初中数学教案反思怎么写
编写教案可以使课堂教学活动称为一种有计划、有目的、有条不紊、有效率的教学活动,从而提高教学效果。写好初中数学教案反思怎么写不是那么简单,下面给大家分享初中数学教案反思怎么写,供大家参考。
初中数学教案反思怎么写篇1
教学目标
知识与能力:
1.理解一元二次方程根的判别式。
2.掌握一元二次方程的根与系数的关系
3.同学们掌握一元二次方程的实际应用.了解一元二次方程的分式方程。
过程与方法:
培养学生的逻辑思维能力以及推理论证能力。
情感与价值观:渗透分类的数学思想和数学的简洁美;培养学生的协作精神。
重、难点
重点:根的判别式和根与系数的关系及一元二次方程的应用。
难点:一元二次方程的实际应用。
一、导入新课、揭示目标
1.理解一元二次方程根的判别式。
2.掌握一元二次方程的根与系数的关系
3.掌握一元二次方程的实际应用.
二、自学提纲:
一.主要让学生能理解一元二次方程根的判别式:
1.判别式在什么情况下有两个不同的实数根?
2.判别式在什么情况下有两个相同的实数根?
3.判别式在什么情况下无实数根?
二.ax2+bx+c=o(a≠0)的两个根为x1.x2那么
X1+x2=-x1x2=
三.一元二次方程的实际应用。根据不同的类型的问题.列出不同类型的方程.
三.合作探究.解决疑难
例1已知关于x的方程x2+2x=k-1没有实数根.试判别关于x的方程x2+kx=1-k的根的情况。
巩固提高:
已知在等腰中,BC=8.AB.AC的长是关于x的方程x2-10x+m=0的两个实数根.求的周长
例题2:
.已知:x1.x2是关于x的方程x2+(2a-1)x+a2=0的两个实数根.且(x1+2)(x2+2)=11.求a的值。
.巩固提高:
已知关于x的一元二次方程x2+(4m+1)x+2m-1=0.
(1)求证:不论m为任何实数.方程总有两个不相等的实数根;
(2)若方程两根为x1.x2.且满足
求m的值。
例3某电脑销售商试销一品牌电脑(出厂为3000元/台),以4000元/台销售时,平均每月销售100台.现为了扩大销售,销售商决定降价销售,在原来1月份平均销售量的基础上,经2月份的市场调查,3月份调整价格后,月销售额达到576000元.已知电脑价格每台下降100元,月销售量将上升10台,
(1)求1月份到3月份销售额的平均增长率:
(2)求3月份时该电脑的销售价格.
练习:某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元。为了扩大销售,增加利润,商场决定采取适当降价措施。经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。
1)若商场平均每天要赢利1200元,则每件衬衫应降价多少元?
2)则降价多少元?
四、小结
这节课同学有什么收获?同学互相交流?
五、布置作业:
课前课后P10-12
初中数学教案反思怎么写篇2
问题描述:
初中数学教学案例
初中的,随便那个年级.2000字.案例和反思
1个回答分类:数学20__-11-30
问题解答:
我来补答
2.3平行线的性质
一、教材分析:
本节课是人民教育出版社义务教育课程标准实验教科书(五四学制)七年级上册第2章第3节平行线的性质,它是平行线及直线平行的继续,是后面研究平移等内容的基础,是“空间与图形”的重要组成部分.
二、教学目标:
知识与技能:掌握平行线的性质,能应用性质解决相关问题.
数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程.
解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神.
情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和勇于探索、锲而不舍的精神.
三、教学重、难点:
重点:平行线的性质
难点:“性质1”的探究过程
四、教学方法:
“引导发现法”与“动像探索法”
五、教具、学具:
教具:多媒体课件
学具:三角板、量角器.
六、教学媒体:
大屏幕、实物投影
七、教学过程:
(一)创设情境,设疑激思:
1.播放一组幻灯片.内容:①火车行驶在铁轨上;②游泳池;③横格纸.
2.声音:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?
学生活动:
思考回答.①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行;
教师:首先肯定学生的回答,然后提出问题.
问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?
引出课题——平行线的性质.
(二)数形结合,探究性质
1.画图探究,归纳猜想
任意画出两条平行线(a‖b),画一条截线c与这两条平行线相交,标出8个角(如图).
问题一:指出图中的同位角,并度量这些角,把结果填入下表:
第一组
第二组
第三组
第四组
同位角
∠1
∠5
角的度数
数量关系
学生活动:画图——度量——填表——猜想
结论:两直线平行,同位角相等.
