所表示的数量关系。
教学设计示例
课堂教学过程设计
一、从学生原有的认知结构提出问题
1在小学我们曾学过几种运算律?都是什么?如可用字母表示它们?
(通过启发、归纳最后师生共同得出用字母表示数的五种运算律)
(1)加法交换律a+b=b+a;
(2)乘法交换律a·b=b·a;
(3)加法结合律(a+b)+c=a+(b+c);
(4)乘法结合律(ab)c=a(bc);
(5)乘法分配律a(b+c)=ab+ac
指出:(1)“×”也可以写成“·”号或者省略不写,但数与数之间相乘,一般仍用“×”;
(2)上面各种运算律中,所用到的字母a,b,c都是表示数的字母,它代表我们过去学过的一切数
2(投影)从甲地到乙地的路程是15千米,步行要3小时,骑车要1小时,乘汽车要0.25小时,试问步行、骑车、乘汽车的速度分别是多少?
3若用s表示路程,t表示时间,ν表示速度,你能用s与t表示ν吗?
4(投影)一个正方形的边长是a厘米,则这个正方形的周长是多少?面积是多少?
(用I厘米表示周长,则I=4a厘米;用S平方厘米表示面积,则S=a2平方厘米)
此时,教师应指出:(1)用字母表示数可以把数或数的关系,简明的表示出来;(2)在公式与中,用字母表示数也会给运算带来方便;(3)像上面出现的a,5,15÷3,4a,a+b,s/t以及a2等等都叫代数式.那么究竟什么叫代数式呢?代数式的意义又是什么呢?这正是本节课我们将要学习的内容.
三、讲授新课
1代数式
单独的一个数字或单独的一个字母以及用运算符号把数或表示数的字母连接而成的式子叫代数式.学习代数,首先要学习用代数式表示数量关系,明确代数上的意义
2举例说明
例1填空:
(1)每包书有12册,n包书有__________册;
(2)温度由t℃下降到2℃后是_________℃;
(3)棱长是a厘米的正方体的体积是_____立方厘米;
(4)产量由m千克增长10%,就达到_______千克
(此例题用投影给出,学生口答完成)
解:(1)12n;(2)(t-2);(3)a3;(4)(1+10%)m
例2说出下列代数式的意义:
解:(1)2a+3的意义是2a与3的和;(2)2(a+3)的意义是2与(a+3)的积;
(5)a2+b2的意义是a,b的平方的和;(6)(a+b)2的意义是a与b的和的平方
说明:(1)本题应由教师示范来完成;
(2)对于代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点如第(1)小题也可以说成“a的2倍加上3”或“a的2倍与3的和”等等
例3用代数式表示:
(1)m与n的和除以10的商;
(2)m与5n的差的平方;
(3)x的2倍与y的和;
(4)ν的立方与t的3倍的积
分析:用代数式表示用语言叙述的数量关系要注意:①弄清代数式中括号的使用;②字母与数字做乘积时,习惯上数字要写在字母的前面
四、课堂练习
1填空:(投影)
(1)n箱苹果重p千克,每箱重_____千克;
(2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高为_____厘米;
(3)底为a,高为h的三角形面积是______;
(4)全校学生人数是x,其中女生占48%?则女生人数是____,男生人数是____
2说出下列代数式的意义:(投影)
3用代数式表示:(投影)
(1)x与y的和;(2)x的平方与y的立方的差;
(3)a的60%与b的2倍的和;(4)a除以2的商与b除3的商的和
五、师生共同小结
首先,提出如下问题:
1本节课学习了哪些内容?2用字母表示数的意义是什么?
3什么叫代数式?
教师在学生回答上述问题的基础上,指出:①代数式实际上就是算式,字母像数字一样也可以进行运算;②在代数式和运算结果中,如有单位时,要正确地使用括号
六、作业
1一个三角形的三条边的长分别的a,b,c,求这个三角形的周长
2张强比王华大3岁,当张强a岁时,王华的年龄是多少?
3飞机的速度是汽车的40倍,自行车的速度是汽车的1/3,若汽车的速度是ν千米/时,那么,飞机与自行车的速度各是多少?
4a千克大米的售价是6元,1千克大米售多少元?
5圆的半径是R厘米,它的面积是多少?
