教案吧 > 学科教案 > 数学教案 >

高中的数学教案

时间: 新华 数学教案

教案包括教材简析和学生分析、教学目的、重难点、教学准备、教学过程及练习设计等。高中的数学教案怎么写,这里给大家分享高中的数学教案,供大家参考。

高中的数学教案篇1

分享目标:

1、通过与学生交流《课程纲要》,使学生了解本学期的课程内容、课程目标及课程评价。

2、通过了解教师对学生的评价方法,激发学生自主学习的主动性。

分享重点:

了解本学期的学习内容和评价方法。

分享难点:

通过分享《课程纲要》明确学习目标。

分享时间:一课时

分享准备:《三年级综实课程纲要》PPT

分享过程:

一、谈话导入

1、师:同学们,新年新气象,新的学期又是新的开始。本学期的第二节综实课,老师要带领大家认识一个新朋友,它就像向导一样,能够指引大家在本学期的学习中找准学习目标,理清学习内容、了解学习安排,真正成为学习的小主人,它就是课程纲要。(板书课题)

二、内容新授

1、师:怎样才能做学习的小主人呢?首先我们要了解本学期的学习内容。我们本学期将会学习那些内容呢?《课程纲要》来一一为我们介绍。

2、师:本学期我们只进行一个综合实践活动课的主题,它就是有趣的姓氏。

3、师:主题确定了,那么课下就需要你们想想,围绕这些主题可以引出什么呢?(生说)

4、师:对,是子课题。说明大家上学期上课大家认真听讲了。除了想一想可以确定哪些子课题,还要想想你准备怎样做,使用哪些方法等等。

5、师:接下来我来说说我们这学期综实课分组的问题。这学期分组,以主题确定后,你们自己找搭档,找助手,一起同心协力更好的完成各个主题活动。

6、师:本学期的课程内容大家都了解了,那本学期的评奖方式是什么呢?

①每节课课余1-3分钟,根据本节举手回答问题的次数,以及课堂表现,来老师这里为个人加分,各组组长也负责记录并统计出每星期、每个月加分最多的组员上报老师,老师会授予这些同学优秀之星的称号,获得优秀之星称号的同学会得到学习星以及才艺星的奖励。

②课前准备综实成长记录袋以及A4白纸15张,作为平时作业及记录板书内容的笔记本。老师批阅,每月月末总检,作为评分奖励的内容之一。

③平时按照老师要求,准备工具、材料,期末奖励进步奖。

三、课堂小结

师:同学们,通过对本学期《课程纲要》的学习,你是否对本学期的学习充满信心呢?老师相信,每个孩子都能成为学习的小主人。

高中的数学教案篇2

授课时间:08年9月12日

授课年级、科目、课题:高一数学集合的概念

使用教材:必修1(人教版)

说课教师:刘华

各位老师同学们,大家好!今天我说课的课题是“集合的概念”,本节内容选自高中数学必修1(人教版),下面我将主要从六个方面介绍我的教学方案。

一、教材分析:

教材的地位和作用:

集合是学习高中数学的重要工具之一,起着承前启后的作用。本小节首先从初中代数与几何涉及的集合实例人手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明.然后,介绍了集合的常用表示方法,包括列举法、描述法等,还给出了画图表示集合的例子.从教材我归纳出本节内容的教学重点和难点。

(一)教学重点:集合的基本概念和表示方法,集合元素的特征

(二)教学难点:运用集合的三种常用表示方法、列举法与描述法,正确表示一些简单的集合

二、教学目标:

(一)知识目标:

(1)使学生初步理解集合的概念,知道常用数集的概念及其记法;

(2)使学生初步了解“属于”关系的意义;

(3)使学生初步了解有限集、无限集、空集的意义

(二)能力目标:

(1)重视基础知识的教学、基本技能的训练和能力的培养;

(2)启发学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题;

(3)通过教师指导,发现知识结论,培养学生抽象概括能力和逻辑思维能力;

(三)德育目标:激发学生学习数学的兴趣和积极性,陶冶学生的情

操,培养学生坚忍不拔的意志,实事求是的科学学习态度和勇于创新的精神。

三、学情分析:

针对现在的学生知识迁移能力差、计算能力差的特点,第一节课的内容不要求学生太多的计算,通过大量的举例让学生充分掌握集合的基础知识。

四、教法分析:

为了突出重点、突破难点,本节课主要采用观察、分析、类比、归纳的方法让学生参与学习,将学生置于主体位置,发挥学生的主观能动性,将知识的形成过程转化为学生亲自探索类比的过程,使学生获得发现的成就感。在这个过程中力求把握好以下几点:

(1)通过实例,让学生去发现规律。让学生在问题情景中,经历知识的形成和发展,力求使学生学会用类比的思想去看待问题。

(2)营造民主的教学氛围,使学生参与教学全过程。

(3)力求反馈的全面性、及时性,通过精心设计的提问,让学生的思维动起来,针对学生回答的问题,老师进行适当的点评。

(4)给学生思考的时间和空间,不急于把结果抛给学生,让学生自己去观察,分析,类比得出结果,提高学生的推理能力。

五、教学过程

(一)复习导入

(1)简介数集的发展,复习最大公约数和最小公倍数,质数与和数;

(2)教材中的章头引言;

(3)教材中例子(P4)。

(二)讲解新课

(1)集合的有关概念

(2)常用集合及表示方法

(3)元素对于集合的隶属关系

(4)集合中元素的特性

(三)课堂练习

1下列各组对象能确定一个集合吗?

(1)所有很大的实数的集合(不确定)

(2)好心的人的集合(不确定)

(3){1,2,2,3,4,5}(有重复)

(4)所有直角三角形的集合(是的)

(5)高一(12)班全体同学的集合(是的)

(6)参加20--年奥运会的中国代表团成员的集合(是的)

2、教材P5练习1、2

六:总结

1.本节主要学习了集合的基本概念、表示符号;一些常用数集及其记法;集合的元素与集合之间的关系;以及集合元素具有的特征.

2.我们在进一步复习巩固集合有关概念的基础上,又学习了集合的表示方法和有限集、无限集、空集的概念,同学们要熟练掌握.

高中的数学教案篇3

一.教学目标:

1.知识与技能

(1)理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集

(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集

(3)能使用venn图表达集合的运算,体会直观图示对理解抽象概念的作用

2.过程与方法

学生通过观察和类比,借助venn图理解集合的基本运算

3.情感.态度与价值观

(1)进一步树立数形结合的思想

(2)进一步体会类比的作用

(3)感受集合作为一种语言,在表示数学内容时的简洁和准确

二.教学重点.难点

重点:交集与并集,全集与补集的概念

难点:理解交集与并集的概念,符号之间的区别与联系

三.学法与教学用具

1.学法:学生借助venn图,通过观察、类比、思考、交流和讨论等,理解集合的基本运算

2.教学用具:投影仪

四.教学思路

(一)创设情景,揭示课题

问题1:我们知道,实数有加法运算。类比实数的加法运算,集合是否也可以“相加”呢?

请同学们考察下列各个集合,你能说出集合c与集合a、b之间的关系吗?

引导学生通过观察,类比、思考和交流,得出结论。教师强调集合也有运算,这就是我们本节课所要学习的内容。

(二)研探新知

l.并集

—般地,由所有属于集合a或属于集合b的元素所组成的集合,称为集合a与b的并集

记作:a∪b

读作:a并b

其含义用符号表示为:

用venn图表示如下:

请同学们用并集运算符号表示问题1中a,b,c三者之间的关系

练习、检查和反馈

(1)设a={4,5,6,8),b={3,5,7,8),求a∪b

(2)设集合

让学生独立完成后,教师通过检查,进行反馈,并强调:

(1)在求两个集合的并集时,它们的公共元素在并集中只能出现一次

(2)对于表示不等式解集的集合的运算,可借助数轴解题

2.交集

(1)思考:求集合的并集是集合间的一种运算,那么,集合间还有其他运算吗?

请同学们考察下面的问题,集合a、b与集合c之间有什么关系?

②b={是新华中学20--年9月入学的高一年级同学},c={是新华中学20--年9月入学的高一年级女同学}

教师组织学生思考、讨论和交流,得出结论,从而得出交集的定义;

一般地,由属于集合a且属于集合b的所有元素组成的集合,称为a与b的交集

记作:a∩b

读作:a交b

其含义用符号表示为:

接着教师要求学生用venn图表示交集运算

(2)练习、检查和反馈

①设平面内直线上点的集合为,直线上点的集合为,试用集合的运算表示的位置关系

②学校里开运动会,设a={是参加一百米跑的同学},b={是参加二百米跑的同学},c={是参加四百米跑的同学},学校规定,在上述比赛中,每个同学最多只能参加两项比赛,请你用集合的运算说明这项规定,并解释集合运算a∩b与a∩c的含义

学生独立练习,教师检查,作个别指导,并对学生中存在的问题进行反馈和纠正

(三)学生自主学习,阅读理解

1.教师引导学生阅读教材第10~11页中有关补集的内容,并思考回答下例问题:

(1)什么叫全集?