问题二:再画出一条截线d,看你的猜想结论是否仍然成立?
学生:探究、讨论,最后得出结论:仍然成立.
2.教师用《几何画板》课件验证猜想
3.性质1.两条直线被第三条直线所截,同位角相等.(两直线平行,同位角相等)
(三)引申思考,培养创新
问题三:请判断内错角、同旁内角各有什么关系?
学生活动:独立探究——小组讨论——成果展示.
教师活动:引导学生说理.
因为a‖b因为a‖b
所以∠1=∠2所以∠1=∠2
又∠1=∠3又∠1+∠4=180°
所以∠2=∠3所以∠2+∠4=180°
语言叙述:
性质2两条直线被第三条直线所截,内错角相等.
(两直线平行,内错角相等)
性质3两条直线被第三条直线所截,同旁内角互补.
(两直线平行,同旁内角互补)
(四)实际应用,优势互补
1.(抢答)
(1)如图,平行线AB、CD被直线AE所截
①若∠1=110°,则∠2=°.理由:.
②若∠1=110°,则∠3=°.理由:.
③若∠1=110°,则∠4=°.理由:.
(2)如图,由AB‖CD,可得()
(A)∠1=∠2(B)∠2=∠3
(C)∠1=∠4(D)∠3=∠4
(3)如图,AB‖CD‖EF,
那么∠BAC+∠ACE+∠CEF=()
(A)180°(B)270°(C)360°(D)540°
(4)谁问谁答:如图,直线a‖b,
如:∠1=54°时,∠2=.
学生提问,并找出回答问题的同学.
2.(讨论解答)
如图是一块梯形铁片的残余部分,量得∠A=100°,
∠B=115°,求梯形另外两角分别是多少度?
(五)概括存储(小结)
1.平行线的性质1、2、3;
2.用“运动”的观点观察数学问题;
3.用数形结合的方法来解决问题.
(六)作业第69页2、4、7.
八、教学反思:
①教的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者.在引导学生画图、测量、发现结论后,利用几何画板直观地、动态地展示同位角的关系,激发学生自觉地探究数学问题,体验发现的乐趣.
②学的转变:学生的角色从学会转变为会学.本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境.
③课堂氛围的转变:整节课以“流畅、开放、合作、‘隐’导”为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以“对话”、“讨论”为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值.
初中数学教案反思怎么写篇3
绝对值(一)
一、素质教育目标
(一)知识教学点
1.能根据一个数的绝对值表示“距离”,初步理解绝对值的概念.
2.给出一个数,能求它的绝对值.
(二)能力训练点
在把绝对值的代数定义转化成数学式子的过程中,培养学生运用数学转化思想指导思维活动的能力.
(三)德育渗透点
1.通过解释绝对值的几何意义,渗透数形结合的思想.
2.从上节课学的相反数到本节的绝对值,使学生感知数学知识具有普遍的联系性.
(四)美育渗透点
通过数形结合理解绝对值的意义和相反数与绝对值的联系,使学生进一步领略数学的和谐美.
二、学法引导
1.教学方法:采用引导发现法,辅之以讲授,学生讨论,力求体现“教为主导,学为主体”的教学要求,注意创设问题情境,使学生自得知识,自觅规律.
2.学生学法:研究+6和-6的不同点和相同点→绝对值概念→巩固练习→归纳小结(绝对值代数意义)
三、重点、难点、疑点及解决办法
1.重点:给出一个数会求出它的绝对值.
2.难点:绝对值的几何意义,代数定义的导出.
3.疑点:负数的绝对值是它的相反数.
四、课时安排
2课时
五、教具学具准备
投影仪(电脑)、三角板、自制胶片.
六、师生互动活动设计
教师提出+6和-6有何相同点和不同点,学生研究讨论得出绝对值概念;教师出示练习题,学生讨论解答归纳出绝对值代数意义.
七、教学步骤
(一)创设情境,复习导入
师:以上我们学习了数轴、相反数.在练习本上画一个数轴,并标出表示-6,,0及它们的相反数的点.
学生活动:一个学生板演,其他学生在练习本上画.
【教法说明】绝对值的学习是以相反数为基础的,在学生动手画数轴的同时,把相反数的知识进行复习,同时也为绝对值概念的引入奠定了基础,这里老师不包办代替,让学生自己练习.
(二)探索新知,导入 新课
师:同学们做得非常好!-6与6是相反数,它们只有符号不同,它们什么相同呢?
学生活动:思考讨论,很难得出答案.
师:在数轴上标出到原点距离是6个单位长度的点.