6用代数式表示:
(1)长为a,宽为b米的长方形的周长;
(2)宽为b米,长是宽的2倍的长方形的周长;
(3)长是a米,宽是长的1/3的长方形的周长;
(4)宽为b米,长比宽多2米的长方形的周长
初中最新数学教案篇8
一、教学目标知识与技能目标。
1、能熟练作出一次函数的图像,掌握一次函数及其图像的简单性质;
2、初步了解函数表达式与图像之间的关系。
过程与方法目标。
1、经历作图过程中由一般到特殊方法的转变过程,让学生体会研究问题的基本方法。
2、经历对一次函数性质的探索过程,增强学生数形结合的意识,培养学生识图能力;
3、经历对一次函数性质的探索过程,培养学生的观察力、语言表达能力。情感与态度目标
1、在作图的过程中,体会数学的美;
2、经历作图过程,培养学生尊重科学,实事求是的作风。
二、教材分析。
本节课是在学习了一次函数解析式的基础上,从图像这个角度对一次函数进行近一步的研究。教材先介绍了作函数图像的一般方法:列表、描点、连线法,再进一步总结出作一次函数图像的特殊方法——两点连线法。结合一次函数的图像,对一次函数的单调性作了探讨;对一次函数的几何意义也有涉及。在教学中要结合学生的认识情况,循序渐进,逐层深入,对教材内容可作适当增加,但不宜太难。为进一步学习图像及性质奠定了基础。教学重点:结合一次函数的图像,研究一次函数的简单性质教学难点:一次函数性质的应用
三、学情分析函数的图像的概念及作法对学生而言都是较为陌生的。
教材从作函数图像的一般步骤开始介绍,得出一次函数图像是条直线。在此基础上介绍用两点连线得一次函数的图像,学生就容易接受了。在函数解析式与图像二者之间的探讨这部分内容上,不要作更高要求,学生能回答书中的问题就可以了。教学中尽可能的多作几个一次函数的图像,让学生直观感受到一次函数的图像是条直线。
四、教学流程(一)、复习引入
1、什么叫做一次函数?
2、你能说说正比例函数y=kx(k≠0)的性质吗?
3、针对函数y=kx+b,要研究什么?怎样研究?
(二)做一做
例1、画出函数y1=2x与y2=2x+3,y3=2x-2的图像二、新课讲解把一个函数的自变量和对应的因变量的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图像。下面我们来作一次函数y1=2x与y2=2x+3,y3=2x-2的图像分析:根据定义,需要在直角坐标系中描出许多点,因此我们应先计算这些点的横、纵坐标,即x与对应的y的值。我们可借助一个表格来列出每一对x,y的值。因为一次函数的自变量X可以取一切实数,所以X一般在0附近取值。解:列表:x…-2-1012…y1=2x…0…y2=2x+3y3=2x-2描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点。连线:把这些点依次连接起来,得到图像(如图)它们是一条直线。
观察图像回答下列问题:
(1)这三个一次函数图像的形状都是,并且倾斜程度,即互相。
(2)y1=2x的图像经过。
(3)y2=2x+3的图像与y1=2x图像,且与y轴交于,即y2可以看作由y1向平移个单位长度得到,图像经过第象限,k,b的符号如何?()(4)y3=2x-2的图像与y1=2x图像,且与y轴交于,即y3可以看作由y1向平移个单位长度得到,图像经过第象限,k,b的符号如何?
结论:
1、一次函数y=kx+b(k≠0)的图像可以由直线y=kx平移个单位长度得到。(上加下减)
2、一次函数y=kx+b(k≠0)的图像是一条直线,我们称它为直线y=kx+b。
3、平行的直线k相等。
三、做一做。
(1)利用两点确定一条直线(两点画法)画出y=-x+3和y=-x及y=-x-4的图象的图像。
师:回顾刚才的作图过程,经历了几个步骤?
生:经历了列表、描点、连线这三个步骤。
师:回答得很好。作函数图像的一般步骤是列表、描点、连线。今后我们可以用这个方法去作出更多函数的图像。
师:从刚才同学们作出的一次函数的图像中我们可以观察到一次函数图像是一条直线。
(2)在所作的图像上取几个点,找出它们的横、纵坐标
四、议一议观察图像思考:
(1)一次函数的图像从左往右是上升还是下降,由图像怎么看函数的增减性(y随x的变化),你认为决定条件是什么?
(2)图像经过哪些象限?k,b的符号如何?