(2)补集的含义是什么?用符号如何表示它的含义?用venn图又表示?

(3)已知集合

(4)设s={是至少有一组对边平行的四边形},a={是平行四边形},b={是菱形},c={是矩形},求。

在学生阅读、思考的过程中,教师作个别指导,待学生经过阅读和思考完后,请学生回答上述问题,并及时给予评价

(四)归纳整理,整体认识

1.通过对集合的学习,同学对集合这种语言有什么感受?

2.并集、交集和补集这三种集合运算有什么区别?

(五)作业

1.课外思考:对于集合的基本运算,你能得出哪些运算规律?

2.请你举出现实生活中的一个实例,并说明其并集,交集和补集的现实含义

3.书面作业:教材第12页习题1.1a组第7题和b组第4题

高中的数学教案篇4

教学目标:

1、理解流程图的选择结构这种基本逻辑结构。

2、能识别和理解简单的框图的功能。

3、能运用三种基本逻辑结构设计流程图以解决简单的问题。

教学方法:

1、通过模仿、操作、探索,经历设计流程图表达求解问题的过程,加深对流程图的感知。

2、在具体问题的解决过程中,掌握基本的流程图的画法和流程图的三种基本逻辑结构。

教学过程:

一、问题情境

情境:

某铁路客运部门规定甲、乙两地之间旅客托运行李的费用为

其中(单位:)为行李的重量。

试给出计算费用(单位:元)的一个算法,并画出流程图。

二、学生活动

学生讨论,教师引导学生进行表达。

解算法为:

输入行李的重量;

如果,那么,

否则;

输出行李的重量和运费。

上述算法可以用流程图表示为:

教师边讲解边画出第10页图1-2-6。

在上述计费过程中,第二步进行了判断。

三、建构数学

1、选择结构的概念:

先根据条件作出判断,再决定执行哪一种操作的结构称为选择结构。

如图:虚线框内是一个选择结构,它包含一个判断框,当条件成立(或称条件为“真”)时执行,否则执行。

2、说明:

(1)有些问题需要按给定的条件进行分析、比较和判断,并按判断的不同情况进行不同的操作,这类问题的实现就要用到选择结构的设计;

(2)选择结构也称为分支结构或选取结构,它要先根据指定的条件进行判断,再由判断的结果决定执行两条分支路径中的某一条;

(3)在上图的选择结构中,只能执行和之一,不可能既执行,又执行,但或两个框中可以有一个是空的,即不执行任何操作;

(4)流程图图框的形状要规范,判断框必须画成菱形,它有一个进入点和两个退出点。

3、思考:教材第7页图所示的算法中,哪一步进行了判断?

高中的数学教案篇5

今天我说课的课题是《锐角三角函数》(第一课时),所选用的教材为人教版义务教育课程标准实验教科书。

根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析,教学目标分析,教学方法和学法分析,教学过程分析四个方面加以说明。

一、教材的地位和作用

本节教材是人教版初中数学新教材九年级下第28章第一节内容,是初中数学的重要内容之一。一方面,这是在学习了直角三角形两锐角关系、勾股定理等知识的基础上,对直角三角形边角关系的进一步深入和拓展;另一方面,又为解直角三角形等知识奠定了基础,也是高中进一步研究三角函数、反三角函数、三角方程的工具性内容。鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。

2、学情分析

从学生的年龄特征和认知特征来看:

九年级学生的思维活跃,接受能力较强,具备了一定的数学探究活动经历和应用数学的意识。

从学生已具备的知识和技能来看:

九年级学生已经掌握直角三角形中各边和各角的关系,能灵活运用相似图形的性质及判定方法解决问题,有较强的推理证明能力,这为顺利完成本节课的教学任务打下了基础

从心理特征来看:初三学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。

从学生有待于提高的知识和技能来看:

学生要得出直角三角形中边与角之间的关系,需要观察、思考、交流,进一步体会数学知识之间的联系,感受数形结合的思想,体会锐角三角函数的意义,提高应用数学和合作交流的能力。学生可能会产生一定的困难,所以教学中应予以简单明了,深入浅出的剖析。

3、教学重、难点

根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:理解正弦函数意义,并会求锐角的正弦值。

难点确定为:根据锐角的正弦值及一边,求直角三角形的其他边长。

二、教学目标分析

新课标指出,教学目标应从知识技能、数学思考、问题解决、情感态度等四个方面阐述,而这四维目标又应是紧密联系的一个完整的整体,学生学知识技能的过程同时成为学会学习,形成正确价值观的过程,这告诉我们,在教学中应以知识技能为主线,渗透情感态度,并把前面两者通过数学思考充分体现在问题解决中。借此结合以上教材分析,我将四个目标进行整合,确定本节课的教学目标为:

1.理解锐角正弦的意义,并会求锐角的正弦值;

2.初步了解锐角正弦取值范围及增减性;

3.掌握根据锐角的正弦值及直角三角形的一边,求直角三角形的其他边长的方法;

4.经历锐角正弦的意义探索的过程,培养学生观察分析、类比归纳的探究问题的能力;

5.通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考,独立思考的好习惯,并且同时培养学生的团队合作精神。

三、教学方法和学法分析

现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的学情情况,本节课我采用“三动五自主”的教学模式,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和合作交流的形式,在教师的指道下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。

另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

本节课的教法采用的是情境引导和探究发现教学法,在教学过程中,通过适宜的问题情境引发新的认知冲突;建立知识间的联系。教师通过引导、指导、反馈、评价,不断激发学生对问题的好奇心,使其在积极的自主活动中主动参与概念的建构过程,并运用数学知识解决实际问题,享受数学学习带来的乐趣。

本节课的学习方法采用自主探究法与合作交流法相结合。本节课数学活动贯穿始终,既有学生自主探究的,也有小组合作交流的,旨在让学生从自主探究中发展,从合作交流中提高。

四、教学过程

新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:

(一)自主探究

1、复习旧知,温故知新

1、已知:在Rt△ABC中,∠C=900,∠A=350,则∠B=0

2、已知:在Rt△ABC中,∠C=900,AB=5,AC=3,则BC=

设计意图:建构注意主张教学应从学生已有的知识体系出发,相似的三角形性质是本节课深入研究锐角正弦的认知基础,这样设计有利于引导学生顺利地进入学习情境。

2、创设情境,提出问题

利用多媒体播放意大利比萨斜塔图片,然后老师问:比萨斜塔中条件和要探究的问题:“你能根据问题背景画出直角三角形并且利用边求出斜塔的倾斜角吗?”这就是今天我们要学习锐角三角函数(板书课题)

设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望‘

通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节———

(二)自主合作

1、发现问题,探求新知(要求学生独立思考后小组内合作探究)

1、(播放绿化荒山的视频)课本P74问题与思考,求的值

2、课本P75思考:求的值

设计意图:现代数学教学论指出,数学知识的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过观察分析、独立思考、小组交流等活动,引导学生归纳。

2、分析思考,加深理解

1、课本P75探索,

问:与有什么关系?你能解释吗?

2、正弦函数定义:在Rt△ABC中,∠C=900,,把锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即sinA=

对定义的几点说明:

1、sinA是一个完整的符号,表示∠A的正切习惯上省略“∠”的符号.

2、本章我们只研究锐角∠A的正弦.

3、sinA的范围:0

设计意图:数学教学论指出,数学概念要明确其内涵和外延(条件、结论、应用范围等),通过对锐角正弦定义阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。

通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生引入到下一环节。

(三)自主展示(强化训练,巩固双基)

1、(例1课本P76)已知:在Rt△ABC中,∠C=900,根据图中数据

求sinA和sinB

2、判断对错(学生口答)

(1)若锐角∠A=∠B,则sinA=sinB()

(2)sin600=sin300+sin300()

3、如图,将Rt△ABC各边扩大100倍,则tanA的值()

A.扩大100倍B.缩小100倍C.不变D.不确定

4、如图,平面直角坐标系中点P(3,-4),OP与x轴的夹角为∠1,求sin∠1的值。

设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,其中例1……例2……,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。

(四)自主拓展(提高升华)

1、课本习题28.1第1、2、题;

2、选做题:已知:在Rt△ABC中,∠C=900,sinA=,周长为60,求:斜边AB的长?

以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。

(五)自主评价(小结归纳,拓展深化)

我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主题作用,从学习的知识、方法、体验是那个方面进行归纳,我设计了这么三个问题:

①通过本节课的学习,你学会了哪些知识;

②通过本节课的学习,你最大的体验是什么;

③通过本节课的学习,你掌握了哪些学习数学的方法?