学生活动:一个学生板演,其他学生在练习本上做.
师:显然A点(表示6的点)到原点的距离是6,B点(表示-6的点)到原点距离是6个单位长吗?
学生活动:产生疑问,讨论.
师:+6与-6虽然符号不同,但表示这两个数的点到原点的距离都是6,是相同的.我们把这个距离叫+6与-6的绝对值.
[板书]2.4绝对值(1)
【教法说明】针对“互为相反数的两数只有符号不同”提出问题:“它们什么相同呢?”在学生头脑中产生疑问,激发了学生探索知识的欲望,但这时学生很难回答出此问题,这时教师注意引导再提出要求:“找到原点距离是6个单位长度的点”这时学生就有了一个攀登的台阶,自然而然地想到表示+6,-6的点到原点的距离相同,从而引出了绝对值的概念,这样一环紧扣一环,
绝对值(一)
一、素质教育目标
(一)知识教学点
1.能根据一个数的绝对值表示“距离”,初步理解绝对值的概念.
2.给出一个数,能求它的绝对值.
(二)能力训练点
在把绝对值的代数定义转化成数学式子的过程中,培养学生运用数学转化思想指导思维活动的能力.
(三)德育渗透点
1.通过解释绝对值的几何意义,渗透数形结合的思想.
2.从上节课学的相反数到本节的绝对值,使学生感知数学知识具有普遍的联系性.
(四)美育渗透点
通过数形结合理解绝对值的意义和相反数与绝对值的联系,使学生进一步领略数学的和谐美.
二、学法引导
1.教学方法:采用引导发现法,辅之以讲授,学生讨论,力求体现“教为主导,学为主体”的教学要求,注意创设问题情境,使学生自得知识,自觅规律.
2.学生学法:研究+6和-6的不同点和相同点→绝对值概念→巩固练习→归纳小结(绝对值代数意义)
三、重点、难点、疑点及解决办法
1.重点:给出一个数会求出它的绝对值.
2.难点:绝对值的几何意义,代数定义的导出.
3.疑点:负数的绝对值是它的相反数.
四、课时安排
2课时
五、教具学具准备
投影仪(电脑)、三角板、自制胶片.
六、师生互动活动设计
教师提出+6和-6有何相同点和不同点,学生研究讨论得出绝对值概念;教师出示练习题,学生讨论解答归纳出绝对值代数意义.
七、教学步骤
(一)创设情境,复习导入
师:以上我们学习了数轴、相反数.在练习本上画一个数轴,并标出表示-6,,0及它们的相反数的点.
学生活动:一个学生板演,其他学生在练习本上画.
【教法说明】绝对值的学习是以相反数为基础的,在学生动手画数轴的同时,把相反数的知识进行复习,同时也为绝对值概念的引入奠定了基础,这里老师不包办代替,让学生自己练习.
(二)探索新知,导入 新课
师:同学们做得非常好!-6与6是相反数,它们只有符号不同,它们什么相同呢?
学生活动:思考讨论,很难得出答案.
师:在数轴上标出到原点距离是6个单位长度的点.
学生活动:一个学生板演,其他学生在练习本上做.
师:显然A点(表示6的点)到原点的距离是6,B点(表示-6的点)到原点距离是6个单位长吗?
学生活动:产生疑问,讨论.
师:+6与-6虽然符号不同,但表示这两个数的点到原点的距离都是6,是相同的.我们把这个距离叫+6与-6的绝对值.
[板书]2.4绝对值(1)
【教法说明】针对“互为相反数的两数只有符号不同”提出问题:“它们什么相同呢?”在学生头脑中产生疑问,激发了学生探索知识的欲望,但这时学生很难回答出此问题,这时教师注意引导再提出要求:“找到原点距离是6个单位长度的点”这时学生就有了一个攀登的台阶,自然而然地想到表示+6,-6的点到原点的距离相同,从而引出了绝对值的概念,这样一环紧扣一环,
初中数学教案反思怎么写篇4
一、教学目标:
1、理解二元一次方程及二元一次方程的解的概念;
2、学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;
3、学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;
4、在解决问题的过程中,渗透类比的思想方法,并渗透德育教育。
二、教学重点、难点:
重点:二元一次方程的意义及二元一次方程的解的概念。
难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。
三、教学方法与教学手段:
通过与一元一次方程的比较,加强学生的类比的思想方法;通过“合作学习”,使学生认识数学是根据实际的需要而产生发展的观点。
四、教学过程:
1、情景导入:
新闻链接:x70岁以上老人可领取生活补助。
得到方程:80a+150b=902880、
2、新课教学:
引导学生观察方程80a+150b=902880与一元一次方程有异同?
