教案吧 > 学科教案 > 数学教案 >

高中数学教案ppt下载

时间: 新华 数学教案

教案可以帮助教师提高教学质量,以便更好地提升学生的学习成绩。什么样的高中数学教案ppt下载才算是优秀的呢?这里整理一些高中数学教案ppt下载,方便大家学习。

高中数学教案ppt下载篇1

1、教材分析:

集合是现代数学的基本语言,可以简洁、准确地表达数学内容。本节是让学生学会用集合的语言来描述对象,章末我们会用集合和对应的语言来描述函数的概念,可见它是今后数学学习的基础,也是培养学生抽象概括能力的重要素材。

2、教材目标:

根据素质教育的要求和新课改的精神,我确定教学目标如下:

①知识与技能:

(1)了解集合的含义与集合中元素的特征

(2)熟记常用数集符号

(3)能用列举、描述法表示具体集合

②过程与方法:让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.让学生通过观察、归纳、总结的过程,提高抽象概括能力。

③情感态度与价值观:使学生感受到学习集合的必要性,增强学习的积极性.

3、教学重点、难点

教学重点:集合的基本概念与表示方法;

教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;说教法

1.学情分析

《集合的含义及表示》这一课时是学生进入高中阶段学习、接触到高中数学的第一堂课,它直接影响到了学生对高中阶段数学学习的认识;如果我们教学上过于草率,学生很容易对数学失去学习兴趣。再者,这是高中数学课程的第一章的第一课时,是整个高中数学的奠基部分,所以我们不仅要正确地传授知识,更要把握好教学的难度。如果传授得过于简单,那么学生容易麻痹大意,对今后的学习埋下隐患;如果讲得太深,那么学生会有畏难心理,也会对今后的学习造成影响。

2.方法选择

在教学中注意启发引导,通过预习学案的形式把知识问题化,通过实例引导学生观察归纳,上课组织学生分组讨论,让他们经历观察、猜测、推理、交流、反思的理性思维的基本过程,切实改变学生的学习方法。

说学法

让学生通过课前结合学案,阅读教材,自主预习,课上交流、讨论、概括,课后复习巩固三个环节,更好地完成本节课的教学目标。值得提出的是:集合作为一种数学语言,最好的学习方法是使用,所以应该多做转换练习,

说教学程序

(一)创设情境,揭示课题

军训前学校通知:x月x日x点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?

在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。

通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发了学生求知欲,调动了学生主动参与的积极性。让学生在课堂的一开始就感受到数学就在我们身边,让学生学会用数学的眼光去关注生活。

(二)研探新知,建构概念

让学生阅读课本P2内容,让小组思考讨论,代表发言,师生共同补充答案它们的共同特征:它们都是指定的一组对象。这时我借此引入集合的概念,把一些元素组成的总体叫做集合,简称集,通常用大写字母A,B,C,?表示。把研究的对象称为元素,通常用小写拉丁字母a,b,c,?表示;

接下来,我引导学生把集合的涵义进行拓展,期间结合一些师生互动:我们班上的女生能不能构成一个集合,班上身高在1.75米以上的男生能不能构成一个集合,班上高的男生能不能构成一个集合??,通过身边这些大量例子,让学生了解集合的概念,并切实感受到学习集合语言的重要性。

对于集合元素的特征:确定性、互异性、无序性。我则在学生了解集合概念基础上,通过设置三个问题(1)班里个子高的同学能否构成一个集合?(2)在一个给定的集合中能否有相同的元素?(3)班里的全体同学组成一个集合,调整座位后这个集合有没有变化?调整后的集合和原来的集合是什么关系?让学生思考:任意一组对象是否都能组成一个集合?集合中的元素有什么特征?

这样设计将知识问题化,问题生活化,激发学生学习的主动性,引导学生归纳出集合中元素的三大特性,用简练的语言概括为——确定性、互异性、无序性用两集合相等的概念。

思考3:(1)设集合A表示“1~20以内的所有质数”,那么3,4,5,6这四个元素哪些在集合A中?哪些不在集合A中?

(2)对于一个给定的集合A,那么某元素a与集合A有哪几种可能关系?

(3)如果元素a是集合A中的元素,我们如何用数学化的语言表达?

(4)如果元素a不是集合A中的元素,我们如何用数学化的语言表达?用符号∈或?填空:

[设计说明]这几个问题比较简单,直接提问同学回答,并师生一起完善答案。通过问题的层层深入,目的是引导学生归纳出元素与集合的关系及表示方法。

反馈练习:

(1)设A为所有亚洲国家组成的集合,则

中国____A,美国____A,

印度____A,英国____A;

对于集合中常用的符号,我做了这样处理:简要介绍后,让学生用两三分钟的时间结合符号特点记忆。目的在于给学生一个信号:课堂上能消化的东西要及时记住。

2.集合的表示法:列举法和描述法

让学生自习阅读课本P3——P4的内容5-7分钟,接着让同学试着解决如下三个问题

(1)由大于10小于20的所有整数组成的集合;

(2)表示不等式x-7《3的解集;

(3)由1——20以内的所有素数组成的集合;

把集合的元素一一列举出来,并用花括号“{}”括起来表示的方法叫做列举法。用集合所含元素的共同特征表示集合的方法称为描述法。具体方法是:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

通过三个问题不仅检验了学生的自学效果,同时也让学生明白列举法和描述法两种方法各自的优缺点,更重要的是对集合的列举法和描述法的规范表达做进一步强调,最后,我带领学生分析了课本P4的例题,对集合的列举法和描述法的规范表达做进一

步的强调,让学生完成书上的习题,并请几个学生上台来演练,通过练习达到及时的反馈。

(四)归纳整理,整体认识

1.本节课我们学习了哪些知识内容?

2.你认为学习集合有什么意义?

3.比较列举法与描述法的优缺点。

(五)布置作业

作业:习题1.1A组:2、3、4.