(3)y=-x+3和y=-x-4是由y=-x怎样平移得到的?一次函数y=kx+b的图像是一条直线,因此作一次函数的图像时,只要确定两个点,再过这两个点作直线就可以了。一次函数y=kx+b的图像也称为直线y=kx+b
例1做出下列函数的图像
(1)y=x+3
(2)y=-x+3
(3)y=2x-4
(4)y=-2x-4
五、课堂小结。
这节课我们学习了一次函数的图像。一次函数的图像是一条直线,正比例函数的图像是经过原点的一条直线。在作图时,只需确定直线上两点的位置,就可得到一次函数的图像。一般地,作函数图像的三个步骤是:列表、描点、连线。
六、课后练习。
书上93页练习五、教学反思本节课主要介绍作函数图像的一般方法,通过对一次函数图像的认识,得到作一次函数及正比例函数的图像的特殊方法(两点确定一条直线)。让学生能够迅速找到直线与坐标轴的交点,这是本节课的难点。数形结合,找准这两个特殊点坐标的特点(x=0或y=0),让学生理解的记忆才能收到较好的效果。
初中最新数学教案篇9
一、教学案例的特点
1、案例与论文的区别
从文体和表述方式上看,论文是以说理为目的,以议论为主;案例则以记录为目的,以记叙为主,兼有议论和说明。也就是说,案例是讲一个故事,是通过故事说明道理。
从写作的思路和思维方式来看,论文写作一般是一种演绎思维,思维的方式是从抽象到具体;案例写作是一种归纳思维,思维的方式是从具体到抽象。
2、案例与教案、教学设计的区别
教案和教学设计都是事先设想的教学思路,是对准备实施的教学措施的简要说明;教学案例则是对已经发生的教学过程的反映。一个写在教之前,一个写在教之后;一个是预期达到什么目标,一个是结果达到什么水平。教学设计不宜于交流,教学案例适宜于交流。
3、案例与教学实录的区别
案例与教学实录的体例比较接近,它们都是对教学情景的描述,但教学实录是有闻必录,而案例则是有所选择的,教学案例是根据目的和功能选择内容,并且必须有作者的反思(价值判断或理性思考)。
4、教学案例的特点是
——真实性:案例必须是在课堂教学中真实发生的事件;
——典型性:必须是包括特殊情境和典型案例问题的故事;
——浓缩性:必须多角度地呈现问题,提供足够的信息;
——启发性:必须是经过研究,能够引起讨论,提供分析和反思。
二、数学案例的结构要素
从文章结构上看,数学案例一般包含以下几个基本的元素。
(1)背景。案例需要向读者交代故事发生的有关情况:时间、地点、人物、事情的起因等。如介绍一堂课,就有必要说明这堂课是在什么背景情况下上的,是一所重点学校还是普通学校,是一个重点班级还是普通班级,是有经验的优秀教师还是年青的新教师执教,是经过准备的“公开课”还是平时的“家常课”,等等。背景介绍并不需要面面俱到,重要的是说明故事的发生是否有什么特别的原因或条件。
(2)主题。案例要有一个主题:写案例首先要考虑我这个案例想反映什么问题,例如是想说明怎样转变学困生,还是强调怎样启发思维,或者是介绍如何组织小组讨论,或是观察学生的独立学习情况,等等。或者是一个什么样的数学任务解决过程和方法,在课程标准中数学任务认知水平的要求怎么样,在课堂教学中数学任务认知水平的发展怎么样等等。动笔前都要有一个比较明确的想法。比如学校开展研究性学习活动,不同的研究课题、研究小组、研究阶段,会面临不同的问题、情境、经历,都有自己的独特性。写作时应该从最有收获、最有启发的角度切入,选择并确立主题。
(3)情节。有了主题,写作时就不会有闻必录,而要是对原始材料进行筛选。首先需要教师对课堂教学中师生双方(外显的和内隐的)活动的清晰感知,然后是有针对性地向读者交代特定的内容,把关键性的细节写清楚。比如介绍教师如何指导学生掌握学习数学的方法,就要把学生怎么从“不会”到“会”的转折过程,要把学习发生发展过程的细节写清楚,要把教师观察到的学生学习行为,学习行为反映的学生思想、情感、态度写清楚,或者把小组合作学习的突出情况写清楚,或者把个别学生独立学习的典型行为写清楚。不能把“任务”布置了一番,把“方法”介绍了一番,说到“任务”的完成过程,说到“掌握”的程度就一笔带过了。
(4)结果。一般来说,教案和教学设计只有设想的措施而没有实施的结果,教学实录通常也只记录教学的过程而不介绍教学的效果;而案例则不仅要说明教学的思路、描述教学的过程,还要交代学生学习的结果,即这种教学措施的即时效果,包括学生的反映和教师的感受等。读者知道了结果,将有助于加深对整个过程的内涵的了解。
(5)反思。对于案例所反映的主题和内容,包括教育教学指导思想、过程、结果,对其利弊得失,作者要有一定的看法和分析。反思是在记叙基础上的议论,可以进一步揭示事件的意义和价值。比如同样是一个学困生转化的事例,我们可以从社会学、教育学、心理学、学习理论等不同的理论角度切入,揭示成功的原因和科学的规律。反思不一定是理论阐述,也可以是就事论事、有感而发,引起人的共鸣,给人以启发。
三、初中数学教学案例主题的选择
新课程理念下的初中数学教学案例,可从以下六方面选择主题:
(1)体现让学生动手实践、自主探究、合作交流的教学方式;
(2)体现教师帮助学生在自主探究、合作交流的过程中真正理解和掌握基本的数学知识和技能、数学思想和方法,获得广泛的数学活动经验;
(3)体现让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,采用“问题情境——建立模型——解释、应用与拓展”的模式教学的成功经验;
(4)体现数学与信息技术整合的教学方法;
(5)体现教师在教学过程中的组织者、引导者与合作者的作用;
(6)体现教学中对学生情感、态度的关注和评价,以及怎样帮助不同的人在数学上获得不同的发展,等等。
初中最新数学教案篇10
绝对值(一)
一、素质教育目标
(一)知识教学点
1.能根据一个数的绝对值表示“距离”,初步理解绝对值的概念.