得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程。
做一做:
(1)根据题意列出方程:
①小明去看望奶奶,买了5kg苹果和3kg梨共花去23元,分别求苹果和梨的单价、设苹果的单价x元/kg,梨的单价y元/kg;
②在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,如果设轿车的速度是a千米/小时,卡车的速度是b千米/小时,可得方程:
(2)课本P80练习2、判定哪些式子是二元一次方程方程。
合作学习:
活动背景爱心满人间——记求是中学“学雷锋、关爱老人”志愿者活动。
问题:参加活动的36名志愿者,分为劳动组和文艺组,其中劳动组每组3人,文艺组每组6人、团支书拟安排8个劳动组,2个文艺组,单从人数上考虑,此方案是否可行?为什么?把x=8,y=2代入二元一次方程3x+6y=36,看看左右两边有没有相等?由学生检验得出代入方程后,能使方程两边相等、得出二元一次方程的解的概念:使二元一次方程两边的值相等的&39;一对未知数的值叫做二元一次方程的一个解。
并提出注意二元一次方程解的书写方法。
3、合作学习:
给定方程x+2y=8,男同学给出y(x取绝对值小于10的整数)的值,女同学马上给出对应的x的值;接下来男女同学互换、(比一比哪位同学反应快)请算的最快最准确的同学讲他的计算方法、提问:给出x的值,计算y的值时,y的系数为多少时,计算y最为简便?
出示例题:已知二元一次方程x+2y=8。
(1)用关于y的代数式表示x;
(2)用关于x的代数式表示y;
(3)求当x=2,0,—3时,对应的y的值,并写出方程x+2y=8的三个解。
(当用含x的一次式来表示y后,再请同学做游戏,让同学体会一下计算的速度是否要快)
4、课堂练习:
(1)已知:5xm—2yn=4是二元一次方程,则m+n=;
(2)二元一次方程2x—y=3中,方程可变形为y=当x=2时,y=;
5、你能解决吗?
小红到邮局给远在农村的爷爷寄挂号信,需要邮资3元8角、小红有票额为6角和8角的邮票若干张,问各需要多少张这两种面额的邮票?说说你的方案。
6、课堂小结:
(1)二元一次方程的意义及二元一次方程的解的概念(注意书写格式);
(2)二元一次方程解的不定性和相关性;
(3)会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。
7、布置作业:
初中数学教案反思怎么写篇5
教学目标
1、知识与技能
能应用所学的函数知识解决现实生活中的问题,会建构函数“模型”。
2、过程与方法
经历探索一次函数的应用问题,发展抽象思维。
3、情感、态度与价值观
培养变量与对应的思想,形成良好的函数观点,体会一次函数的应用价值。
重、难点与关键
1、重点:一次函数的应用。
2、难点:一次函数的应用。
3、关键:从数形结合分析思路入手,提升应用思维。
教学方法
采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的.应用。
教学过程
一、范例点击,应用所学
【例5】小芳以200米/分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分,试写出这段时间里她的跑步速度y(单位:米/分)随跑步时间x(单位:分)变化的函数关系式,并画出函数图象。
y=
【例6】A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡。从A城往C、D两乡运肥料的费用分别为每吨20元和25元;从B城往C、D两乡运肥料的费用分别为每吨15元和24元,现C乡需要肥料240吨,D乡需要肥料260吨,怎样调运总运费最少?
解:设总运费为y元,A城往运C乡的肥料量为x吨,则运往D乡的肥料量为(200—x)吨。B城运往C、D乡的肥料量分别为(240—x)吨与(60+x)吨。y与x的关系式为:y=20x+25(200—x)+15(240—x)+24(60+x),即y=4x+10040(0≤x≤200)。
由图象可看出:当x=0时,y有最小值10040,因此,从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值为10040元。
拓展:若A城有肥料300吨,B城有肥料200吨,其他条件不变,又应怎样调运?
二、随堂练习,巩固深化
课本P119练习。
三、课堂总结,发展潜能
由学生自我评价本节课的表现。
四、布置作业,专题突破
课本P120习题14.2第9,10,11题。
板书设计
1、一次函数的应用例:
初中数学教案反思怎么写篇6
案例主题:学生参与教学,体现了现代教学理念:活动、合作、自由、民主、创新。
背景:我在进行数学七年级上册图形的认识的应用教学时,处理定理时,随着教学过程的深入,很有感想:??