以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,为了使课堂效益达到最佳状态,我设计以下问题加以追问:

1、sinA能为负吗?

2、比较sin450和sin300的大小?

设计要求:(1)先学生独立思考后小组内探究

(2)各组交流展示探究结果,并且组内或各组之间自主评价.

设计意图:

(1)有一定难度需要学生进行合作探究,有利于培养学生善于反思的好习惯.

(2)学生通过互评自评,可以使学生全面了解自己的学习过程,感受自己的成长和进步,同时促进学生对学习及时进行反思,为教师全面了解学生的学习状况,改进教学,实施因材施教提供重要依据。我的说课到此结束,敬请各位老师批评、指正,谢谢!

教学反思

1.本教学设计以直角三角形为主线,力求体现生活化课堂的理念,让学生在经历“问题情境——形成概念——应用拓展——反思提高”的基本过程中,体验知识间的内在联系,让学生感受探究的乐趣,使学生在学中思,在思中学。

2.在教学过程中,重视过程,深化理解,通过学生的主动探究来体现他们的主体地位,教师是通过对学生参与学习的启发、调整、激励来体现自己的引导作用,对学生的主体意识和合作交流的能力起着积极作用。

3.正弦是生活中应用较广泛的三角函数。因而在本节课的设计中力求贴近生活。又从意大利比萨斜塔提炼出了数学问题,让学生体会学数学、用数学的乐趣。

高中的数学教案篇6

一、说教材

等差数列为人教版必修5第二章第二节的内容。数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的性质与应用等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。

二、说学情

对于我校的高中学生,知识经验比较贫乏,虽然他们的智力发展已到了形式运演阶段,但并不具备教强的抽象思维能力和演绎推理能力,所以我在授课时注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。

三、说教学目标

【知识与技能】能够准确的说出等差数列的特点;能够推导出等差数列的通项公式,并可以利用等差数列解决些简单的实际问题。

【过程与方法】在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,锻炼知识、方法迁移能力;通过阶梯性练习,提高分析问题和解决问题的能力。

【情感态度价值观】通过对等差数列的研究,激发主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。

四、说教学重难点

【重点】等差数列的概念,等差数列的通项公式的推导过程及应用。

【难点】等差数列通项公式的推导,用“数学建模”的思想解决实际问题。

五、说教法与学法

数学教学是师生之间交往活动共同发展的课程,结合本节课的特点,我采取指导自主学习方法,并在引导分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。

六、说教学过程

(一)复习导入

类比函数,复习提问数列的函数意义,即数列可看作是定义域为正整数对应的一列函数值,从而数列的通项公式也就是相应函数的解析式。

设计意图:通过复习,为本节课用函数思想研究数列问题作准备,将课堂设置成为阶梯型教学,消除学生的畏难情绪。

(二)新课教学

教师创设具体情境,从具体事例中抽象出数学概念。

1.小明目前会100个单词,他打算从今天起不再背单词了,结果不知不觉地每天忘掉2个单词,那么在今后的五天内他的单词量逐日依次递减为:100,98,96,94,92

2.小芳只会5个单词,他决定从今天起每天背记10个单词,那么在今后的五天内他的单词量逐日依次递增为5,10,15,20,25

通过练习1和2引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发学生的求知欲。由学生观察两个数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。

接下来由学生尝试总结归纳等差数列的定义:

如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,

这个常数叫做等差数列的公差,通常用字母d来表示。

(三)深化概念

教师请学生深度剖析等差数列的概念,进一步强调

①“从第二项起”满足条件;

②公差d一定是由后项减前项所得;

③每一项与它的前一项的差必须是同一个常数(强调“同一个常数”);

在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:an+1-an=d(n≥1)

同时为配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。其中第一个数列公差小于0,第二个数列公差大于0,第三个数列公差等于0。由此强调:公差可以是正数、负数,也可以是0。

(四)归纳通项公式

在归纳等差数列通项公式中,我采用讨论式的教学方法。由学生研究,分组讨论上述四个等差数列的通项公式。通过总结对比找出共同点猜想一般等差数列的通向公式应为怎样的形式整个过程由学生完成,通过互相讨论的方式既培养了学生的协作意识又化解了教学难点。

猜想等差数列的通项公式:an=a1+(n-1)d

此时指出:这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法---迭加法:

在迭加法的证明过程中,我采用启发式教学方法。

利用等差数列概念启发学生写出n-1个等式。

对照已归纳出的通项公式启发学生想出将n-1个等式相加。证出通项公式。

在这里通过该知识点引入迭加法这一数学思想,逐步达到“注重方法,凸现思想”的教学要求

接着举例说明:若一个等差数列{an}的首项是1,公差是2,得出这个数列的通项公式是:an=1+(n-1)×2,

即an=2n-1,以此来巩固等差数列通项公式的运用。

同时要求画出该数列图象,由此说明等差数列是关于正整数n一次函数,其图像是均匀排开的无穷多个孤立点。用函数的思想来研究数列,使数列的性质显现得更加清楚。

(五)应用举例

这一环节是使学生通过例题和练习,增强对通项公式含义的理解以及对通项公式的运用,提高解决实际问题的能力。

先让学生求等差数列的第20项、30项等。向学生表明:要用运动变化的观点看等差数列通项公式中的a1、d、n、an这4个量之间的关系。当其中的部分量已知时,可根据该公式求出另一部分量。

此外还可以联系实际建模问题,如建造房屋时要设计楼梯,已知某大楼第2层的楼底离地面的高度为3米,第三层离地面5.8米,若楼梯设计为等高的16级台阶,问每级台阶高为多少米?

这道题我采用启发式和讨论式相结合的教学方法。启发学生注意每级台阶“等高”使学生想到每级台阶离地面的高度构成等差数列,引导学生将该实际问题转化为数学模型--等差数列。

设置此题的目的:

1.加强同学们对应用题的综合分析能力;

2.通过数学实际问题引出等差数列问题,激发了学生的兴趣;

3.再者通过数学实例展示了“从实际问题出发经抽象概括建立数学模型,最后还原说明实际问题的“数学建模”的数学思想方法。

(六)小结作业

小结:(由学生总结这节课的收获)

1.等差数列的概念及数学表达式。

强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数。

2.等差数列的通项公式:an=a1+(n-1),会知三求一。

3.用“数学建模”思想方法解决实际问题

作业:现实生活中还有哪些等差数列的实际应用呢?根据实际问题自己编写两道等差数列的题目并进行求解。

激发学生学习数学的兴趣,以及认识到学习数学的重要性,将数学知识应用于实际问题的解决不仅回顾加深了本堂课的教学内容,开阔学生思维,还锻炼了学生学以致用、观察分析问题解决问题的能力。

七、说板书设计

在板书中突出本节重点,将强调的地方如定义中,“从第二项起”及“同一常数”等几个字用红色粉笔标注,同时给学生留有作题的地方,整个板书充分体现了精讲多练的教学方法。

高中的数学教案篇7

教学目标:

1.了解反函数的概念,弄清原函数与反函数的定义域和值域的关系.

2.会求一些简单函数的反函数.

3.在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识.

4.进一步完善学生思维的深刻性,培养学生的逆向思维能力,用辩证的观点分析问题,培养抽象、概括的能力.

教学重点:求反函数的方法.

教学难点:反函数的概念.

教学过程:

教学活动

设计意图一、创设情境,引入新课

1.复习提问

①函数的概念

②y=f(x)中各变量的意义

2.同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是时间t的函数;在t=中,时间t是位移S的函数.在这种情况下,我们说t=是函数S=vt的反函数.什么是反函数,如何求反函数,就是本节课学习的内容.

3.板书课题

由实际问题引入新课,激发了学生学习兴趣,展示了教学目标.这样既可以拨去"反函数"这一概念的神秘面纱,也可使学生知道学习这一概念的必要性.

二、实例分析,组织探究

1.问题组一:

(用投影给出函数与;与()的图象)

(1)这两组函数的图像有什么关系?这两组函数有什么关系?(生答:与的图像关于直线y=x对称;与()的图象也关于直线y=x对称.是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算.同样,与()也互为逆运算.)

(2)由,已知y能否求x?

(3)是否是一个函数?它与有何关系?

(4)与有何联系?

2.问题组二:

(1)函数y=2x 1(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?

(2)函数(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?

(3)函数 ()的定义域与函数()的值域有什么关系?

3.渗透反函数的概念.

(教师点明这样的函数即互为反函数,然后师生共同探究其特点)

从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培养学生抽象、概括的能力.

通过这两组问题,为反函数概念的引出做了铺垫,利用旧知,引出新识,在"最近发展区"设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定基础.