作业的布置是要突出本节课的重点——集合概念的理解以及集合的表示法,让学生对数学符号的适用在课外进行延伸和巩固。

说板书

在教学中我把黑板分为三部分,把知识要点写在左侧,中间是课本例题演练,右侧是实例应用。在左侧的知识要点主要列出了集合、元素的概念、元素的特性:确定性,互异性,无序性,和集合的表示法:列举法和描述法。

以上是我对《集合的含义与表示》这节教材的认识和对教学过程的设计。对这节课的设计,我始终在努力贯彻一教师为主导,以学生为主题,以问题为基础,以能力、方法为主线,有计划培养学生的自学能力、观察和实践能力、思维能力为指导思想,利用各种教学手段激发学生的学习兴趣,体现了对学生创新意识的培养。

高中数学教案ppt下载篇2

如何在高二这一关键性的一年中与这些同学一齐共同进步缩小差距,我选取了从课堂教学、作业布置、评价方式这三个方面入手,激发学生的学习用心性,尽量向学生带给从事数学活动的机会,帮忙他们在自主探索和合作交流的过程中真正理解和掌握基础的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。

第一,用多变的课堂教学,充分调动学生的主动性

我认为数学教学是教师思维与学生思维相互沟通的过程。从信息论的角度看,这种沟通就是指数学信息的理解、加工、传递的动态过程,在这个过程中充满了师生之间的数学交流和信息的转换,离开了学生的参与,整个过程就难以畅通。北京师范大学曹才翰教授指出“数学学习是再创造再发现的过程,务必要主体的用心参与才能实现这个过程”;从当前全面实施素质教育的要求来看,激发学生用心参与课堂教学,就是为了提高课堂教学效率,培养学生的学习潜力和创造思维潜力,这与以培养创造型人才为目的的素质教育完全一致,因此,在数学课堂教学中提高学生的参与度,不仅仅具有提高数学教学质量的近期作用,而且具有提高学生素质的远期功效。

若要实现这个目标,在教学引入时我常常以问题作为出发点,选取的素材密切联系学生的现实生活,运用学生的求知欲,使学生感到数学就在他们身边,与现实世界联系紧密,同时问题情景的设置又具有必须的挑战性,引发了学生的思考。

如人教版初二几何《三角形》的《关于三角形的一些概念》在引入时我提出了以下几个问题:你能举出生活中一些有关三角形的实例吗?你能一笔画一个三角形吗?你能用语言叙述你的画图过程吗?

如人教版初二几何《三角形》的《三角形全等的判定(一)》在引入时我提出了这样一个问题:请你任意画一个三角形,你能否再画一个与其全等的三角形。画好后请你剪下来验证一下。学生的用心性被激发,热烈的讨论,课堂上出现了许多状况

有的学生用的是先确定一角再确定两边的画法;有的一个学生是利用尺规根据三边关系画的(这正是后面所要学的一个三角形全等的判定公理);有的学生是利用了垂直、平行、对顶角来省去作图中使用量角器的麻烦,学生充分利用已有的数学知识,利用自己对数学图形的感知,很好的解决了这个问题,透过剪一剪试一试从直观上验证了自己的画法。

如《相似形》的《相似三角形的性质》在引入时我提出了这样的问题:提到与我国并称为世界四大礼貌古国的埃及你会想到什么?学生们说到了法老、金字塔、木乃伊等等,说到金字塔你能测量出埃及大金字塔的高度吗?学生几乎是异口同声地告诉我用影长,当时我称赞他们与我们的几何学之父古希腊人欧几里得的测量方法一样,并讲述了欧几里得的故事,他等到自己在阳光下的影长与他的身高正好相等的时候,测量了金字塔的塔影的长度,这时,他宣布,“这就是大金字塔的高度。”从而激发了学生探索相似三角形的其它性质的兴趣。

我在课堂教学的过程中,为了使成绩较差同学减少对于数学的恐惧感,课堂上放慢教学速度,变换教学方法,如人教版初二几何《三角形》的《关于三角形的一些概念》我是这样处理的:1、请学生讲解三角形的有关概念;2、请学生用折纸的方法讲解角平分线和中线,折纸的过程中你还发现了什么?3、请学生任意作一个三角形,并做出这个三角形的一条角平分线和一条中线。三个要求层层深入了学生对于基本概念的理解,变教师讲为学生讲,取得了较好的效果。

我在课堂上放慢教学速度是能够照顾到大部分学生的,但一小批优等生就会出现没事做的状况,这时学习小组就是他们发挥余热的地方,在具体的教学过程中给学生建立了数学学习小组,让学生在各自的小组中相互帮忙,让每一个学生都能从事小组中不同的工作,并最终完成一个共同的目标。透过小组学习,使学生树立正确的团队观,尊重他人、尊重自己,敢于发表自己的观点,又不固执己见,对同学的见解,既要乐于理解合理成分,又要勇于表达自己不同的看法。在具体实施的过程中,我越发的认识到讨论的重要性,我鼓励学生质疑,质疑教师,质疑教科书,鼓励学生争论,有些知识点在学生的争论中被突破,知识在争论中被融会贯通,我发现学生之间的语言他们更容易理解,于是我开始尝试让学生讲课,讲过三角形的分类等。又如学习基本作图时,教科书就如一本说明书,让学生以学习小组为单位,阅读、画图,互教互学,实际教学时取得了很好的效果。让各层次的学生都能有所知,有所得。在认知效果和记忆效果方面比教师直接给出要好。

第二,布置多样的作业,引导学生的用心性

让学生作业的目的在于巩固和消化所学的知识,并使知识转化为技能技巧。正确组织好学生作业,对于培养学生的独立学习的潜力和习惯,发展学生的智力和创造潜力有着重大好处。因此,教师应重视作业的布置,《数学课程标准》中明确指出:“义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实现人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。”作业布置如何体现这一基本理念,如何调整作业在学生学习活动中的位置,也是提高课堂教学效率的关键。

课堂结束新课后,我透过作业的布置渗透数学学习方法如自学,这样才能真正提高学生数学学习的水平,开始时每一天的第一样作业是复习,最后一项作业是预习,而且把具体的页数写清楚提出具体的预习提纲,加强学生看书的针对性,开始时还带有必须的强制性如让家长签字,从而提高学生阅读理解的潜力。

对数学的兴趣能激发学生的学习动机,富有情境的作业具有必须吸引力,能使学生充分发挥自己的智力水平去完成。趣味性要体现出题型多样,方式新颖,资料有创造性,如课本习题、自编习题、计算类题目、表述类题目(如单元小结、学习体会、数学故事、小论文等)互相穿插,让学生感受到作业资料和形式的丰富多采,使之情绪高昂,乐于思考,从而感受作业的乐趣。

根据上课资料所需经常让学生动手做教具如剪钝角三角形、锐角三角形、直角三角形,做教具说明三角形具有稳定性而四边形没有此特性等,这种做法不但能够提高学生学习的兴趣,而且会有一些意想不到的事情。如:学生做教具说明三角形具有稳定性而四边形没有此特性时,有的学生用线绳打结连接四边,有的学生为了省事用订书钉订的,而订的不同方法得到有的四边形能动而有的不能,经过学生的讨论得出关键在于连接处是一个点还是两个点的问题,学生很受启发。

高中数学教案ppt下载篇3

教学内容背景材料:

义务教育课程标准实验教科书(人教版)二年级上册第八单元的排列与组合

教学目标:

1、通过观察、猜测、操作等活动,找出最简单的事物的排列数和组合数。

2、经历探索简单事物排列与组合规律的过程。

3、培养学生有顺序地全面地思考问题的意识。

4、感受数学与生活的紧密联系,激发学生学好数学的信心。

教学重点:经历探索简单事物排列与组合规律的过程

教学难点:初步理解简单事物排列与组合的不同

教具准备:教学课件

学具准备:每生准备3张数字卡片,学具袋

教学过程:

一、创设问题情境:

师:森林学校的数学课上,猴博士出了这样一道题(课件出示)用数字1、2能写出几个两位数?问题刚说完小动物们都纷纷举手说能写成两个数:12、21。接着猴博士又加上了一个数字3,问:“用数字1、2、3能写出几个两位数呢?”小猪站起来说能写成3个,小熊说5个,小狗说7个,到底能写出几个呢?用学生感兴趣的童话故事引入,易于激发起学生探究的兴趣,同时也向学生渗透助人为乐的品德教育。

1.自主合作探索新知

试一试

师:请同学们也试着写一写,如果你觉得直接写有困难的话可以借助手中的数字卡片摆一摆。

学生活动教师巡视。(学生所写的个数可能不一样,有多有少,找几份重复的或个数少的展示。)引导学生根据自己的实际情况选择不同的方法探究新知,体现了不同的孩子用不同的方式学习数学这一新的教学理念,易于吸引不同层次的学生积极主动的参与到活动中来。

2.发现问题

学生汇报所写个数,教师根据巡视的情况重点展示几份,引导学生发现问题:有的重复写了,有的漏写了。

引导学生发现写数过程中出现的问题,并就此展开讨论、交流,遵循了学生的认知特点。学生在交流的过程中体验到解决问题方法的多样性,并根据自己的实际选择不同的方法,尊重了学生的主体地位。在此过程中学生收获的不仅是知识本身,更多的是能力、情感。

3.小组讨论

师:每个同学写出的个数不同,怎样才能很快写出所有的用数字1、2、3组成的两位数,并做到不重复不遗漏呢?

学生以小组为单位交流讨论。

4.小组汇报

汇报时可能会出现下面几种情况:

1、无序的。

2、先写出1在十位上的有12、13;再写出2在十位上的有21、23;再写出3在十位上的有31、32。

3、用数字1、2能写出12、21;用数字2、3能写出23、32;用数字1、3能写出13、31。

4、引导学生及时评价每一种方法的优缺点,使其把适合自己的方法掌握起来。

5.小结

教师简单小结学生所想方法引出练习内容。

6、拓展应用

数字2、3、4、5、出个两位数?写完交流。(或者也可用这样一道题:用△○□能摆成6种排法,例如:□○△

请你试着摆出其他几种排法。学习的目的是为了应用,让学生自主的选择方法进行练习,有利于培养学生的自主学习的能力。

二、组合

故事引入

师:下课了小狗、小熊、小猪做“找朋友”的游戏,好朋友见面之后要握握手,每两只小动物握一次手,小狗、小熊、小猪一共握几次手?怎样握?用同一条故事主线贯穿整节课的始终,以问题串的形式展开全课,能让学生始终保持浓厚的学习兴趣,充分体验到数学与生活的联系。

探索新知

学生在充分独立思考的基础上展开小组交流,并3人一组亲身实践一下。

汇报思考的过程。

三、比较

师:刚才我们帮森林学校的小动物们解决了用数字1、2、3能写几个两位数;3只小动物每两个握一次手共握几次手的问题,森林学校的小动物们直夸同学们聪明呢!通过解决这两个问题你发现了什么?

生可能说用3个数字能写出6个两位数,3只小动物每两人握一次手共握3次。

引导学生明确排列与顺序有关而组合与顺序无关。两只小动物握一次手个?通过比较明确两种问题的同与不同,便于建立起清晰的知识结构,进一步深化学生的认识。

四、拓展应用

1.小狗要参加学校的时装表演,妈妈为它准备了4件衣服(课件出示2件上衣、2件裤子的图片),请你帮小狗设计一下共有多少种穿法。如果需要的话可以用学具摆一摆。

交流想法。在儿童的生活经验里积累了一些搭配衣服,购物花钱的知识经验,所以学生乐于参与。

2.完成课本99页的第2题

五、课堂总结

高中数学教案ppt下载篇4

学习目标

明确排列与组合的联系与区别,能判断一个问题是排列问题还是组合问题;能运用所学的排列组合知识,正确地解决的实际问题.

学习过程

一、学前准备

复习:

(课本P28A13)填空:

(1)有三张参观卷,要在5人中确定3人去参观,不同方法的种数是;

(2)要从5件不同的礼物中选出3件分送3为同学,不同方法的种数是;

(3)5名工人要在3天中各自选择1天休息,不同方法的种数是;

(4)集合A有个元素,集合B有个元素,从两个集合中各取1个元素,不同方法的种数是;

二、新课导学

探究新知(复习教材P14~P25,找出疑惑之处)

问题1:判断下列问题哪个是排列问题,哪个是组合问题:

(1)从4个风景点中选出2个安排游览,有多少种不同的方法?

(2)从4个风景点中选出2个,并确定这2个风景点的游览顺序,有多少种不同的方法?

应用示例:

例1:从10个不同的文艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法?

例2:7位同学站成一排,分别求出符合下列要求的不同排法的种数.

(1)甲站在中间;

(2)甲、乙必须相邻;

(3)甲在乙的左边(但不一定相邻);

(4)甲、乙必须相邻,且丙不能站在排头和排尾;

(5)甲、乙、丙相邻;

(6)甲、乙不相邻;

(7)甲、乙、丙两两不相邻。

反馈练习

1、(课本P40A4)某学生邀请10位同学中的6位参加一项活动,其中两位同学要么都请,要么都不请,共有多少种邀请方法?

2、5男5女排成一排,按下列要求各有多少种排法:(1)男女相间;(2)女生按指定顺序排列

3、马路上有12盏灯,为了节约用电,可以熄灭其中3盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,那么熄灯方法共有______种.

当堂检测

1、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为()

A.42B.30C.20D.12

2、(课本P40A7)书架上有4本不同的数学书,5本不同的物理书,3本不同的化学书,全部排在同一层,如果不使同类的书分开,一共有多少种排法?

课后作业

1、(课本P41B2)用数字0,1,2,3,4,5组成没有重复数字的数,问:(1)能够组成多少个六位奇数?(2)能够组成多少个大于201345的正整数?

2、(课本P41B4)某种产品的加工需要经过5道工序,问:(1)如果其中某一工序不能放在最后,有多少种排列加工顺序的方法?(2)如果其中两道工序既不能放在最前,也不能放在最后,有多少种排列加工顺序的方法?