例题:课本p123证明两个角之间的关系,
请同学们总结一下他们可能出现的情况。
活动过程:师:谁能总结一下判定两个角比较大小的方法?(学生都在紧张的思考中)(突然间,我发现一名平时学习较困难的学生闫家衔这次第一个举起了手,很惊奇,便马上让他发言了。也有了我思想上的一次飞跃。)
生:我认为前面,度量,而刚才第一条,第二条的叠合法。(这时,教室里鸦雀无声,个别同学在讥笑,这位学生顿时有些难堪,想坐下去,我赶紧制止。)
师:很好!那你准备应该怎么做呢?生:嗯,(一下子来劲了):接着这位同学上黑板画了图,写出自己度量的方法和自己的想法。
师:刚才闫家衔同学真的不错,不但提出了新的方法,而且还给出了说理,我和全班同学都为你今天的表现感到非常高兴(教室里响起一片掌声)。要有勇气展示自己,你今天的表现就非常非常地出色,你今后的表现一定会更出色。好,下面我就让我们一同来总结一下菱形的证明方法。
在师生的共同研讨下得出了这些方法。
师:今天的课程内容还有一项,那就是请闫家衔同学谈谈这堂课的感想。
生:以前我不敢发言,我怕说的不对会被同学们笑话,而今天的他的方法恰好是我前几天才预习过的,所以一下子??我今天才发现不是这样??我今后还会努力发言的??
理念反思:从这一个学生的举手发言到说得头头是道的“意外”中,我明白了:学生需要一个能充分展示自我的自由空间,作为老师,我们需要给学生一个自由的民主的氛围,能充分培养学生的自信,使“学困生”也能产生发言的欲望,也能对问题畅所欲言,教师还应能及时捕捉到这一闪光点,给每一位学生都有展示的机会。也就是说要使学生全部积极参与教学,因为它集中体现了现代课程理念:活动、合作、自由、民主、创新。
1、活动、合作是现代课程中的新的理念,只有参与,才能合作创新。
2、民主是现代课程中的重要理念。民主最直接的体现是在课程实施中学生能够平等地参与。没有主动参与,只有被动接受,就没有民主可言。相反,如果没有民主,学生的`参与
就不是主动性参与,而是被动的、消极的参与。
3、在提问时,应设计开放性的问题,如:“请你帮助设计一下,有几种方案等问题?这样才没有限制学生的思维,给学生创设一个自由的空间,学生在这个空间中可以按自己的方式展开想象,才能畅所欲言。
4、在课堂上,老师应不只关注“优等生”,而应平等地对待每一个学生,让学困生”和“学优生”同时享有尊严和拥有一份自信。特别是发现到一个学困生在举了手时,应及时给“学困生”展示的机会,让他们发言,学生在发言中,虽然有时不能把问题完全解决,老师也要充分的肯定这个学生的成绩和能够大胆发言的勇气。
初中数学教案反思怎么写篇7
12.6 一元二次方程的应用(二)
一、素质教育目标
(一)知识教学点:使学生会用列一元二次方程的方法解有关面积、体积方面的应用问题.
(二)能力训练点:进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养用数学的意识.
二、教学重点、难点
1.教学重点:会用列一元二次方程的方法解有关面积、体积方面的应用题.
2.教学难点 :找等量关系.列一元二次方程解应用题时,应注意是方程的解,但不一定符合题意,因此求解后一定要检验,以确定适合题意的解.例如线段的长度不为负值,人的个数不能为分数等.
三、教学步骤
(一)明确目标.
(二)整体感知
(三)重点、难点的学习和目标完成过程
1.复习提问
(1)列方程解应用题的步骤?
(2)长方形的周长、面积?长方体的体积?
2.例1 现有长方形纸片一张,长19cm,宽15cm,需要剪去边长是多少的小正方形才能做成底面积为77cm2的无盖长方体型的纸盒?
解:设需要剪去的小正方形边长为xcm,则盒底面长方形的长为(19-2x)cm,宽为(15-2x)cm,
据题意:(19-2x)(15-2x)=77.
整理后,得x2-17x+52=0,
解得x1=4,x2=13.
∴ 当x=13时,15-2x=-11(不合题意,舍去.)
答:截取的小正方形边长应为4cm,可制成符合要求的无盖盒子.
练习1.章节前引例.
学生笔答、板书、评价.
练习2.教材P.42中4.
学生笔答、板书、评价.
注意:全面积=各部分面积之和.
剩余面积=原面积-截取面积.