三、师生互动,归纳定义

1.(根据上述实例,教师与学生共同归纳出反函数的定义)

函数y=f(x)(x∈A) 中,设它的值域为 C.我们根据这个函数中x,y的关系,用 y 把 x 表示出来,得到 x = j (y) .如果对于y在C中的任何一个值,通过x = j (y),x在A中都有的值和它对应,那么, x = j (y)就表示y是自变量,x是自变量 y 的函数.这样的函数 x = j (y)(y ∈C)叫做函数y=f(x)(x∈A)的反函数.记作: .考虑到"用 x表示自变量, y表示函数"的习惯,将中的x与y对调写成.

2.引导分析:

1)反函数也是函数;

2)对应法则为互逆运算;

3)定义中的"如果"意味着对于一个任意的函数y=f(x)来说不一定有反函数;

4)函数y=f(x)的定义域、值域分别是函数x=f(y)的值域、定义域;

5)函数y=f(x)与x=f(y)互为反函数;

6)要理解好符号f;

7)交换变量x、y的原因.

3.两次转换x、y的对应关系

(原函数中的自变量x与反函数中的函数值y 是等价的,原函数中的函数值y与反函数中的自变量x是等价的.)

4.函数与其反函数的关系

函数y=f(x)

函数

定义域

A

C

值 域

C

A

四、应用解题,总结步骤

1.(投影例题)

【例1】求下列函数的反函数

(1)y=3x-1 (2)y=x 1

【例2】求函数的反函数.

(教师板书例题过程后,由学生总结求反函数步骤.)

2.总结求函数反函数的步骤:

1° 由y=f(x)反解出x=f(y).

2° 把x=f(y)中 x与y互换得.

3° 写出反函数的定义域.

(简记为:反解、互换、写出反函数的定义域)【例3】(1)有没有反函数?

(2)的反函数是________.

(3)(x<0)的反函数是__________.

在上述探究的基础上,揭示反函数的定义,学生有针对性地体会定义的特点,进而对定义有更深刻的认识,与自己的预设产生矛盾冲突,体会反函数.在剖析定义的过程中,让学生体会函数与方程、一般到特殊的数学思想,并对数学的符号语言有更好的把握.

通过动画演示,表格对照,使学生对反函数定义从感性认识上升到理性认识,从而消化理解.

通过对具体例题的讲解分析,在解题的步骤上和方法上为学生起示范作用,并及时归纳总结,培养学生分析、思考的习惯,以及归纳总结的能力.

题目的设计遵循了从了解到理解,从掌握到应用的不同层次要求,由浅入深,循序渐进.并体现了对定义的反思理解.学生思考练习,师生共同分析纠正.

五、巩固强化,评价反馈

1.已知函数 y=f(x)存在反函数,求它的反函数 y =f( x)

(1)y=-2x 3(xR) (2)y=-(xR,且x)

( 3 ) y=(xR,且x)

2.已知函数f(x)=(xR,且x)存在反函数,求f(7)的值.

五、反思小结,再度设疑

本节课主要研究了反函数的定义,以及反函数的求解步骤.互为反函数的两个函数的图象到底有什么特点呢?为什么具有这样的特点呢?我们将在下节研究.

(让学生谈一下本节课的学习体会,教师适时点拨)

进一步强化反函数的概念,并能正确求出反函数.反馈学生对知识的掌握情况,评价学生对学习目标的落实程度.具体实践中可采取同学板演、分组竞赛等多种形式调动学生的积极性."问题是数学的心脏"学生带着问题走进课堂又带着新的问题走出课堂.

六、作业

习题2.4 第1题,第2题

进一步巩固所学的知识.

教学设计说明

"问题是数学的心脏".一个概念的形成是螺旋式上升的,一般要经过具体到抽象,感性到理性的过程.本节教案通过一个物理学中的具体实例引入反函数,进而又通过若干函数的图象进一步加以诱导剖析,最终形成概念.

反函数的概念是教学中的难点,原因是其本身较为抽象,经过两次代换,又采用了抽象的符号.由于没有一一映射,逆映射等概念的支撑,使学生难以从本质上去把握反函数的概念.为此,我们大胆地使用教材,把互为反函数的两个函数的图象关系预先揭示,进而探究原因,寻找规律,程序是从问题出发,研究性质,进而得出概念,这正是数学研究的顺序,符合学生认知规律,有助于概念的建立与形成.另外,对概念的剖析以及习题的配备也很精当,通过不同层次的问题,满足学生多层次需要,起到评价反馈的作用.通过对函数与方程的分析,互逆探索,动画演示,表格对照、学生讨论等多种形式的教学环节,充分调动了学生的探求欲,在探究与剖析的过程中,完善学生思维的深刻性,培养学生的逆向思维.使学生自然成为学习的主人。

高中的数学教案篇8

教学准备

教学目标

1·掌握平面向量的数量积及其几何意义;

2·掌握平面向量数量积的重要性质及运算律;

3·了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;

4·掌握向量垂直的条件·

教学重难点

教学重点:平面向量的数量积定义

教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用

教学工具

投影仪

教学过程

一、复习引入:

1·向量共线定理向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ

五,课堂小结

(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?

(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?

六、课后作业

P107习题2·4A组2、7题

课后小结

(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的.主要数学思想方法有那些?

(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?

课后习题

作业

P107习题2·4A组2、7题

板书

高中的数学教案篇9

数列的极限教学设计

西南位育中学肖添忆

一、教材分析

《数列的极限》为沪教版第七章第七节第一课时内容,是一节概念课。极限概念是数学中最重要和最基本的概念之一,因为极限理论是微积分学中的基础理论,它的产生建立了有限与无限、常量数学与变量数学之间的桥梁,从而弥补和完善了微积分在理论上的欠缺。本节后续内容如:数列极限的运算法则、无穷等比数列各项和的求解也要用到数列极限的运算与性质来推导,所以极限概念的掌握至关重要。

课本在内容展开时,以观察n时无穷等比数列an列anqn,(q1)与an1的发展趋势为出发点,结合数n21的发展趋势,从特殊到一般地给出数列极限的描述性定义。在n由定义给出两个常用极限。但引入部分的表述如“无限趋近于0,但它永远不会成为0”、“不管n取值有多大,点(n,an)始终在横轴的上方”可能会造成学生对“无限趋近”的理解偏差。

二、学情分析

通过第七章前半部分的学习,学生已经掌握了数列的有关概念,以及研究一些特殊数列的方法。但对于学生来说,数列极限是一个全新的内容,学生的思维正处于由经验型抽象思维向理论型抽象思维过渡的阶段。

由于已有的学习经验与不当的推理类比,学生在理解“极限”、“无限趋近”时可能产生偏差,比如认为极限代表着一种无法逾越的程度,或是近似值。这与数学中“极限”的含义相差甚远。在学习数列极限之前,又曾多次利用“无限趋近”描述反比例函数、指数函数、对数函数的图像特征,这又与数列中“无限趋近”的含义有所差异,学生往往会因为常数列能达到某一个常数而否定常数列存在极限的事实。

三、教学目标与重难点教学目标:

1、通过数列极限发展史的介绍,感受数学知识的形成与发展,更好地把握极限概念的来龙去脉;

2、经历极限定义在漫长时期内发展的过程,体会数学家们从概念发现到完善所作出的努力,从数列的变化趋势,正确理解数列极限的概念和描述性定义;

3、会根据数列极限的意义,由数列的通项公式来考察数列的极限;掌握三个常用极限。教学重点:理解数列极限的概念

教学难点:正确理解数列极限的描述性定义

四、教学策略分析

在问题引入时着重突出“万世不竭”与“讲台可以走到”在认知上的矛盾,激发学生的学习兴趣与求知欲,并由此引出本节课的学习内容。在极限概念形成时,结合极限概念的发展史展开教学,让学生意识到数学理论不是一成不变的,而是不断发展变化的。数学的历史发展过程与学生的认知过程有着一定的相似性,学生在某些概念上的进展有时与数学史上的概念进展平行。比如部分学生的想法与许多古希腊的数学家一样,认为无限扩大的正多边形不会与圆周重合,它的周长始终小于其外接圆的周长。教师通过梳理极限发展史上的代表性观点,介绍概念的发展历程以及前人对此的一系列观点,能帮助学生发现自己可能也存在着类似于前人的一些错误想法。对数学发现的过程以认知角度加以分析,有助于学生学习数学家的思维方式,了解数学概念的发展,进而建构推理过程,使学生发生概念转变。在课堂练习诊断部分,不但要求回答问题,还需对选择原因进行辨析,进而强化概念的正确理解。