高中数学教案ppt下载篇5

各位评委老师,上午好,我是__号考生叶新颖。今天我的说课题目是集合。首先我们来进行教材分析。

教材分析

集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。

本节课主要分为两个部分,一是理解集合的定义及一些基本特征。二是掌握集合与元素之间的关系。

教学目标

1、学习目标

(1)通过实例,了解集合的含义,体会元素与集合之间的关系以及理解“属于”关系;

(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;

2、能力目标

(1)能够把一句话一个事件用集合的方式表示出来。

(2)准确理解集合与及集合内的元素之间的关系。

3、情感目标

通过本节的把实际事件用集合的方式表示出来,从而培养数学敏感性,了解到数学于生活中。

教学重点与难点

重点:集合的基本概念与表示方法;

难点:运用集合的两种常用表示方法———列举法与描述法,正确表示一些简单的集合;

教学方法

(1)本课将采用探究式教学,让学生主动去探索,激发学生的学习兴趣。并分层教学,这样可顾及到全体学生,达到优生得到培养,后进生也有所收获的效果;

(2)学生在老师的引导下,通过阅读教材,自主学习、思考、交流、讨论和概括,从而完成本节课的教学目标。

学习方法

(1)主动学习法:举出例子,提出问题,让学生在获得感性认识的同时,

教师层层深入,启发学生积极思维,主动探索知识,培养学生思维想象的综合能力。

(2)反馈补救法:在练习中,注意观察学生对学习的反馈情况,以实现“培

优扶差,满足不同。”

教学思路,具体的思路如下

一、引入课题

军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?

在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合,即是一些研究对象的总体。

二、正体部分

学生阅读教材,并思考下列问题:

(1)集合有那些概念?

(2)集合有那些符号?

(3)集合中元素的特性是什么?

(4)如何给集合分类?

(一)集合的有关概念

(1)对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,都可以称作对象.

(2)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合.

(3)元素:集合中每个对象叫做这个集合的元素.集合通常用大写的拉丁字母表示,如A、B、C、元素通常用小写的

拉丁字母表示,如a、b、c、

1.思考:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。

2、元素与集合的关系

(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A。(举例)

集合A={2,3,4,6,9}a=2因此我们知道a∈A(2)不属于:如果a不是集合A的元素,就说a不属于A,记作aA

要注意“∈”的方向,不能把a∈A颠倒过来写.(举例)集合A={3,4,6,9}a=2因此我们知道aA

3、集合中元素的特性(1)确定性:(2)互异性:(3)无序性:

4、集合分类

根据集合所含元素个属不同,可把集合分为如下几类:

(1)把不含任何元素的集合叫做空集Ф

(2)含有有限个元素的集合叫做有限集

(3)含有无穷个元素的集合叫做无限集注:应区分,{},{0},0等符号的含义

5、常用数集及其表示方法

(1)非负整数集(自然数集):全体非负整数的集合.记作N

(2)正整数集:非负整数集内排除0的集.记作N__或N+

(3)整数集:全体整数的集合.记作Z

(4)有理数集:全体有理数的集合.记作Q

(5)实数集:全体实数的集合.记作R注:

(1)自然数集包括数0.

(2)非负整数集内排除0的集.记作N__或N+,Q、Z、R等其它数集内排除0的集,也这样表示,例如,整数集内排除0的集,表示成Z__

(二)集合的表示方法

我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。

(1)列举法:把集合中的元素一一列举出来,写在大括号内。如:{1,2,3,4,5},{-2,3-+2,5y3--,-2+y2},;例1.(课本例1)思考2,引入描述法

说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。

(2)描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

如:{---3>2},{(-,y)y=-2+1},{直角三角形},;例2.(课本例2)说明:(课本P5最后一段)思考3:(课本P6思考)

强调:描述法表示集合应注意集合的代表元素

{(-,y)y=-2+3-+2}与{yy=-2+3-+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。

辨析:这里的{}已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。

说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。

(三)课堂练习(课本P6练习)

三、归纳小结与作业

本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。

书面作业:习题1.1,第1-4题。

高中数学教案ppt下载篇6

1.掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用。

(1)能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个函数图象间的关系正确描绘对数函数的图象。

(2)能把握指数函数与对数函数的实质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题。

2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想,注重培养学生的观察,分析,归纳等逻辑思维能力。

3.通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性。

高一数学对数函数教案:教材分析

(1)对数函数又是函数中一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的。故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解。对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸。它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础。

(2)本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质。难点是利用指数函数的图象和性质得到对数函数的图象和性质。由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,故应成为教学的重点。

(3)本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开。而通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,所以应是本节课的难点。

高一数学对数函数教案:教法建议

(1)对数函数在引入时,就应从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质。

(2)在本节课中结合对数函数教学的特点,一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地反函数这条主线引导学生思考的方向。这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣。

高中数学教案ppt下载篇7

一、教材分析

1、教材的地位和作用:

数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。

2、教学目标

根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标

a在知识上:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。

b在能力上:培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。

c在情感上:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。

3、教学重点和难点

根据教学大纲的要求我确定本节课的教学重点为:

①等差数列的概念。

②等差数列的通项公式的推导过程及应用。

由于学生第一次接触不完全归纳法,对此并不熟悉因此用不完全归纳法推导等差数列的同项公式是这节课的一个难点。同时,学生对“数学建模”的思想方法较为陌生,因此用数学思想解决实际问题是本节课的另一个难点。

二、学情分析对于三中的高一学生,知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了教强的抽象思维能力和演绎推理能力,所以我在授课时注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。

二、教法分析

针对高中生这一思维特点和心理特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。

三、学法指导在引导分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。

四、教学程序

本节课的教学过程由(一)复习引入(二)新课探究(三)应用例解(四)反馈练习(五)归纳小结(六)布置作业,六个教学环节构成。

(一)复习引入:

1.从函数观点看,数列可看作是定义域为__________对应的一列函数值,从而数列的通项公式也就是相应函数的______ 。(N﹡;解析式)

通过练习1复习上节内容,为本节课用函数思想研究数列问题作准备。

2. 小明目前会100个单词,他她打算从今天起不再背单词了,结果不知不觉地每天忘掉2个单词,那么在今后的五天内他的单词量逐日依次递减为: 100,98,96,94,92 ①

3. 小芳只会5个单词,他决定从今天起每天背记10个单词,那么在今后的五天内他的单词量逐日依次递增为 5,10,15,20,25 ②

通过练习2和3 引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发学生的求知欲。由学生观察两个数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。

(二) 新课探究

1、由引入自然的给出等差数列的概念:

如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。强调:

① “从第二项起”满足条件;

②公差d一定是由后项减前项所得;

③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );

在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:

an+1-an=d (n≥1)

同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。

1. 9 ,8,7,6,5,4,……;√ d=-1

2. 0.70,0.71,0.72,0.73,0.74……;√ d=0.01

3. 0,0,0,0,0,0,…….; √ d=0

4. 1,2,3,2,3,4,……;×

5. 1,0,1,0,1,……×

其中第一个数列公差<0, 第二个数列公差>0,第三个数列公差=0

由此强调:公差可以是正数、负数,也可以是0

高中数学教案ppt下载篇8

今天我说课的课题是《平面向量的概念》,这是江苏省职业学校文化课教材《基础模块·下册》第七章平面向量中的第一节的内容,我将尝试运用新课改的理念、中职学生的认知特点指导本节课的教学,新课标指出,学生是教学的主体,教师的教要本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,建构新的知识体系。下面我将以此为基础从教材分析、学情分析、教法学法、教学过程、教学评价等五个环节,向各位专家谈谈我对本节课教材的理解和教学设计。