2.给出一个数,能求它的绝对值.
(二)能力训练点
在把绝对值的代数定义转化成数学式子的过程中,培养学生运用数学转化思想指导思维活动的能力.
(三)德育渗透点
1.通过解释绝对值的几何意义,渗透数形结合的思想.
2.从上节课学的相反数到本节的绝对值,使学生感知数学知识具有普遍的联系性.
(四)美育渗透点
通过数形结合理解绝对值的意义和相反数与绝对值的联系,使学生进一步领略数学的和谐美.
二、学法引导
1.教学方法:采用引导发现法,辅之以讲授,学生讨论,力求体现“教为主导,学为主体”的教学要求,注意创设问题情境,使学生自得知识,自觅规律.
2.学生学法:研究+6和-6的不同点和相同点→绝对值概念→巩固练习→归纳小结(绝对值代数意义)
三、重点、难点、疑点及解决办法
1.重点:给出一个数会求出它的绝对值.
2.难点:绝对值的几何意义,代数定义的导出.
3.疑点:负数的绝对值是它的相反数.
四、课时安排
2课时
五、教具学具准备
投影仪(电脑)、三角板、自制胶片.
六、师生互动活动设计
教师提出+6和-6有何相同点和不同点,学生研究讨论得出绝对值概念;教师出示练习题,学生讨论解答归纳出绝对值代数意义.
七、教学步骤
(一)创设情境,复习导入
师:以上我们学习了数轴、相反数.在练习本上画一个数轴,并标出表示-6,,0及它们的相反数的点.
学生活动:一个学生板演,其他学生在练习本上画.
【教法说明】绝对值的学习是以相反数为基础的,在学生动手画数轴的同时,把相反数的知识进行复习,同时也为绝对值概念的引入奠定了基础,这里老师不包办代替,让学生自己练习.
(二)探索新知,导入 新课
师:同学们做得非常好!-6与6是相反数,它们只有符号不同,它们什么相同呢?
学生活动:思考讨论,很难得出答案.
师:在数轴上标出到原点距离是6个单位长度的点.
学生活动:一个学生板演,其他学生在练习本上做.
师:显然A点(表示6的点)到原点的距离是6,B点(表示-6的点)到原点距离是6个单位长吗?
学生活动:产生疑问,讨论.
师:+6与-6虽然符号不同,但表示这两个数的点到原点的距离都是6,是相同的.我们把这个距离叫+6与-6的绝对值.
[板书]2.4绝对值(1)
【教法说明】针对“互为相反数的两数只有符号不同”提出问题:“它们什么相同呢?”在学生头脑中产生疑问,激发了学生探索知识的欲望,但这时学生很难回答出此问题,这时教师注意引导再提出要求:“找到原点距离是6个单位长度的点”这时学生就有了一个攀登的台阶,自然而然地想到表示+6,-6的点到原点的距离相同,从而引出了绝对值的概念,这样一环紧扣一环,
绝对值(一)
一、素质教育目标
(一)知识教学点
1.能根据一个数的绝对值表示“距离”,初步理解绝对值的概念.
2.给出一个数,能求它的绝对值.
(二)能力训练点
在把绝对值的代数定义转化成数学式子的过程中,培养学生运用数学转化思想指导思维活动的能力.
(三)德育渗透点
1.通过解释绝对值的几何意义,渗透数形结合的思想.
2.从上节课学的相反数到本节的绝对值,使学生感知数学知识具有普遍的联系性.
(四)美育渗透点
通过数形结合理解绝对值的意义和相反数与绝对值的联系,使学生进一步领略数学的和谐美.
二、学法引导
1.教学方法:采用引导发现法,辅之以讲授,学生讨论,力求体现“教为主导,学为主体”的教学要求,注意创设问题情境,使学生自得知识,自觅规律.
2.学生学法:研究+6和-6的不同点和相同点→绝对值概念→巩固练习→归纳小结(绝对值代数意义)
三、重点、难点、疑点及解决办法
1.重点:给出一个数会求出它的绝对值.
2.难点:绝对值的几何意义,代数定义的导出.
3.疑点:负数的绝对值是它的相反数.
四、课时安排
2课时
五、教具学具准备
投影仪(电脑)、三角板、自制胶片.
六、师生互动活动设计
教师提出+6和-6有何相同点和不同点,学生研究讨论得出绝对值概念;教师出示练习题,学生讨论解答归纳出绝对值代数意义.