五、教学过程提纲与设计意图1.问题引入

让一名学生从距离讲台一米处朝讲台走动,每次都移动距讲台距离的一半,在黑板上写出表示学生到讲台距离的数列。这名学生是否能走到讲台呢?类比“一尺之捶,日取其半,万世不竭”,庄子认为这样的过程是永远不会完结的,然而“讲台永远走不到”这一结果显然与事实不同,要回答这一矛盾,让我们看看历史上的数学家们是如何思考的。【设计意图】

改编自芝诺悖论的引入问题,与庄子的“一尺之捶”产生了认知冲突,激发学生的学习兴趣与求知欲,并引出本节课的学习内容

2.极限概念的发展与完善

极限概念的发展经历了三个阶段:从早期以“割圆术”“穷竭法”为代表的朴素极限思想,到极限概念被提出后因“无穷小量是否为0”的争论而引发的质疑,再经由柯西、魏尔斯特拉斯等人的工作以及实数理论的形成,严格的极限理论至此才真正建立。【设计意图】

教师引导学生梳理极限发展史上的代表性观点,了解数学家们提出观点的时代背景,对照反思自己的想法,发现自己可能也存在着类似于前人的一些错误想法。教师在比较概念发展史上被否定的观点与现今数学界认可的观点时,会使学生产生认知冲突。从而可能使学生发生概念转变,抛弃不正确的、不完整的、受限的想法,接受新的概念。在数学教学中,结合数学史展开教学可以让学生意识到数学理论不是一成不变的,而是不断发展变化的,从而提升学生概念转变的动机。

3.数列极限的概念

极限思想的产生最早可追溯于中国古代。极限理论的完善出于社会实践的需要,不是哪一名数学家苦思冥想得出,而是几代人奋斗的结果。极限的严格定义经历了相当漫长的时期才得以完善,它是人类智慧高度文明的体现,反映了数学发展的辩证规律。今天的主题,极限的定义,援引的便是柯西对于极限的阐述。

定义:在n无限增大的变化过程中,如果无穷数列{an}中的an无限趋近于一个常数A,那么A叫做数列{an}的极限,或叫做数列{an}收敛于A,记作limanA,读作“n趋向于

n无穷大时,an的极限等于A”。

在数列极限的定义中,可用an-A无限趋近于0来描述an无限趋近于A。

如前阐述,柯西版本的极限定义虽然不是最完美的,但作为摆脱几何直观的首次尝试,也是历史上一个较为成功的版本,在历史上的地位颇高。有时,我们也称其为数列极限的描述性定义。

【设计意图】

通过比较历史上不同观点下的极限定义,教师呈现数列极限的描述性定义,分析该定义的历史意义,让学生进一步明确数列极限的含义。4.课堂练习诊断

由数列极限的定义得到三个常用数列的极限:(1)limCC(C为常数);

n(2)lim10(nN__);nnnn(3)当q判断下列数列是否存在极限,若存在求出其极限,若不存在请说明理由

20--20--(1)an;

nsinn;n(3)1,1,1,1,,1(2)an(4)an4(1n1000)

4(n1001)11-,n为奇数(5)ann

1,n为偶数注:

(1)、(2)考察三个常用极限

(3)考查学生是否能清楚认识到数列极限概念是基于无穷项数列的背景下探讨的。当项数无限增大时,数列的项若无限趋近于一个常数,则认为数列的极限存在。因此,数列极限可以看作是数列的一种趋于稳定的发展趋势。有穷数列的项数是有限的,因而并不存在极限这个概念。

(4)引用柯西的观点,解释此处无限趋近的含义,是指随着数列项数的增加,数列的项与某一常数要多接近就有多接近,由此得出结论:数列极限与前有限项无关且无穷常数数列存在极限的。

(5)扩充对三种趋近方式的理解:小于A趋近、大于A趋近和摆动趋近。本题中的数列没有呈现出以上三种方式的任意一种。避免学生将趋近误解为项数与常数间的差距不断缩小。练习若A=0.9+0.09+0.009+0.0009+...,则以下对A的描述正确的是_____.A、A是小于1的最大正数

B、A的精确值为1C、A的近似值为1

选择此选项的原因是_________①由于A的小数位都是9,找不到比A大但比1小的数;

②A是由无限多个正数的和组成,它们可以一直不断得加下去,但总小于2;

③A表示的数是数列0.9,0.99,0.999,0.9999,...的极限;

④1与A的差等于0.00…01。

注:此题是为考查学生对于无穷小量和极限概念的理解。由极限概念的发展史可以看出,数学家们曾长时期陷入对无穷小概念理解的误区中,极大地阻碍了对极限概念的理解。学生学习极限概念时可能也会遇到类似的误区。

练习顺次连接△ABC各边中点A1、B1、C1,得到△A1B1C1。取△A1B1C1各边中点A2、B2、C2并顺次连接又得到一个新三角形△A2B2C2。再按上述方法一直进行下去,那么最终得到的图形是_________.A、一个点

B、一个三角形

C、不确定

选择此选项的原因是_________.①

无限次操作后所得三角形的面积无限趋近于0但不可能等于0。②

当操作一定次数后,三角形的三点会重合。

该项操作可以无限多次进行下去,因而总能作出类似的三角形。

无限次操作后所得三角形的三个顶点会趋向于一点。

注:此题从无限观的角度考察学生对极限概念的的理解。学生容易忽视极限概念中的实无限,他们在视觉上采用无穷叠加的形式,但是会受最后一项的惯性思维,导致采用潜无限的思辨方式。所谓实无限是指把无限的整体本身作为一个现成的单位,是可以自我完成的过程或无穷整体。相对地,潜无限是指把无限看作永远在延伸着的,一种变化着成长着不断产生出来的东西。它永远处在构造中,永远完成不了,是潜在的,而不是实在的。持有潜无限观点的学生在理解极限概念时,会将极限理解为是一个渐进过程,或是一个不可达到的极值。

通过习题,分析总结以下三个注意点:

(1)数列{an}有极限必须是一个无穷数列,但无穷数列不一定有极限存在;

1}可以说随着n的无限增大,n1数列的项与-1会越来越接近,但这种接近不是无限趋近,所以不能说lim1;

nn(2)“无限趋近”不能用“越来越接近”代替,例如数列{(3)数列{an}趋向极限A的过程可有多种呈现形式。

【设计意图】

通过例题与选项原因的分析,消除关于数列极限理解的三类误区:

第一类是将数列极限等同于如下的三种概念:渐近线、最大限度或是近似值。第二类是学生对于数列趋向于极限方式的错误认知。第三类是对于无限的错误认知。

5.课堂小结

极限的描述性定义与注意点三个常用的极限

6.作业布置

1>任课老师布置的其他作业

2>学习魏尔斯特拉斯的数列极限定义,并用该定义证明习题的第一第二小问【设计意图】

通过与数列极限相关的延伸问题,完善极限概念的体系,为学生创设课后自主探究平台,感受静态定义中凝结的数学家的智慧。

高中的数学教案篇10

一、教学内容分析

二面角是我们日常生活中经常见到的一个图形,它是在学生学过空间异面直线所成的角、直线和平面所成角之后,研究的一种空间的角,二面角进一步完善了空间角的概念.掌握好本节课的知识,对学生系统地理解直线和平面的知识、空间想象能力的培养,乃至创新能力的培养都具有十分重要的意义.

二、教学目标设计

理解二面角及其平面角的概念;能确认图形中的已知角是否为二面角的平面角;能作出二面角的平面角,并能初步运用它们解决相关问题.

三、教学重点及难点

二面角的平面角的概念的形成以及二面角的平面角的作法.

四、教学流程设计

五、教学过程设计

一、 新课引入

1.复习和回顾平面角的有关知识.

平面中的角

定义 从一个顶点出发的两条射线所组成的图形,叫做角图形

结构 射线—点—射线

表示法 ∠AOB,∠O等

2.复习和回顾异面直线所成的角、直线和平面所成的角的定义,及其共同特征.(空间角转化为平面角)

3.观察:陡峭与否,跟山坡面与水平面所成的角大小有关,而山坡面与水平面所成的角就是两个平面所成的角.在实际生活当中,能够转化为两个平面所成角例子非常多,比如在这间教室里,谁能举出能够体现两个平面所成角的实例?(如图1,课本的开合、门或窗的开关.)从而,引出“二面角”的定义及相关内容.

二、学习新课

(一)二面角的定义

平面中的角 二面角

定义 从一个顶点出发的两条射线所组成的图形,叫做角 课本P17

图形

结构 射线—点—射线 半平面—直线—半平面

表示法 ∠AOB,∠O等 二面角α—a—β或α-AB-β

(二)二面角的图示

1.画出直立式、平卧式二面角各一个,并分别给予表示.

2.在正方体中认识二面角.

(三)二面角的平面角

平面几何中的“角”可以看作是一条射线绕其端点旋转而成,它有一个旋转量,它的大小可以度量,类似地,"二面角"也可以看作是一个半平面以其棱为轴旋转而成,它也有一个旋转量,那么,二面角的大小应该怎样度量?