一、教材分析:

1、教材的地位和作用

向量是高中阶段学习的一个新的矢量,向量概念是《平面向量》的最基本内容,它的学习直接影响到我们对向量的进一步研究和学习,如向量间关系、向量的加法、减法以及数乘等运算,还有向量的坐标运算等,因此为后面的学习奠定了基础。

结合本节课的特点及学生的实际情况我制定了如下的教学目标及教学重难点:

2、教学目标

(1)知识与技能目标

1)识记平面向量的定义,会用有向线段和字母表示向量,能辨别数量与向量;

2)识记向量模的定义,会用字母和线段表示向量的模。

3)知道零向量、单位向量的概念。

(2)过程与方法目标

学生通过对向量的学习,能体会出向量来自于客观现实,提高观察、分析、抽象和概括等方面的能力,感悟数形结合的思想。

(3)情感态度与价值观目标

通过构建和谐的课堂教学氛围,激发学生的学习兴趣,使学生勇于提出问题,同时培养学生团队合作的精神及积极向上的学习态度。

3、教学重难点

教学重点:向量的定义,向量的几何表示和符号表示,以及零向量和单位向量

教学难点:向量的几何表示的理解,对零向量和单位向量的理解

二、学情分析

(1)能力分析:对于我校的学生,基础知识较薄弱,虽然他们的智力发展已到了形成运演阶段,但并不具备较强的抽象思维能力、概括能力及数形结合的思想。

(2)认知分析:之前,学生有了物理中的矢量概念,这为学习向量作了最好的铺垫。

(3)情感分析:部分学生具有积极的学习态度,强烈的探究欲望,能主动参与研究。

三、教法学法

教法:启发教学法,引探教学法,问题驱动法,并借助多媒体来辅助教学

学法:在学法上,采用的是探究,发现,归纳,练习。从问题出发,引导学生分析问题,让学生经历观察分析、概括、归纳、类比等发现和探索过程。

四、教学过程

课前:

为了打造高效课堂,以生为本我选择生本式的教学方式,以穿针引线的方式设计了前置性作业。其中包括一些向量的基本概念,并提出:

1、你学过的其他学科中有没有可以称为向量的?

2、向量的特点是什么?有几种描述向量的表示方法?

3、零向量的特点是什么?

【设计意图】目的是通过课前的预习明确自己需要在本节课中解决的问题,带着问题听课,我会在上课前就学生的完成情况明确主要的教学侧重点,真正打造高效课堂。

课上教学过程:

1、创设情境

数学的学习应该是与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中发现数学,探究数学,认识并掌握数学,由生活的实例引入,在对比于物理学中的速度、位移等学生已有的知识给出本章研究的问题平面向量

【设计意图】形成对概念的初步认识,为进一步抽象概括做准备。

2、形成概念

结合物理学中对矢量的定义,给出向量的描述性概念。对于一个新学的量定义概念后,通常要用符号表示它。怎样把我们所举例子中的向量表示出来呢?

采取让学生先尝试向量的表示方法,自觉接受用带有箭头的线段(有向线段)来表示向量。明确为什么可以用有向线段表示向量,引导学生总结出向量的表示方法,强调印刷体与手写体的区别。结合板书的有向线段给出向量的模。

单位向量、零向量的概念

【即时训练】

为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一组即时训练题,通过学生的观察尝试,讨论研究,教师引导来巩固新知

3、知识应用

本阶段的教学,我采用的是教材上的两个例题,旨在巩固学生对平面向量的观念,提高学生的动手实践能力,掌握求模的基本方法,提升识图能力。

4、学以致用

为了调动学生的积极性,培养学生团队合作的精神,本环节我采用小组竞争的方式开展教学,小组讨论并选派代表回答,各组之间取长补短,将课堂教学推向高潮,再次加强学生对向量概念的理解。

5、课堂小结

为了了解学生本节课的学习效果,并且将所学做个很好的总结。设置问题:通过本节课的学习你有哪些收获?(可以从各种角度入手)

【设计意图】通过总结使学生明确本节的学习内容,强化重点,为今后的学习打下坚定的基础

6、布置作业

出选做题的目的是注意分层教学和因材施教,为学有余力的学生提供思考的空间。

以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动眼观察,动脑思考,层层递进,亲身经历了知识的形成和发展过程,以问题为驱动,使学生对知识的理解逐步深入。而最后的实际应用又将激发学生的学习兴趣,带领学生进入对本节课更深一步的思考和研究之中,从而达到知识在课堂以外的延伸。

以上就是我对本节课的设计和说明,请各位领导,老师批评指正

高中数学教案ppt下载篇9

数列的相关概念

1.数列概念

①数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N--或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。

②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。图像法;c.解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。

③函数不一定有解析式,同样数列也并非都有通项公式。

高中数学教案ppt下载篇10

教学目标

1.明确等差数列的定义.

2.掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题

3.培养学生观察、归纳能力.

教学重点

1.等差数列的概念;

2.等差数列的通项公式

教学难点

等差数列“等差”特点的理解、把握和应用

教具准备

投影片1张

教学过程

(I)复习回顾

师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。这两个公式从不同的角度反映数列的特点,下面看一些例子。(放投影片)

(Ⅱ)讲授新课

师:看这些数列有什么共同的特点?

1,2,3,4,5,6;①

10,8,6,4,2,…;②

生:积极思考,找上述数列共同特点。

对于数列①(1≤n≤6);(2≤n≤6)

对于数列②-2n(n≥1)(n≥2)

对于数列③(n≥1)(n≥2)

共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。

师:也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列,我们把它叫做等差数。

一、定义:

等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。

如:上述3个数列都是等差数列,它们的公差依次是1,-2,。

二、等差数列的通项公式

师:等差数列定义是由一数列相邻两项之间关系而得。若一等差数列的首项是,公差是d,则据其定义可得:

若将这n-1个等式相加,则可得:

即:即:即:……

由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。

如数列①(1≤n≤6)

数列②:(n≥1)

数列③:(n≥1)

由上述关系还可得:即:则:=如:三、例题讲解

例1:(1)求等差数列8,5,2…的第20项

(2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?

解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立解之得n=100,即-401是这个数列的第100项。

(Ⅲ)课堂练习

生:(口答)课本P118练习3

(书面练习)课本P117练习1

师:组织学生自评练习(同桌讨论)

(Ⅳ)课时小结

师:本节主要内容为:①等差数列定义。

即(n≥2)

②等差数列通项公式(n≥1)

推导出公式:

(V)课后作业

一、课本P118习题3.21,2

二、1.预习内容:课本P116例2P117例4

2.预习提纲:

①如何应用等差数列的定义及通项公式解决一些相关问题?