七、教学步骤
(一)创设情境,复习导入
师:以上我们学习了数轴、相反数.在练习本上画一个数轴,并标出表示-6,,0及它们的相反数的点.
学生活动:一个学生板演,其他学生在练习本上画.
【教法说明】绝对值的学习是以相反数为基础的,在学生动手画数轴的同时,把相反数的知识进行复习,同时也为绝对值概念的引入奠定了基础,这里老师不包办代替,让学生自己练习.
(二)探索新知,导入 新课
师:同学们做得非常好!-6与6是相反数,它们只有符号不同,它们什么相同呢?
学生活动:思考讨论,很难得出答案.
师:在数轴上标出到原点距离是6个单位长度的点.
学生活动:一个学生板演,其他学生在练习本上做.
师:显然A点(表示6的点)到原点的距离是6,B点(表示-6的点)到原点距离是6个单位长吗?
学生活动:产生疑问,讨论.
师:+6与-6虽然符号不同,但表示这两个数的点到原点的距离都是6,是相同的.我们把这个距离叫+6与-6的绝对值.
[板书]2.4绝对值(1)
【教法说明】针对“互为相反数的两数只有符号不同”提出问题:“它们什么相同呢?”在学生头脑中产生疑问,激发了学生探索知识的欲望,但这时学生很难回答出此问题,这时教师注意引导再提出要求:“找到原点距离是6个单位长度的点”这时学生就有了一个攀登的台阶,自然而然地想到表示+6,-6的点到原点的距离相同,从而引出了绝对值的概念,这样一环紧扣一环,
初中最新数学教案篇11
一、教学内容的分析
(一)地位与作用:
二次函数的应用本身是学习二次函数的图象与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查。新课标中要求学生能通过对实际问题的情境的分析确定二次函数的表达式,体会其意义,能根据图象的性质解决简单的实际问题。而最值问题又是生活中利用二次函数知识解决最常见、最有实际应用价值的问题之一,它生活背景丰富,学生比较感兴趣,面积问题与最大利润学生易于理解和接受,故而在这儿作专题讲座。目的在于让学生通过掌握求面积、利润最大这一类题,学会用建模的思想去解决其它和函数有关应用问题,此部分内容既是学习一次函数及其应用后的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的理论和思想方法基础。例题和一部分习题,无论是例题还是习题都没有归类,不利于学生系统地掌握解决问题的方法,我设计时把它分为面积、利润最大、运动中的二次函数、综合应用三课时,本节是第一课时。
(二)学情及学法分析
对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,本节课正是为了弥补这一不足而设计的,目的是进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。
二、教学目标、重点、难点的确定
对于函数知识来说它是从生活中广泛的实际问题中抽象出来的数学知识,所以它是解决实际问题中被广泛应用的工具。这部分知识的学习无论对提高学生在生活中应用函数知识的意识,还是对掌握运用函数知识的方法,都具有重要意义。
而二次函数的知识是九年级数学学习的重要内容之一。同样它也是从生活实际问题中抽象出的知识,又是在解决实际问题时广泛应用的数学工具。课程标准强调学生的应用意识的培养,让学生面对实际问题时,能尝试着从数学的角度运用所学知识和方法寻求解决问题的策略。
本节课是学生在学习了二次函数的概念、图像和性质后进一步学习二次函数的应用。学生有了一定的二次函数的知识,并且在前两节课已经接触到运用二次函数的知识解决函数的最值问题,而本节课需要利用建模的思想,将实际问题转化为二次函数的问题,从而使问题得到解决。建立二次函数关系对学生而言比较困难,尤其是关注实际问题中自变量的取值范围,需要学生经历分析、讨论、对比等过程,进而得出结论。本节课的问题均来自学生的日常生活,学生会感到很有兴趣,愿意去探究。但学生基础比较薄弱,对学习数学还是有一些畏难的情绪,因此需要教师进行适当引导、分散难点。
根据上述教学背景分析,特制订如下教学目标:
1.知识与技能:学会将实际问转化为数学问题;学会用二次函数的知识解决有关的实际问题.