例2 要做一个容积为750cm3,高是6cm,底面的长比宽多5cm的长方形匣子,底面的长及宽应该各是多少(精确到0.1cm)?
分析:底面的长和宽均可用含未知数的代数式表示,则长×宽×高=体积,这样便可得到含有未知数的等式——方程.
解:长方体底面的宽为xcm,则长为(x+5)cm,
解:长方体底面的宽为xcm,则长为(x+5)cm,
据题意,6x(x+5)=750,
整理后,得x2+5x-125=0.
解这个方程x1=9.0,x2=-14.0(不合题意,舍去).
当x=9.0时,x+17=26.0,x+12=21.0.
答:可以选用宽为21cm,长为26cm的长方形铁皮.
教师引导,学生板书,笔答,评价.
(四)总结、扩展
1.有关面积和体积的应用题均可借助图示加以分析,便于理解题意,搞清已知量与未知量的相互关系.
2.要深刻理解题意中的已知条件,正确决定一元二次方程的取舍问题,例如线段的长不能为负.
3.进一步体会数字在实践中的应用,培养学生分析问题、解决问题的能力.
四、布置作业
教材P.42中A3、6、7.
教材P.41中3.4
五、板书设计
12.6 一元二次方程的应用(二)
例1.略
例2.略
解:设……… 解:…………
………… …………
12.6 一元二次方程的应用(二)
一、素质教育目标
(一)知识教学点:使学生会用列一元二次方程的方法解有关面积、体积方面的应用问题.
(二)能力训练点:进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养用数学的意识.
二、教学重点、难点
1.教学重点:会用列一元二次方程的方法解有关面积、体积方面的应用题.
2.教学难点 :找等量关系.列一元二次方程解应用题时,应注意是方程的解,但不一定符合题意,因此求解后一定要检验,以确定适合题意的解.例如线段的长度不为负值,人的个数不能为分数等.
三、教学步骤
(一)明确目标.
(二)整体感知
(三)重点、难点的学习和目标完成过程
1.复习提问
(1)列方程解应用题的步骤?
(2)长方形的周长、面积?长方体的体积?
2.例1 现有长方形纸片一张,长19cm,宽15cm,需要剪去边长是多少的小正方形才能做成底面积为77cm2的无盖长方体型的纸盒?
解:设需要剪去的小正方形边长为xcm,则盒底面长方形的长为(19-2x)cm,宽为(15-2x)cm,
据题意:(19-2x)(15-2x)=77.
整理后,得x2-17x+52=0,
解得x1=4,x2=13.
∴ 当x=13时,15-2x=-11(不合题意,舍去.)
答:截取的小正方形边长应为4cm,可制成符合要求的无盖盒子.
练习1.章节前引例.
学生笔答、板书、评价.
练习2.教材P.42中4.
学生笔答、板书、评价.
注意:全面积=各部分面积之和.
剩余面积=原面积-截取面积.
例2 要做一个容积为750cm3,高是6cm,底面的长比宽多5cm的长方形匣子,底面的长及宽应该各是多少(精确到0.1cm)?
分析:底面的长和宽均可用含未知数的代数式表示,则长×宽×高=体积,这样便可得到含有未知数的等式——方程.
解:长方体底面的宽为xcm,则长为(x+5)cm,
解:长方体底面的宽为xcm,则长为(x+5)cm,
据题意,6x(x+5)=750,
整理后,得x2+5x-125=0.
解这个方程x1=9.0,x2=-14.0(不合题意,舍去).
当x=9.0时,x+17=26.0,x+12=21.0.
答:可以选用宽为21cm,长为26cm的长方形铁皮.
教师引导,学生板书,笔答,评价.
(四)总结、扩展
1.有关面积和体积的应用题均可借助图示加以分析,便于理解题意,搞清已知量与未知量的相互关系.
2.要深刻理解题意中的已知条件,正确决定一元二次方程的取舍问题,例如线段的长不能为负.
3.进一步体会数字在实践中的应用,培养学生分析问题、解决问题的能力.
四、布置作业
教材P.42中A3、6、7.
教材P.41中3.4
五、板书设计
12.6 一元二次方程的应用(二)
例1.略
例2.略
解:设……… 解:…………
………… …………
初中数学教案反思怎么写篇8
【关键词】函数;函数思想方法;初中数学
函数概念,首先出现在初中数学课本.初中课本对函数概念是这样描述的:“设在一个变化过程中,有两个变量x和y,如果对于变量x的每一个确定的值,变量y都有唯一确定的值与它对应,那么就说,x是自变量,y是x的函数.”