②等差数列有哪些性质?

高中数学教案ppt下载篇11

一、 知识梳理

1.三种抽样方法的联系与区别:

类别 共同点 不同点 相互联系 适用范围

简单随机抽样 都是等概率抽样 从总体中逐个抽取 总体中个体比较少

系统抽样 将总体均匀分成若干部分;按事先确定的规则在各部分抽取 在起始部分采用简单随机抽样 总体中个体比较多

分层抽样 将总体分成若干层,按个体个数的比例抽取 在各层抽样时采用简单随机抽样或系统抽样 总体中个体有明显差异

(1)从含有N个个体的总体中抽取n个个体的样本,每个个体被抽到的概率为

(2)系统抽样的步骤: ①将总体中的个体随机编号;②将编号分段;③在第1段中用简单随机抽样确定起始的个体编号;④按照事先研究的规则抽取样本.

(3)分层抽样的步骤:①分层;②按比例确定每层抽取个体的个数;③各层抽样;④汇合成样本.

(4) 要懂得从图表中提取有用信息

如:在频率分布直方图中①小矩形的面积=组距 =频率②众数是矩形的中点的横坐标③中位数的左边与右边的直方图的面积相等,可以由此估计中位数的值

2.方差和标准差都是刻画数据波动大小的数字特征,一般地,设一组样本数据 , ,…, ,其平均数为 则方差 ,标准差

3.古典概型的概率公式:如果一次试验中可能出现的结果有 个,而且所有结果都是等可能的,如果事件 包含 个结果,那么事件 的概率P=

特别提醒:古典概型的两个共同特点:

○1 ,即试中有可能出现的基本事件只有有限个,即样本空间Ω中的元素个数是有限的;

○2 ,即每个基本事件出现的可能性相等。

4. 几何概型的概率公式: P(A)=

特别提醒:几何概型的特点:试验的结果是无限不可数的;○2每个结果出现的可能性相等。

二、夯实基础

(1)某单位有职工160名,其中业务人员120名,管理人员16名,后勤人员24名.为了解职工的某种情况,要从中抽取一个容量为20的样本.若用分层抽样的方法,抽取的业务人员、管理人员、后勤人员的人数应分别为____________.

(2)某赛季,甲、乙两名篮球运动员都参加了

11场比赛,他们所有比赛得分的情况用如图2所示的茎叶图表示,

则甲、乙两名运动员得分的中位数分别为( )

A.19、13 B.13、19 C.20、18 D.18、20

(3)统计某校1000名学生的数学会考成绩,

得到样本频率分布直方图如右图示,规定不低于60分为

及格,不低于80分为优秀,则及格人数是 ;优秀率为 。

(4)在一次歌手大奖赛上,七位评委为歌手打出的分数如下:

9.4 8.4 9.4 9.9 9.6 9.4 9.7

去掉一个分和一个最低分后,所剩数据的平均值和方差分别为( )

A.9.4, 0.484 B.9.4, 0.016 C.9.5, 0.04 D.9.5, 0.016

(5)将一颗骰子先后抛掷2次,观察向上的点数,则以第一次向上点数为横坐标x,第二次向上的点数为纵坐标y的点(x,y)在圆x2+y2=27的内部的概率________.

(6)在长为12cm的线段AB上任取一点M,并且以线段AM为边的正方形,则这正方形的面积介于36cm2与81cm2之间的概率为( )

三、高考链接

07、某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒; 第六组,成绩大于等于18秒且小于等于19秒.右图

是按上述分组方法得到的频率分布直方图.设成绩小于17秒的学生人数占全班总人数的百分比为 ,成绩大于等于15秒且小于17秒的学生人数为 ,则从频率分布直方图中可分析出 和 分别为( )

08、从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为( )

分数 5 4 3 2 1

人数 20 10 30 30 10

09、在区间 上随机取一个数x, 的值介于0到 之间的概率为( ).

08、现有8名奥运会志愿者,其中志愿者 通晓日语, 通晓俄语, 通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.

(Ⅰ)求 被选中的概率;(Ⅱ)求 和 不全被选中的概率.

高中数学教案ppt下载篇12

[三维目标]

一、知识与技能:

1、巩固集合、子、交、并、补的概念、性质和记号及它们之间的关系

2、了解集合的运算包含了集合表示法之间的转化及数学解题的一般思想

3、了解集合元素个数问题的讨论说明

二、过程与方法

通过提问汇总练习提炼的形式来发掘学生学习方法

三、情感态度与价值观

培养学生系统化及创造性的思维

[教学重点、难点]:会正确应用其概念和性质做题[教具]:多媒体、实物投影仪

[教学方法]:讲练结合法

[授课类型]:复习课

[课时安排]:1课时

[教学过程]:集合部分汇总

本单元主要介绍了以下三个问题:

1、集合的含义与特征

2、集合的表示与转化

3、集合的基本运算

高中数学教案ppt下载篇13

一.教学目标:

1.知识与技能

(1)理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集

(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集

(3)能使用venn图表达集合的运算,体会直观图示对理解抽象概念的作用

2.过程与方法

学生通过观察和类比,借助venn图理解集合的基本运算

3.情感.态度与价值观

(1)进一步树立数形结合的思想

(2)进一步体会类比的作用

(3)感受集合作为一种语言,在表示数学内容时的简洁和准确

二.教学重点.难点

重点:交集与并集,全集与补集的概念

难点:理解交集与并集的概念,符号之间的区别与联系

三.学法与教学用具

1.学法:学生借助venn图,通过观察、类比、思考、交流和讨论等,理解集合的基本运算

2.教学用具:投影仪

四.教学思路

(一)创设情景,揭示课题

问题1:我们知道,实数有加法运算。类比实数的加法运算,集合是否也可以“相加”呢?

请同学们考察下列各个集合,你能说出集合c与集合a、b之间的关系吗?

引导学生通过观察,类比、思考和交流,得出结论。教师强调集合也有运算,这就是我们本节课所要学习的内容。

(二)研探新知

l.并集

—般地,由所有属于集合a或属于集合b的元素所组成的集合,称为集合a与b的并集

记作:a∪b

读作:a并b

其含义用符号表示为:

用venn图表示如下:

请同学们用并集运算符号表示问题1中a,b,c三者之间的关系

练习、检查和反馈

(1)设a={4,5,6,8),b={3,5,7,8),求a∪b

(2)设集合

让学生独立完成后,教师通过检查,进行反馈,并强调:

(1)在求两个集合的并集时,它们的公共元素在并集中只能出现一次

(2)对于表示不等式解集的集合的运算,可借助数轴解题

2.交集

(1)思考:求集合的并集是集合间的一种运算,那么,集合间还有其他运算吗?