2.过程与方法:经历实际问题转化成数学问题利用二次函数知识解决问题利用求解的结果解释问题的过程体会数学建模的思想,体会到数学来源于生活,又服务于生活。
3.情感态度、价值观:培养学生的独立思考的能力和合作学习的精神,在动手、交流过程中培养学生的交际能力和语言表达能力,促进学生综合素质的养成。
利用二次函数的知识对现实问题进行数学地分析,即用数学的方式表示问题以及用数学的方法解决问题,就是本节课的教学重点;由于学生理解问题的能力和知识储备情况的不同,那么从现实问题中建立二次函数模型。就是本节课的一个难点。
新课程标准强调动手实践、自主探索与合作交流应该是学生学习数学的重要方式。教师应该是学生数学学习的组织者、引导者、合作者。同时,我认为教学方法与学习方法应该是相辅相成的不应该是割裂开来的,而且在一节课中教学方法和学习方法不可能是单一的而是多种方式方法并存的,因此根据本节课的内容和学生的实际情况,同时也为了突出本节课的重点并突破学习难点我确定本节课的教法与学法有启发法、探究法、试验法、课堂讨论法、练习法等。
三、教学方法与手段的选择
本节课我采用的是导学案的教法,
创设情境、引入问题------二人小组、复习回顾------自主探究、小组合作-------板演展示、别组纠错---------教师点评、总结归纳--------课堂测评
四、教学设计分析
首先创设问题情境,激发学生的学习兴趣。数学课程的内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜想、验证、推理与交流。而20世纪下半叶数学的一个最大进展是它的广泛应用,数学的价值观因此发生了深刻的变化。最直接的一个结论就是数学教育要重视应用意识和应用能力的培养。数学应用意识的孕育数学建模能力的培养联系学生的日常生活并解决相关的问题等方面的要求越来越处于突出的地位。所以我以养鸡场问题、商品销售利润问题为例,提出问题,引起学生的兴趣,同时也让学生切实体会到数学来源于生活。针对学生基础比较薄弱,解题能力较差的现状,我紧接着先给出几道关于二次函数的练习题,巩固二次函数最值的求法,为后面解决实际问题扫清障碍。
接下来就是解决最开始提出的商品何时利润最大问题,在解决商品利润问题时我先让学生做了几道关于利润的计算题,回忆一下有关利润的公式。
由于有了前面例子的认知基础,因此引导学生考虑能否利用二次函数的知识来解决,这时学生能想到要列出函数关系式。由于获得最大利润的方式有很两种,因此采用小组合作探究的方式分组讨论实施。这是为了给学生提供充分从事数学活动的机会,在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法。由于学生的基础比较薄弱,因此教师作为引导者与合作者参与到学生的讨论中。这里要给学生充分的时间进行探究。在各小组充分讨论后进行全班交流,归纳出全班哪种办法求解起来最简便,作出优劣的判断。接着由所得到的结论继续提出新问题,再次体会数学来源于生活又服务于生活。
最后是归纳总结、加深印象环节。在小结中,引导学生总结出从数学的角度解决实际问题的过程:有实际问题抽象转化成数学问题,然后运用所学的数学知识得到问题的解,再由结论反过来解释或解决新的实际问题。
最后是课堂测评。
对于作业的处理,针对学生的实际情况,作业分为必做题与选做题。对于基础比较薄弱的学生只需完成课堂中的巩固练习即可;对于学有余力的学生补充两道选做题。
以上就是我对本节课的设计。提出的问题都是学生亲身的经历的情境,学生能感受到数学来源于生活,又服务于生活。而且新课标也提出为学生提供的素材应该具有现实性和趣味性,要密切联系生活实际,让学生体会到数学在生活中的作用
初中最新数学教案篇12
学习目标
1、了解分式的概念,会判断一个代数式是否是分式。
2、能用分式表示简单问题中数量之间的关系,能解释简单分式的实际背景或几何意义。
3、能分析出一个简单分式有、无意义的条件。
4、会根据已知条件求分式的值。
学习重点
分式的概念,掌握分式有意义的条件
学习难点
分式有、无意义的条件
教学流程
预习导航
一、创设情境:
京沪铁路是我国东部沿海地区纵贯南北的交通大动脉,全长1462km,是我国最繁忙的铁路干线之一。如果货运列车的速度为akm/h,快速列车的速度为货运列车2倍,那么:
(1)货运列车从北京到上海需要多长时间?
(2)快速列车从北京到上海需要多长时间?
(3)已知从北京到上海快速列车比货运列车少用多少时间?
观察刚才你们所列的式子,它们有什么特点?
这些式子与分数有什么相同和不同之处?
合作探究
一、概念探究:
1、列出下列式子:
(1)一块长方形玻璃板的面积为2㎡,如果宽为am,那么长是
(2)小丽用n元人民币买了m袋瓜子,那么每袋瓜子的价格是元。
(3)正n边形的每个内角为度。
(4)两块面积分别为a公顷、b公顷的棉田,产棉花分别为m㎏、n㎏。这两块棉田平均每公顷产棉花______㎏。
2、两个数相除可以把它们的商表示成分数的形式。如果用字母分别表示分数的分子和分母,那么可以表示成什么形式呢?
3、思考:
上面所列各式有什么共同特点?
(通过对以上几个实际问题的研讨,学会用的形式表示实际问题中数量之间的关系,感受把分数推广到分式的优越性和必要性)
分式的概念:
4、小结分式的概念中应注意的问题.