1.二面角的平面角的定义(课本P17).

2.∠AOB的大小与点O在棱上的位置无关.

[说明]①平面与平面的位置关系,只有相交或平行两种情况,为了对相交平面的相互位置作进一步的探讨,有必要来研究二面角的度量问题.

②与两条异面直线所成的角、直线和平面所成的角做类比,用“平面角”去度量.

③二面角的平面角的三个主要特征:角的顶点在棱上;角的两边分别在两个半平面内;角的两边分别与棱垂直.

3.二面角的平面角的范围:

(四)例题分析

例1 一张边长为a的正三角形纸片ABC,以它的高AD为折痕,将其折成一个 的二面角,求此时B、C两点间的距离.

[说明] ①检查学生对二面角的平面角的定义的掌握情况.

②翻折前后应注意哪些量的位置和数量发生了变化, 哪些没变?

例2 如图,已知边长为a的等边三角形 所在平面外有一点P,使PA=PB=PC=a,求二面角 的大小.

[说明] ①求二面角的步骤:作—证—算—答.

②引导学生掌握解题可操作性的通法(定义法和线面垂直法).

例3 已知正方体 ,求二面角 的大小.(课本P18例1)

[说明] 使学生进一步熟悉作二面角的平面角的方法.

(五)问题拓展

例4 如图,山坡的倾斜度(坡面与水平面所成二面角的度数)是 ,山坡上有一条直道CD,它和坡脚的水平线AB的夹角是 ,沿这条路上山,行走100米后升高多少米?

[说明]使学生明白数学既来源于实际又服务于实际.

三、巩固练习

1.在棱长为1的正方体 中,求二面角 的大小.

2. 若二面角 的大小为 ,P在平面 上,点P到 的距离为h,求点P到棱l的距离.

四、课堂小结

1.二面角的定义

2.二面角的平面角的定义及其范围

3.二面角的平面角的常用作图方法

4.求二面角的大小(作—证—算—答)

五、作业布置

1.课本P18练习14.4(1)

2.在 二面角的一个面内有一个点,它到另一个面的距离是10,求它到棱的距离.

3.把边长为a的正方形ABCD以BD为轴折叠,使二面角A-BD-C成 的二面角,求A、C两点的距离.

六、教学设计说明

本节课的设计不是简单地将概念直接传受给学生,而是考虑到知识的形成过程,设法从学生的数学现实出发,调动学生积极参与探索、发现、问题解决全过程.“二面角”及“二面角的平面角”这两大概念的引出均运用了类比的手段和方法.教学过程中通过教师的层层铺垫,学生的主动探究,使学生经历概念的形成、发展和应用过程,有意识地加强了知识形成过程的教学.

高中的数学教案篇11

一、教材分析

1.教材所处的地位和作用

在学习了随机事件、频率、概率的意义和性质及用概率解决实际问题和古典概型的概念后,进一步体会用频率估计概率思想。它是对古典概型问题的一种模拟,也是对古典概型知识的深化,同时它也是为了更广泛、高效地解决一些实际问题、体现信息技术的优越性而新增的内容。

2.教学的重点和难点

重点:正确理解随机数的概念,并能应用计算器或计算机产生随机数。

难点:建立概率模型,应用计算器或计算机来模拟试验的方法近似计算概率,解决一些较简单的现实问题。

二、教学目标分析

1、知识与技能:

(1)了解随机数的概念;

(2)利用计算机产生随机数,并能直接统计出频数与频率。

2、过程与方法:

(1)通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力;

(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯

3、情感态度与价值观:

通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.

三、教学方法与手段分析

1、教学方法:本节课我主要采用启发探究式的教学模式。

2、教学手段:利用多媒体技术优化课堂教学

四、教学过程分析

㈠创设情境、引入新课

情境1:假设你作为一名食品卫生工作人员,要对某超市内的80袋小包装饼干中抽取10袋进行卫生达标检验,你打算如何操作?

预设学生回答:

⑴采用简单随机抽样方法(抽签法)

⑵采用简单随机抽样方法(随机数表法)

教师总结得出:随机数就是在一定范围内随机产生的数,并且得到这个范围内每一数的机会一样。(引入课题)

「设计意图」(1)回忆统计知识中利用随机抽样方法如抽签法、随机数表法等进行抽样的步骤和特征;(2)从具体试验中了解随机数的含义。

情境2:在抛硬币和掷骰子的试验中,是用频率估计概率。假如现在要作10000次试验,你打算怎么办?大家可能觉得这样做试验花费时间太多了,有没有其他方法可以代替试验呢?

「设计意图」当需要随机数的量很大时,用手工试验产生随机数速度太慢,从而说明利用现代信息技术的重要性,体现利用计算器或计算机产生随机数的必要性。

㈡操作实践、了解新知

教师:向学生介绍计算器的操作,让他们了解随机函数的原理。可事先编制几个小问题,在课堂上带着学生用计算器(科学计算器或图形计算器)操作一遍,让学生熟悉如何用计算器产生随机数。

「设计意图」通过操作熟悉计算器操作流程,在明白原理后,通过让学生自己按照规则操作,熟悉计算器产生随机数的操作流程,了解随机数。

问题1:抛一枚质地均匀的硬币出现正面向上的概率是50,你能设计一种利用计算器模拟掷硬币的试验来验证这个结论吗?

思考:随着模拟次数的不同,结果是否有区别,为什么?

「设计意图」⑴设计概率模型是解决概率问题的难点,也是能解决概率问题的关键,是数学建模的第一步。⑵抛硬币是最熟悉、最简单的问题,很自然会想到把正面向上、反面向上这两个基本事件用两个随机数来代替。(题目让学生通过熟悉50想到用随机数0,1来模拟,为后面问题4每天下雨的概率为40的概率建模作第一次小铺垫。)⑶熟悉利用计算器模拟试验的操作流程,为解决后面例题模拟下雨作好铺垫。

问题2:(1)刚才我们利用了计算器来产生随机数,我们知道计算机有许多软件有统计功能,你知道哪些软件具有随机函数这个功能?

(2)你会利用统计软件Excel来产生随机数0,1吗?你能设计一种利用计算机模拟掷硬币的试验吗?

「设计意图」⑴了解有许多统计软件都有随机函数这个功能,并与前面第一章所学的用程序语言编写程序相联系;⑵Excel是学生比较熟悉的统计软件,也可让学生回顾初中用Excel画统计图的一些功能和知识,其次让学生掌握多种随机模拟试验方法。

问题3:(1)你能在Excel软件中画试验次数从1到100次的频率分布折线图吗?

(2)当试验次数为1000,1500时,你能说说出现正面向上的频率有些什么变化?

「设计意图」⑴应用随机模拟方法估计古典概型中随机事件的概率值;

⑵体会频率的随机性与相对稳定性,经历用计算机产生数据,整理数据,分析数据,画统计图的全过程,使学生相信统计结果的真实性、随机性及规律性。

㈢讲练结合、巩固新知

问题4:天气预报说,在今后的三天中,每一天下雨的概率均为40,这三天中恰有两天下雨的概率是多少?

问1:能用古典概型的计算公式求解吗?

你能说明一下这为什么不是古典概型吗?

问2:你如何模拟每一天下雨的概率为40?

「设计意图」⑴问题分层提出,降低本题难度。如何模拟每一天下雨的概率40是解决这道题的关键,是随机模拟方法应用的重点,也是难点之一。

⑵巩固用随机模拟方法估计未知量的基本思想,明确利用随机模拟方法也可解决不是古典概型而比较复杂的概率应用题。

归纳步骤:第一步,设计概率模型;

第二步,进行模拟试验;

方法一:(随机模拟方法--计算器模拟)利用计算器随机函数;

方法二:(随机模拟方法--计算机模拟)

第三步,统计试验的结果。

课堂检测将一枚质地均匀的硬币连掷三次,出现"2个正面朝上、1个反面朝上"和"1个正面朝上、2个反面朝上"的概率各是多少?并用随机模拟的方法做100次试验,计算各自的频数。

「设计意图」通过练习,进一步巩固学生对本节课知识的掌握。

㈣归纳小结

(1)你能归纳利用随机模拟方法估计概率的步骤吗?