请同学们考察下面的问题,集合a、b与集合c之间有什么关系?

②b={是新华中学20--年9月入学的高一年级同学},c={是新华中学20--年9月入学的高一年级女同学}

教师组织学生思考、讨论和交流,得出结论,从而得出交集的定义;

一般地,由属于集合a且属于集合b的所有元素组成的集合,称为a与b的交集

记作:a∩b

读作:a交b

其含义用符号表示为:

接着教师要求学生用venn图表示交集运算

(2)练习、检查和反馈

①设平面内直线上点的集合为,直线上点的集合为,试用集合的运算表示的位置关系

②学校里开运动会,设a={是参加一百米跑的同学},b={是参加二百米跑的同学},c={是参加四百米跑的同学},学校规定,在上述比赛中,每个同学最多只能参加两项比赛,请你用集合的运算说明这项规定,并解释集合运算a∩b与a∩c的含义

学生独立练习,教师检查,作个别指导,并对学生中存在的问题进行反馈和纠正

(三)学生自主学习,阅读理解

1.教师引导学生阅读教材第10~11页中有关补集的内容,并思考回答下例问题:

(1)什么叫全集?

(2)补集的含义是什么?用符号如何表示它的含义?用venn图又表示?

(3)已知集合

(4)设s={是至少有一组对边平行的四边形},a={是平行四边形},b={是菱形},c={是矩形},求。

在学生阅读、思考的过程中,教师作个别指导,待学生经过阅读和思考完后,请学生回答上述问题,并及时给予评价

(四)归纳整理,整体认识

1.通过对集合的学习,同学对集合这种语言有什么感受?

2.并集、交集和补集这三种集合运算有什么区别?

(五)作业

1.课外思考:对于集合的基本运算,你能得出哪些运算规律?

2.请你举出现实生活中的一个实例,并说明其并集,交集和补集的现实含义

3.书面作业:教材第12页习题1.1a组第7题和b组第4题

高中数学教案ppt下载篇14

教学内容

义务教育课程标准实验教科书(人教版)二年级上册第八单元第一课时

教学目标:

知识目标:

使学生通过观察、猜测、实验等活动,找出简单事物的排列数和组合数。

能力目标:

培养学生有顺序地、全面地思考问题的意识。

情感目标:

使学生感受到数学在现实生活中的应用价值,尝试用数学的方法来解决实际生活中的问题。

教学重点:

经历探索简单事物排列与组合规律的过程。教学难点:初步理解简单事物排列与组合的不同。教学环节

一、创设情境,导入新课

今天,我们来上一节数学活动课,大家乐意吗?(板书课题)现在大家来看一下我们的活动目标。(课件出示活动目标)

师:老师给大家带来了一个新朋友,课件出示圣诞老人画面,圣诞老人过生日了,想请大家参加他的生日聚会,但是他有要求。通过圣诞老人提出本节课任务。

二、合作学习,构建模型

(一)初步感知。课件出示:

第一关:摆一摆,猜密码。(用数字卡片

1、2能排成几个两位数自己动手摆一摆)让学生自己动手摆卡片后,指名汇报。

(二)合作探究。课件出示:

第二关:摆一摆,比一比(用数字卡片1、2、3能摆成几个不同的两位数)比比看,哪个组找的最多。

小组探讨,组长把大家的讨论结果记录在练习本上。(活动开始,教师巡视。)

以组为单位派代表汇报。

师:有的组摆出了4个不同的两位数,有的组摆出了6个不同的两位数,你们是怎么摆的?有什么好办法?

(鼓励方法的多样化,对各组的不同方法进行肯定和表扬。)结合发言,引导学生进行评价,选出优胜组。

师生共同归纳:用数字排列组成数,要按照一定的顺序确定十位上的数,然后考虑个位上有哪些数可以与其搭配。

(三)握一握。课件出示:小精灵说的话。

恭喜你们成功的度过了前两关,现在,我们握手祝贺一下。师:每两人握一次手,三人一共握几次手?(小组活动,教师巡视)活动后,小组指名汇报。

师:究竟是几次呢?请大家互相握握看吧!请一个组的同学上台演示,其他同学一起数数。

(四)课件出示:

师:圣诞老人决定奖励你们两件上衣、两条裤子,那么一共有几种搭配方法呢?(课件出示图片。)

学生拿出学具卡片,小组活动解决问题。汇报交流,说说自己为什么这样设计。

三、分层练习,巩固新知

(一)付钱问题。

课件出示:99页做一做2题

小组讨论,小组长统计本组学生答题情况,并由小组代表汇报。

(二)拍照站法。

小丽、小芳、小美在风景如画的郊外游玩,三人想站成一排拍照留念,她们有几种站法?

小组讨论后,由一组学生上台演示,其他学生数一数。

高中数学教案ppt下载篇15

一、教学内容分析

本节内容是学生在学习了乘法原理、排列、排列数公式和加法原理以后的知识,学生已经掌握了排列问题,并且对顺序与排列的关系已经有了一个比较清晰的认识.因此关键是排列与组合的区别在于问题是否与顺序有关.与顺序有关的是排列问题,与顺序无关是组合问题,顺序对排列、组合问题的求解特别重要.排列与组合的区别,从定义上来说是简单的,但在具体求解过程中学生往往感到困惑,分不清到底与顺序有无关系,指导学生根据生活经验和问题的内涵领悟其中体现出来的顺序.教的秘诀在于度,学的真谛在于悟,只有学生真正理解了,才能举一反三、融会贯通.

二、教学目标设计

1.理解组合的意义,掌握组合数的计算公式;

2.能正确认识组合与排列的联系与区别

3.通过练习与训练体验并初步掌握组合数的计算公式

三、教学重点及难点

组合概念的理解和组合数公式;组合与排列的区别.

四、教学用具准备

多媒体设备

五、教学流程设计



六、教学过程设计

一、 复习引入

1.复习

我们在前几节中学习了排列、排列数以及排列数公式

定 义

特 点

相同排列

公 式



排 列























 以上由学生口答.

2.引入

那么请问:平面上有7个点,问以这7点中任何两个为端点,构成有向线段有几条?

这是一个排列问题 

若改为:构成的线段有几条?则为 ,

其实亦可用另一种方法解决,这就是组合.

二、学习新课

探究性质

1. 组合定义: P16

一般地,从个不同元素中取出个元素并成一组,叫做从个不同元素中取出个元素的一个组合.

【说明】:⑴不同元素; ⑵“只取不排”——无序性;

⑶相同组合:元素相同.

2.组合数定义:

从个不同元素中取出个元素的所有组合的个数,叫做从个不同元素中取出个元素的组合数.用符号表示.

如:引入中的例子可表示为 

== 这是为什么呢?