函数概念的出现,开始了变量教学的新起点,打破了在此之前的常量教学的旧格局,许许多多的数学问题都可以利用函数概念来解析,利用函数思想方法来处理,甚至对于一些数学难题,一旦用上了函数思想方法,即迎刃而解,达到非常好的效果.因此,我们必须十分重视函数概念的教学,重视函数思想方法的应用.
一、函数思想方法的特性
函数思想方法,就是用运动和变化的观点,分析和研究具体问题中的数量关系,通过函数的形式,把这种关系表示出来并加以研究,从而获得问题的解决办法.函数思想方法,作为中学数学的思想方法,它具有以下特性:
1.函数概念的抽象性引起函数思想方法的复杂性
函数概念,体现一个变量与另一个变量的一种对应,也体现一个集合到另一个集合的一种映射,在初中数学来讲,则是一个变数与另一个变数的一种关系.什么叫对应,什么叫映射,什么叫关系,对初中生来说,是非常陌生的,这些抽象词汇,造成了学生对函数概念理解上的困难.因此,函数思想方法作为函数概念的外延,就显得非常复杂了.一个连函数概念都不理解的人,怎么能掌握函数思想方法呢?函数与图像的亲密对应,引发了数形结合方法;函数的等价变换,引发了化归思想方法;还有其他的,如换元法、配方法、综合法、分析法等.正确认识函数思想方法的复杂性,使教师更加重视函数概念的教学,更加重视函数思想方法的研究,提高教学的责任心.
2.函数概念的生活性引起函数思想方法的广阔性
函数概念虽然很抽象,但函数的具体应用却渗透到我们生活中的各个领域.可以说,我们的生活离不开函数,我们的每一个生产活动也离不开函数,许多关于数量的科学研究问题,只有引入函数才能表达清楚.生活中的每一个问题,只要引入变量,就可以与函数联系起来,而函数的变化千姿百态,目不暇接,于是,就产生千姿百态的函数思想方法.例如初中数学的路程问题、浓度问题、一次方程和二次方程的解法问题,高中数学体现在生产中的增产节支问题、生产的成本核算问题、一次不等式和二次不等式的求解问题、解三角形问题、面积问题、体积问题等,都可以引入变量,转变为函数问题.这一转变,使人们的函数思想方法打开了更为广阔的前景,解决问题思路也就左右逢源.
3.函数变化的奇异性引起函数思想方法的多样性
函数的变化经常出现奇妙的效果,三角形的边与角的关系通过三角式联系得天衣无缝,懂得了这些道理,不上山者能测山高,不过河者能测河宽,就显得不足为奇了.二次函数与抛物线的联系也是如胶似漆,看见二次函数就应该想到抛物线,看见抛物线也应该想到二次函数,二次函数的变化便引起抛物线的运动,而抛物线的运动又使二次函数变得奇异无穷.一次函数与直线的关系也是如此,一次函数的变化与直线的运动,引出许多美妙的数学问题,呈现出多姿多彩的思维效果.本来是生活中的实际问题、如产值最大问题、原料最省问题,还有生产设计问题、最优决策问题,列出了函数,掌握了函数与函数图像的变化规律,那么,解决问题就如囊中取物.
二、函数思想方法在初中数学教学中的应用
函数概念是初中数学概念的灵魂,函数思想方法是数学方法的主线,它能把数学概念、数学命题、数学原则、数学方法贯穿起来,使得数学内容达到更高层次的和谐与统一.因此,函数概念和函数思想方法在初中数学教学中起到了统帅的作用.数学教师若能抓住函数思想方法这条主线,再把其他思想方法连贯起来,应用于教学的各个环节,可以肯定地说,教学效果是很好的.我们在这方面作了一些有价值的探索.
1.函数思想方法应用于数学教学的全过程
函数的概念是动态的概念,函数思想方法是一种动态的思想方法,这正符合动态式的数学教学的要求.引进函数概念之后,实现了数与点的结合、函数与图形的结合,还实现了数与形的灵活转换、符号语言与图形语言的灵活转换.我们要帮助学生从局部的、静止的、割裂的认知结构中解放出来,学会运用动态的、变化的、联系的观点来理解数学知识,这乃是提高数学质量的重要途径.正是考虑到动态教学的新理念,于是,应该把体现动态思想方法的函数思想方法应用于教学的全过程,在课堂教学、课外作业、科研辅导等教学环节,只要能用函数思想方法来处理的,都应运用.这需要毅力,需要创造,需要教师从现有教材中挖掘与函数概念有关系的数学知识点,然后考虑运用函数思想方法解决它.