(2)你能体会到随机模拟的优势吗?请举例说说。

「设计意图」⑴通过问题的思考和解决,使学生理解模拟方法的优点,并充分利用信息技术的优势;⑵是对知识的进一步理解与思考,又是对本节内容的回顾与总结。

㈤布置练习:

课本练习3、4

「设计意图」课后作业的布置是为了检验学生对本节课内容的理解和运用程度,并促使学生进一步巩固和掌握所学内容。

[内容结束]

高中的数学教案篇12

教学目标

1。 理解的定义,初步掌握的图象,性质及其简单应用。

2。 通过的图象和性质的学习,培养学生观察,分析,归纳的能力,进一步体会数形结合的思想方法。

3。 通过对的研究,使学生能把握函数研究的基本方法,激发学生的学习兴趣。

教学重点和难点

重点是理解的定义,把握图象和性质。

难点是认识底数对函数值影响的认识。

教学用具

投影仪

教学方法

启发讨论研究式

教学过程

一。 引入新课

我们前面学习了指数运算,在此基础上,今天我们要来研究一类新的常见函数———————。

1。6。(板书)

这类函数之所以重点介绍的原因就是它是实际生活中的一种需要。比如我们看下面的问题:

问题1:某种细胞_时,由1个_成2个,2个_成4个,……一个这样的细胞_ 次后,得到的细胞_的个数 与 之间,构成一个函数关系,能写出 与 之间的函数关系式吗?

由学生回答: 与 之间的关系式,可以表示为 。

问题2:有一根1米长的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子的一半,……剪了 次后绳子剩余的长度为 米,试写出 与 之间的函数关系。

由学生回答: 。

在以上两个实例中我们可以看到这两个函数与我们前面研究的函数有所区别,从形式上幂的形式,且自变量 均在指数的位置上,那么就把形如这样的函数称为。

一。 的概念(板书)

1。定义:形如 的函数称为。(板书)

教师在给出定义之后再对定义作几点说明。

2。几点说明 (板书)

(1) 关于对 的规定:

教师首先提出问题:为什么要规定底数大于0且不等于1呢?(若学生感到有困难,可将问题分解为若 会有什么问题?如 ,此时 , 等在实数范围内相应的函数值不存在。

若 对于 都无意义,若 则 无论 取何值,它总是1,对它没有研究的必要。为了避免上述各种情况的发生,所以规定 且 。

(2)关于的定义域 (板书)

教师引导学生回顾指数范围,发现指数可以取有理数。此时教师可指出,其实当指数为无理数时, 也是一个确定的实数,对于无理指数幂,学过的有理指数幂的性质和运算法则它都适用,所以将指数范围扩充为实数范围,所以的定义域为 。扩充的另一个原因是因为使她它更具代表更有应用价值。

(3)关于是否是的判断(板书)

刚才分别认识了中底数,指数的要求,下面我们从整体的角度来认识一下,根据定义我们知道什么样的函数是,请看下面函数是否是。

(1) , (2) , (3)

(4) , (5) 。

学生回答并说明理由,教师根据情况作点评,指出只有(1)和(3)是,其中(3) 可以写成 ,也是指数图象。

最后提醒学生的定义是形式定义,就必须在形式上一摸一样才行,然后把问题引向深入,有了定义域和初步研究的函数的性质,此时研究的关键在于画出它的图象,再细致归纳性质。

3。归纳性质

作图的用什么方法。用列表描点发现,教师准备明确性质,再由学生回答。

函数

1。定义域 :

2。值域:

3。奇偶性 :既不是奇函数也不是偶函数

4。截距:在 轴上没有,在 轴上为1。

对于性质1和2可以两条合在一起说,并追问起什么作用。(确定图象存在的大致位置)对第3条还应会证明。对于单调性,我建议找一些特殊点。,先看一看,再下定论。对最后一条也是指导函数图象画图的依据。(图象位于 轴上方,且与 轴不相交。)

在此基础上,教师可指导学生列表,描点了。取点时还要提醒学生由于不具备对称性,故 的值应有正有负,且由于单调性不清,所取点的个数不能太少。

此处教师可利用计算机列表描点,给出十组数据,而学生自己列表描点,至少六组数据。连点成线时,一定提醒学生图象的变化趋势(当 越小,图象越靠近 轴, 越大,图象上升的越快),并连出光滑曲线。

二。图象与性质(板书)

1。图象的画法:性质指导下的列表描点法。

2。草图:

当画完第一个图象之后,可问学生是否需要再画第二个?它是否具有代表性?(教师可提示底数的条件是且 ,取值可分为两段)让学生明白需再画第二个,不妨取 为例。

此时画它的图象的方法应让学生来选择,应让学生意识到列表描点不是的方法,而图象变换的方法更为简单。即 = 与 图象之间关于 轴对称,而此时 的图象已经有了,具备了变换的条件。让学生自己做对称,教师借助计算机画图,在同一坐标系下得到 的图象。

最后问学生是否需要再画。(可能有两种可能性,若学生认为无需再画,则追问其原因并要求其说出性质,若认为还需画,则教师可利用计算机再画出如 的图象一起比较,再找共性)

由于图象是形的特征,所以先从几何角度看它们有什么特征。教师可列一个表,如下:

以上内容学生说不齐的,教师可适当提出观察角度让学生去描述,然后再让学生将几何的特征,翻译为函数的性质,即从代数角度的描述,将表中另一部分填满。

填好后,让学生仿照此例再列一个 的表,将相应的内容填好。为进一步整理性质,教师可提出从另一个角度来分类,整理函数的性质。

3。性质。

(1)无论 为何值, 都有定义域为 ,值域为 ,都过点 。

(2) 时, 在定义域内为增函数, 时, 为减函数。

(3) 时, , 时, 。

总结之后,特别提醒学生记住函数的图象,有了图,从图中就可以能读出性质。

三。简单应用 (板书)

1。利用单调性比大小。 (板书)

一类函数研究完它的概念,图象和性质后,最重要的是利用它解决一些简单的问题。首先我们来看下面的问题。

例1。 比较下列各组数的大小

(1) 与 ; (2) 与 ;

(3) 与1 。(板书)

首先让学生观察两个数的特点,有什么相同?由学生指出它们底数相同,指数不同。再追问根据这个特点,用什么方法来比较它们的大小呢?让学生联想,提出构造函数的方法,即把这两个数看作某个函数的函数值,利用它的单调性比较大小。然后以第(1)题为例,给出解答过程。

解: 在 上是增函数,且< 。(板书)

教师最后再强调过程必须写清三句话:

(1) 构造函数并指明函数的单调区间及相应的单调性。

(2) 自变量的大小比较。

(3) 函数值的大小比较。

后两个题的过程略。要求学生仿照第(1)题叙述过程。

例2。比较下列各组数的大小

(1) 与 ; (2) 与 ;

(3) 与 。(板书)

先让学生观察例2中各组数与例1中的区别,再思考解决的方法。引导学生发现对(1)来说 可以写成 ,这样就可以转化成同底的问题,再用例1的方法解决,对(2)来说 可以写成 ,也可转化成同底的,而(3)前面的方法就不适用了,考虑新的转化方法,由学生思考解决。(教师可提示学生的函数值与1有关,可以用1来起桥梁作用)

最后由学生说出 >1,<1,>。

解决后由教师小结比较大小的方法

(1) 构造函数的方法: 数的特征是同底不同指(包括可转化为同底的)

(2) 搭桥比较法: 用特殊的数1或0。

三。巩固练习

练习:比较下列各组数的大小(板书)

(1) 与 (2) 与 ;

(3) 与 ; (4) 与 。解答过程略

四。小结

1。的概念

2。的图象和性质

3。简单应用

五 。板书设计

高中的数学教案篇13

高中数学备课教案模板(通用2篇)

高中数学备课模板篇1

一、教学目标:

知识与技能:了解直线参数方程的条件及参数的意义

过程与方法:能根据直线的几何条件,写出直线的参数方程及参数的意义

情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。

二、重难点:教学重点:曲线参数方程的定义及方法

教学难点:选择适当的参数写出曲线的参数方程.

三、教学方法:启发、诱导发现教学.

四、教学过程

(一)、复习引入:

1.写出圆方程的标准式和对应的参数方程。

圆参数方程(为参数)

(2)圆参数方程为:(为参数)

2.写出椭圆参数方程.

3.复习方向向量的概念.提出问题:已知直线的一个点和倾斜角,如何表示直线的参数方程?

(二)、讲解新课:

1、问题的提出:一条直线L的倾斜角是,并且经过点P(2,3),如何描述直线L上任意点的位置呢?

如果已知直线L经过两个

定点Q(1,1),P(4,3),

那么又如何描述直线L上任意点的

位置呢?

2、教师引导学生推导直线的参数方程:

(1)过定点倾斜角为的直线的

参数方程

(为参数)

【辨析直线的参数方程】:设M(x,y)为直线上的任意一点,参数t的几何意义是指从点P到点M的位移,可以用有向线段数量来表示。带符号.