①分式是两个整式相除的商式,其中分子为被除式,分母为除式,分数线起除号的作用;
②分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母,这是区别整式的重要依据;
③如同分数一样,在任何情况下,分式的分母的值都不可以为0,否则分式无意义。分式分母不为零是隐含在此分式中而无须注明的条件。
二、例题分析:
例1:试解释分式所表示的实际意义
例2:求分式的值①a=3②a=—
例3:当取什么值时,分式(1)没有意义?(2)有意义?(3)值为零。
三、展示交流:
1、在____________中,是整式的有_____________________,是分式的有________________;
2、写成分式为____________,且当m≠_____时分式有意义;
3、当x_______时,分式无意义,当x______时,分式的值为1。
4、若分式的值为正数,则x的取值应是()
A.,B.C.D.为任意实数
四、提炼总结:
1、什么叫分式?
2、分式什么时候有意义?怎样求分式的值
初中最新数学教案篇13
学习方式:
从具体问题情景中探索体会合并同类项的含义。
逆用乘法分配律探求合并同类项法则。
通过多角度的练习辨别同类项,加深对概念的理解,培养思维的严密性。
教学目标:
1、在具体情境中理解、掌握同类项的定义;
2、在具体情境中,让学生了解合并同类项的法则,能进行同类项的合并。
3、能运用合并同类项化简多项式,并根据所给字母的值,求多项式的值。
4、通过“合并同类项”的学习,继续培养学生的运算能力。
教学的重点、难点和疑点
1、重点:同类项的概念,合并同类项的法则。
2、难点:理解同类项的概念中所含字母相同,且相同字母的次数也相同的含义。
3、疑点:同类项与同次项的区别。
教具准备
投影仪(电脑)、自制胶片
教学过程:
提出问题
创设情景(出示投影)
如图的长方形由两个小长方形组成,求这个长方形的面积。
①当学生列出代数式8n+5n时,可引导学生是否还有其他表示方法,启发学生得出:
(8+5)n
②接着引导学生写出等式:
8n+5n=(8+5)n=13n
启发学生观察上式是怎样的一种变化;
它类似于我们前面学过的什么运算律
为什么8n与5n可以合并成一项(组织学生充分
讨论,从而引出同类项的概念)
③同类项的概念
举出一些具有代表性的同类项的实际例子。
如:-7a2b,2a2b;
8n,5n;
3x2,-x2
引导学生观察上面给出的几组代数式具有什么共同特点:
①所含的字母相同
②相同字母的指数也相同
教师顺势提出同类项的概念
强调同类项必须满足以上两条
④结合长方形面积问题,引出合并同类项的概念:把同类项合并成一项就叫做合并同类项。学生观察,思考
讨论交流
(反例巩固)出示问题;
x与y,
a2b与ab2,
-3pa与3pa
abc与ac,
a2和a3是不是同类项
(给学生留下足够的思考时间,引导学生紧紧结合同类项的两个条件进行判断)
其中:a2b与ab2可让学生充分讨论交流。
(教师强调“必须是相同字母的指数相同”这句话的含义,从而分清同类项与同次项的区别)
(引导学生题后反思,同类项与它们的系数无关,只与所含的字母及字母的指数有关)。
紧扣定义
加以判别
例1根据乘法分配律合并同类项
(1)-xy2+3xy2(2)7a+3a2+2a-a2+3
(教师强调乘法分配律的逆运用)
(学生板书完毕后,教师引导学生观察合并的前后发生了什么变化?其中系数怎样变化的?字母及字母的指数又怎样变化了)
由此引导学生总结出合并同类项的法则:
在合并同类项时,只把同类项的系数相加减,字母和字母的指数不变。
学生思考
解答(找二生板演其他学生独立写出过程)
总结法则
可根据情况适当复习关于乘法分配律的有关知识
通过上面的实例,学生对怎样合并同类项的问题已有较深刻的印象,但还不能用完整的数学语言将其叙述出来,教师要积极引导,让学生动脑思考。
应用法则
例2,合并同类项
①3a+2b-5a-b
②-4ab+8-2b2-9ab-8
给学生留有足够的独立的思考时间
找二生到黑板上板演。
学生板演后,教师组织学生交流评价,根据出现的问题,作点拔,强调。
强调:合并同类项的过程实质上就是同类项的系数相加减的过程,在系数相加时,不要遗漏符号,字母和字母的指数都不变。
教师不给任何提示
学生在练习本上完成,然后同桌同学互相交换评判。
(二生到黑板上板演)
变式
应用补充例题
例3,求代数式的值
①2x2-5x+x2+4x-3x2-2其中x=
②-3x2+5x-0.5x2+x-1其中x=2
出示例题后,教师不要给任何提示,先让学生独立思考。
部分学生会直接把x=代入式中去计算,出现这一情况后,教师可积极引导。
问:还有没有其他方法?学生仔细观察后不难发现先合并化简后,再代入求值,此时教师可提出让学生对比分析哪种方法简便。从而强调,先化简再求值会使运算变得简便。
独立完成
分析比较
寻求简便方法
随堂
练习1、合并同类项
①3y+y=__________
②3b-3a2+1+a3-2b=___________
③2y+6y+2xy-5=_____________
2、求代数式的值
8p2-7q+6q-7p2-7
其中p=3q=3
练习交流合作
教师可根据情况适当补充
小结 今天你学会了哪些知识?获得了哪些方法,
有什么体会?自己总结
作业 教材课后习题
初中最新数学教案篇14
①结合你对一元一次方程中的一次的理解,说一说你对一次函数中的“一次”的理解.②k可以是怎样的`数?