例1若关于实数x的不等式(k2-2k-3)x2-(k-3)x-1<0恒成立,求k的取值范围.
这不是一个简单的一元二次不等式,而是已知这个不等式恒成立,反过来求k的取值范围.这与函数概念有关吗?诚然,不等式的左边可以看做关于变量x的函数,记为y=(k2-2k-3)x2-(k-3)x-1,它的图像是抛物线,按题意,不等式恒成立,也就是说,函数值y恒小于零,则函数的图像,即抛物线总在x轴的下方,并且与x轴没有交点.根据抛物线的这个特点,可以确定,抛物线开口向下,二次项系数a=k2-2k-3<0,又可以确定,抛物线全部落在下半平面,与x轴没有交点,则二次方程没有实数根,Δ=(k-3)2+4(k2-2k-3)<0.这是一次成功的转化,把题意转化为解下列不等式组:
a=k2-2k-3<0,Δ=(k-3)2+4(k2-2k-3)<0
(k+1)(k-3)<0①(5k+1)(k-3)<0②-<k<3.
故k的取值范围是-<k<3.
这个数学问题的解决,确实是运用了函数思想,把不等式问题转化为函数问题,再把函数问题转化为图形问题,最后又把图形的特征转化为另一个不等式组的计算,这样的一条龙似的解题过程相当流畅,不仅充分体现了函数思想与方程思想、数形结合思想、转化思想的高度统一,同时也是函数思想方法解决问题的一个典型范例.
例2已知(1-2x)7=a0+a1x+…+a7x7,求代数式a1+a2+…+a7的值.
这个问题初中生能解决吗?初看起来,有点像二项展开式,是高中的问题.按高中知识来做,那就得把左边按二项式定理展开,对比两边系数,分别求出a1,a2,…,a7的值,最后把它们加起来,就得代数式a1+a2+…+a7的值,难度不小啊!
认真观察一下,这也是一个函数问题.把已知问题看做函数,记为y=(1-2x)7=a0+a1x+…+a7x7.
当x=0时,y=(1-2×0)7=a0=1;
当x=1时,y=(1-2×1)7=a0+a1+…+a7=-1,
所以a1+a2+…+a7=(a0+a1+…+a7)-a0=-1-1=-2.
一个看起来似乎是高中的数学问题,用了函数思想方法,却变成了初中生也能接受的数学问题.函数思想方法的功能不小啊!
2.函数思想方法要与其他数学知识紧密结合
函数思想方法确实是解决数学问题的有力武器,但绝不是万能武器.不是说所有数学问题都能用函数思想方法解决,而是说,凡能转化为函数问题的,就应该尽量转化.这也体现函数概念与其他数学知识的紧密结合.
3.函数思想方法应用于解决实际数学问题
我们的生活空间是一个巨大的数学空间,生活中的每一个实际问题大都能转化为数学问题,其中相当大的部分可以用函数思想方法来处理.为了强化函数思想方法的应用,更为了培养学生运用函数思想方法解决实际问题的能力,让学生学会解决身边发生的经济问题,学会解决经济发展过程中的一些社会问题.为此,我们应该努力创设良好的学习环境,使学生在学习中得到锻炼.
例3数学竞赛队的3位教师和若干名参赛学生准备乘飞机到北京参加全国性比赛,按当地飞机票价,乘飞机往返每人需交3000元.但民航服务站对师生乘坐飞机有优惠的临时规定:第一种优惠方案是教师买全票,学生买半票;第二种优惠方案为师生一律按六折优惠购票.你认为,应采取哪一种优惠方案?
这是发生在学生身边的与经济有关的生活问题,采取哪种方案,当然应以节约为原则,哪种方案为竞赛队节约开支,就采取哪种方案.考虑把旅费与学生人数建立函数关系,若设学生人数为x,两种优惠方案的旅费分别为y1和y2,则
y1=3000×3+1500x=9000+1500x,
y2=3000×0.6×(x+3)=1800×(x+3).
y1<y2?圳9000+1500x<1800x+5400?圳x>12;
y1>y2?圳9000+1500x>1800x+5400?圳x<12;
y1=y2?圳9000+1500x=1800x+5400?圳x=12.
当学生人数多于12人时,采取第一种优惠方案;当学生人数少于12人时,采取第二种优惠方案;当学生人数等于12人时,采取哪种优惠方案都可以.
函数思想方法在解决数学问题中的确起到非常重要的作用,我们应加强这一方法的教学探讨和学习训练,把数学教学推向新水平.
【参考文献】