(2)、经过两个定点Q,P(其中)的直线的参数方程为。其中点M(X,Y)为直线上的任意一点。这里参数的几何意义与参数方程(1)中的t显然不同,它所反映的是动点M分有向线段的数量比。当时,M为内分点;当且时,M为外分点;当时,点M与Q重合。

(三)、直线的参数方程应用,强化理解。

1、例题:

学生练习,教师准对问题讲评。反思归纳:

1)求直线参数方程的方法;

2)利用直线参数方程求交点。

2、巩固导练:

补充:

1)直线与圆相切,那么直线的倾斜角为(A)

A.或B.或C.或D.或

2)(坐标系与参数方程选做题)若直线与直线(为参数)垂直,则.

解:直线化为普通方程是,

该直线的斜率为,

直线(为参数)化为普通方程是,

该直线的斜率为,

则由两直线垂直的充要条件,得,。

(四)、小结:

(1)直线参数方程求法;

(2)直线参数方程的特点;

(3)根据已知条件和图形的几何性质,注意参数的意义。

(五)、作业:

补充:设直线的参数方程为(t为参数),直线的方程为y=3x+4则与的距离为_______

【考点定位】本小题考查参数方程化为普通方程、两条平行线间的距离,基础题。

解析:由题直线的普通方程为,故它与与的距离为。

五、:

高中数学备课教案模板篇2

一、教学目标

1.知识与技能

(1)掌握画三视图的基本技能

(2)丰富学生的空间想象力

2.过程与方法

主要通过学生自己的亲身实践,动手作图,体会三视图的作用。

3.情感态度与价值观

(1)提高学生空间想象力

(2)体会三视图的作用

二、教学重点、难点

重点:画出简单组合体的三视图

难点:识别三视图所表示的空间几何体

三、学法与教学用具

1.学法:观察、动手实践、讨论、类比

2.教学用具:实物模型、三角板

四、教学思路

(一)创设情景,揭开课题

“横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图。

在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的三视图吗?

(二)实践动手作图

1.讲台上放球、长方体实物,要求学生画出它们的三视图,教师巡视,学生画完后可交流结果并讨论;

2.教师引导学生用类比方法画出简单组合体的三视图

(1)画出球放在长方体上的三视图

(2)画出矿泉水瓶(实物放在桌面上)的三视图

学生画完后,可把自己的作品展示并与同学交流,总结自己的作图心得。

作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图。

3.三视图与几何体之间的相互转化。

(1)投影出示图片(课本P10,图1.2-3)

请同学们思考图中的三视图表示的几何体是什么?

(2)你能画出圆台的三视图吗?

(3)三视图对于认识空间几何体有何作用?你有何体会?

教师巡视指导,解答学生在学习中遇到的困难,然后让学生发表对上述问题的看法。

4.请同学们画出1.2-4中其他物体表示的空间几何体的三视图,并与其他同学交流。

(三)巩固练习

课本P12练习1、2P18习题1.2A组1

(四)归纳整理

请学生回顾发表如何作好空间几何体的三视图

(五)课外练习

1.自己动手制作一个底面是正方形,侧面是全等的三角形的棱锥模型,并画出它的三视图。

2.自己制作一个上、下底面都是相似的正三角形,侧面是全等的等腰梯形的棱台模型,并画出它的三视图。

高中的数学教案篇14

开学第一课讲点什么,我想最好不讲学习的事情,不要讲作业什么的。最好的就是谈谈理想,或者写写梦想,描绘一下自己在本学期结束后会变成一个什么样的人。作为老师,我想我会讲三个故事。

第一个故事:我会讲《山体滑坡的故事》

一个灰心丧气的青年人,因科举没考上,便颓废不堪,一蹶不振,整天关在屋子里,抱头痛哭。有一天,一位老者跨进门,语重心长地说:“假如山上滑坡,你该怎么办?”年青人喃喃:“往下跑。”老者仰头大笑:“那你就葬身山中了。你应该往山上跑,你只有勇敢地面对它,才有生还的希望,天下事皆然。”说完便飘然而去。

需要告诉学生的是:只有勇敢面对挑战和困难,才能战胜它。往上走,不要往下走,学习亦如此。

第二个故事:我会讲《老鹰的故事》

一个人在高山之巅的鹰巢里,抓到了一只幼鹰,他把幼鹰带回家,养在鸡笼里。这只幼鹰和鸡一起啄食、嬉闹和休息,它以为自己是一只鸡。这只鹰渐渐长大,羽翼丰满了,主人想把它训练成猎鹰,可是由于终日和鸡混在一起,它已经变得和鸡完全一样,根本没有飞的愿望了。主人试了各种办法,都毫无效果,最后把它带到山顶上,一把将它扔了出去。这只鹰像块石头似的,直掉下去,慌乱之中它拼命地扑打翅膀,就这样,它终于飞了起来!

需要告诉学生的是:相信自己是一只雄鹰,勇敢面对一切挑战和失败。

第三故事:我会讲《苏格拉底的故事》

开学第一天,大哲学家苏格拉底对学生们说:“今天,我们只做一件最简单也是最容易做的事儿:每个人把胳膊尽量都往前甩,然后再尽量往后甩。”说着,苏格拉底示范了一遍,“从今天开始,每天做300下,大家能做到吗?”学生们都笑了,这么简单的事情,有什么做不到的?过了一个月,苏格拉底问学生们:“每天甩手300下,哪些同学坚持了?”有90%的同学骄傲地举起了手。又过了一个月,苏格拉底再问,这回,坚持下来的同学只剩下了八成。一年过后,苏格拉底再一次问大家:“请大家告诉我,最简单的甩手运动,还有哪几位同学坚持了?”这时候,整个教室里,只有一个人举起了手。这个学生就是后来成为古希腊另一位大哲学家的柏拉图。

需要告诉学生的是:成功在于坚持,这是一个并不神秘的秘诀。

三个故事讲完之后,我还会问问,成功除了学会面对困难,相信自己,学会坚持之外,还需要那些成功因素?当然还需要养成好习惯和掌握好方法。

最后我还会讲两个小故事。来结束我的第一课。

故事一:

父子两住山上,每天都要赶牛车下山卖柴。老父较有经验,坐镇驾车,山路崎岖,弯道特多,儿子眼神较好,总是在要转弯时提醒道:“爹,转弯啦!”有一次父亲因病没有下山,儿子一人驾车。到了弯道,牛怎么也不肯转弯,儿子用尽各种方法,下车又推又拉,用青草诱之,牛一动不动。到底是怎么回事?儿子百思不得其解。最后只有一个办法了,他左右看看无人,贴近牛的耳朵大声叫道:“爹,转弯啦!”牛应声而动。

——要培养好的习惯来代替坏的习惯,当好的习惯积累多了,自然会有一个好的人生。

有个老人在河边钓鱼,一个小孩走过去看他钓鱼,老人技巧纯熟,所以没多久就钓上了满篓的鱼,老人见小孩很可爱,要把整篓的鱼送给他,小孩摇摇头,老人惊异的问道你为何不要?小孩回答:“我想要你手中的钓竿。”老人问:“你要钓竿做什么?小孩说:”这篓鱼没多久就吃完了,要是我有钓竿,我就可以自己钓,一辈子也吃不完。“你们说,这个小孩是不是很聪明?

——重要的还在钓技。学习,不能只记住知识,更重要的是掌握方法,形成能力。

高中的数学教案篇15

教学过程:

一、复习引入:

1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;

2.教材中的章头引言;

3.集合论的创始人——康托尔(德国数学家)(见附录);

4.“物以类聚”,“人以群分”;

5.教材中例子(P4)。

二、讲解新课:

阅读教材第一部分,问题如下:

(1)有那些概念?是如何定义的?

(2)有那些符号?是如何表示的?

(3)集合中元素的特性是什么?

(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的。我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集。集合中的每个对象叫做这个集合的元素。

定义:一般地,某些指定的对象集在一起就成为一个集合。

1、集合的概念

(1)集合:某些指定的对象集在一起就形成一个集合(简称集)

(2)元素:集合中每个对象叫做这个集合的元素

2、常用数集及记法

(1)非负整数集(自然数集):全体非负整数的集合,记作N,N={0,1,2,…}

(2)正整数集:非负整数集内排除0的集,记作N__或N+,N__={1,2,3,…}

(3)整数集:全体整数的集合,记作Z,Z={0,±1,±2,…}

(4)有理数集:全体有理数的集合,记作Q,Q={整数与分数}

(5)实数集:全体实数的集合,记作R,R={数轴上所有点所对应的数}

注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0

(2)非负整数集内排除0的集,记作N__或N+

Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z__

3、元素对于集合的隶属关系

(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A

(2)不属于:如果a不是集合A的元素,就说a不属于A,记作aA

4、集合中元素的特性

(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可

(2)互异性:集合中的元素没有重复

(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)

5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……

元素通常用小写的拉丁字母表示,如a、b、c、p、q……

⑵“∈”的开口方向,不能把a∈A颠倒过来写。

45817