③你怎样认识一次函数和正比例函数的关系?
一个常数b的和即Y=kx+b定义:一般地,形
如
Y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数,当
b=0时,
Y=kx+b即Y=kx,所以说正比例函数是一种特殊的一次函数。
例1、下列函数中,Y是X的一次函数的是()①Y=X-6②Y=3X③Y=X2④Y=7-X
学生独立
A①②③B①③④C①②④D①②③④
例2、写出下列各题中x与y之间的关系式,并判
解释与应用
断,y是否为x的一次函数?是否为正比例函数?①汽车以60千米/时的速度匀速行驶,行驶路程中y(千米)与行驶时间(时)之间的关系式;②圆的面积y(厘米2)与他的半径x(厘米)之间的关系:③一棵树现在高50厘米,每个月长高2厘米,x月后这棵树的高度y(厘米)之间的关系式
初中最新数学教案篇15
1.初中数学教案模板
1.课题
填写课题名称(初中代数类课题)
2.教学目标
(1)知识与技能:
通过本节课的学习,掌握......知识,提高学生解决实际问题的能力;
(2)过程与方法:
通过......(讨论、发现、探究)的过程,提高......(分析、归纳、比较和概括)的能力;
(3)情感态度与价值观:
通过本节课的学习,增强学生的学习兴趣,将数学应用到实际生活中,增加学生数学学习的乐趣。
3.教学重难点
(1)教学重点:本节课的知识重点
(2)教学难点:易错点、难以理解的知识点
4.教学方法(一般从中选择3个就可以了)
(1)讨论法
(2)情景教学法
(3)问答法
(4)发现法
(5)讲授法
5.教学过程
(1)导入
简单叙述导入课题的方式和方法(例:复习、类比、情境导出本节课的课题)
(2)新授课程(一般分为三个小步骤)
①简单讲解本节课基础知识点(例:类比一元一次方程的解法,讲解一元一次不等式的解法和步骤)。
②归纳总结该课题中的重点知识内容,尤其对该注意的一些情况设置易错点,进行强调。可以设计分组讨论环节(例:分组讨论一元一次不等式的解法,归纳总结一元一次不等式的方法步骤,设置系数化为一,负号要变号的易错点)。
③拓展延伸,将所学知识拓展延伸到实际题目中,去解决实际生活中的问题(例:设置一元一次不等式的应用题,学生再次体会一元一次不等式解决实际问题,并且再次巩固不等式的解法)。
(3)课堂小结
教师提问,学生回答本节课的收获。
(4)作业提高
布置作业(尽量与实际生活相联系,有所创新)。
6.教学板书
2.初中数学教案格式
课程编码:______________________________________
总学时/周学时:/
开课时间:年月日第周至第周
授课年级、专业、班级:___________________________
使用教材:_______________________________________
授课教师:_______________________________________
1.章节名称
2.教学目的
3.课时安排
4.教学重点、难点
5.教学过程(包括教学内容、教师活动、学生活动、教学方法等)
6.复习巩固与作业要求
7.教学环境及教具准备
8.教学参考资料
9.教学后记
3.初中数学教案范文
教学目的
1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。
2.使学生会列一元一次方程解决一些简单的应用题。
3.会判断一个数是不是某个方程的解。
重点、难点
1.重点:会列一元一次方程解决一些简单的应用题。
2.难点:弄清题意,找出“相等关系”。
教学过程
一、复习提问
一本笔记本1.2元。小红有6元钱,那么她最多能买到几本这样的笔记本呢?
解:设小红能买到工本笔记本,那么根据题意,得1.2x=6
因为1.2×5=6,所以小红能买到5本笔记本。
二、新授
问题1:某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆?(让学生思考后,回答,教师再作讲评)
算术法:(328-64)÷44=264÷44=6(辆)
列方程:设需要租用x辆客车,可得44x+64=328
解这个方程,就能得到所求的结果。
问:你会解这个方程吗?试试看?
问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”
通过分析,列出方程:13+x=(45+x)
问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?
把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,
因为左边=右边,所以x=3就是这个方程的解。
这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。
问:若把例2中的“三分之一”改为“二分之一”,那么答案是多少?动手试一试,大家发现了什么问题?
同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?
三、巩固练习
教科书第3页练习1、2。
四、小结
本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。
五、作业
教科书第3页,习题6.1第1、3题。