因为 构成有向线段的问题可分成2步来完成:

第一步,先从7个点中选2个点出来,共有种选法;

第二步,将选出的2个点做一个排列,有种次序;

根据乘法原理,共有·= 所以

·判断何为排列、组合问题: 利用书本P16~P17例题请学生判断

·这个公式叫组合数公式

3.组合数公式:

如= =

用计算器求  、  、  、 

可发现= =

由此猜想: 

用实际例子说明:比如要从50人中挑选4个出来参加迎春长跑的选择方案有,就相当于挑46个人不参加长跑的选择方案一样.“取法”与“剩法”是“一 一对应”的.

证明:∵

又 ,∴

当m=n时,

此性质作用:当时,计算可变为计算,能够使运算简化.

4. 组合数性质:

1、

2、=  

可解释为:从这n 1个不同元素中取出m个元素的组合数是,这些组合可以分为两类:一类含有元素,一类不含有.含有的组合是从这n个元素中取出m (1个元素与组成的,共有个;不含有的组合是从这n个元素中取出m个元素组成的,共有个.根据加法原理,可以得到组合数的另一个性质.在这里,主要体现从特殊到一般的归纳思想,“含与不含其元素”的分类思想.

证明:





得证.

【说明】1( 公式特征:下标相同而上标差1的两个组合数之和,等于下标比原下标多1而上标与高的相同的一个组合数.

2( 此性质的作用:恒等变形,简化运算.在今后学习“二项式定理”时,我们会看到它的主要应用.

2.例题分析

例1、(1),求x

(2)

(3)

略解:(1) 





(2) 

(3)



例2、应用题:

有15本不同的书,其中6本是数学书,问:

分给甲4本,且都不是数学书;

略解:(1)

3.问题拓展

例3.题设同例2:

(2)平均分给3人;

(3)若平均分为3份;

(4)甲分2本,乙分7本,丙分6本;

(5)1人2本,1人7本,1人6本.

略解:(2) (3)

(4) (5)

三、课堂小结

指导学生根据生活经验和问题的内涵领悟其中体现出来的顺序.教的秘诀在于度,学的真谛在于悟,只有学生真正理解了,才能举一反三、融会贯通.

能列举出某种方法时,让学生通过交换元素位置的办法加以鉴别.

学生易于辨别组合、全排列问题,而排列问题就是先组合后全排列.在求解排列、组合问题时,可引导学生找出两定义的关系后,按以下两步思考:首先要考虑如何选出符合题意要求的元素来,选出元素后再去考虑是否要对元素进行排队,即第一步仅从组合的角度考虑,第二步则考虑元素是否需全排列,如果不需要,是组合问题;否则是排列问题.

排列、组合问题大都来源于同学们生活和学习中所熟悉的情景,解题思路通常是依据具体做事的过程,用数学的原理和语言加以表述.也可以说解排列、组合题就是从生活经验、知识经验、具体情景的出发,正确领会问题的实质,抽象出“按部就班”的处理问题的过程.据观察,有些同学之所以学习中感到抽象,不知如何思考,并不是因为数学知识跟不上,而是因为平时做事、考虑问题就缺乏条理性,或解题思路是自己主观想象的做法(很可能是有悖于常理或常规的做法).要解决这个问题,需要师生一道在分析问题时要根据实际情况,怎么做事就怎么分析,若能借助适当的工具,模拟做事的过程,则更能说明问题.久而久之,学生的逻辑思维能力将会大大提高.

四、作业布置

(略)

七、教学设计说明

在学习过程中,从排列问题引入,随即自然地过渡到组合问题.由此让学生对于排列与组合两者的异同有深刻理解,并能自如地进行判断.

本节课在教学技术上通过多媒体课件大大缩短了教师板书抄题的时间,让学生能够更加连贯的思考以及探索问题.

在例题的设计上从最基本的组合数公式的利用,到简单的应用题,再到组合中较难的分组分配以及平均不平均分配问题的训练,由浅入深,层层递进,以积极发挥课堂教学的基础型和研究型功能,培养学生的基础性学力和发展性学力.

在课堂教学中教师遵循“以学生为主体”的思想,鼓励学生善于观察和发现;鼓励学生积极思考和探究;鼓励学生大胆猜想,努力营造一个民主和谐、平等交流的课堂氛围,采取对话式教学,调动学生学习的积极性,激发学生学习的热情,使学生开阔思维空间,让学生积极参与教学活动,提高学生的数学思维能力.

高中数学教案ppt下载篇16

各位老师:

大家好!

我叫______,来自____。我说课的题目是《古典概型》,内容选自于高中教材新课程人教A版必修3第三章第二节,课时安排为两个课时,本节课内容为第一课时。下面我将从教材分析、教学目标分析、教法与学法分析、教学过程分析四大方面来阐述我对这节课的分析和设计:

一、教材分析

1.教材所处的地位和作用

古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。它承接着前面学过的随机事件的概率及其性质,又是以后学习条件概率的基础,起到承前启后的作用。

2.教学的重点和难点

重点:理解古典概型及其概率计算公式。

难点:古典概型的判断及把一些实际问题转化成古典概型。

二、教学目标分析

1.知识与技能目标

(1)通过试验理解基本事件的概念和特点

(2)在数学建模的过程中,抽离出古典概型的两个基本特征,推导出古典概型下的概率的计算公式。

2、过程与方法:

经历公式的推导过程,体验由特殊到一般的数学思想方法。

3、情感态度与价值观:

(1)用具有现实意义的实例,激发学生的学习兴趣,培养学生勇于探索,善于发现的创新思想。

(2)让学生掌握"理论来源于实践,并把理论应用于实践"的辨证思想。

三、教法与学法分析

1、教法分析:根据本节课的特点,采用引导发现和归纳概括相结合的教学方法,通过提出问题、思考问题、解决问题等教学过程,观察对比、概括归纳古典概型的概念及其概率公式,再通过具体问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来。

2、学法分析:学生在教师创设的问题情景中,通过观察、类比、思考、探究、概括、归纳和动手尝试相结合,体现了学生的主体地位,培养了学生由具体到抽象,由特殊到一般的数学思维能力,形成了实事求是的科学态度。

㈠创设情景、引入新课

在课前,教师布置任务,以小组为单位,完成下面两个模拟试验:

试验一:抛掷一枚质地均匀的硬币,分别记录"正面朝上"和"反面朝上"的次数,要求每个数学小组至少完成20次(最好是整十数),最后由代表汇总;

试验二:抛掷一枚质地均匀的骰子,分别记录"1点"、"2点"、"3点"、"4点"、"5点"和"6点"的次数,要求每个数学小组至少完成60次(最好是整十数),最后由代表汇总。

在课上,学生展示模拟试验的操作方法和试验结果,并与同学交流活动感受,教师最后汇总方法、结果和感受,并提出两个问题。

1.用模拟试验的方法来求某一随机事件的概率好不好?为什么?

不好,要求出某一随机事件的概率,需要进行大量的试验,并且求出来的结果是频率,而不是概率。

2.根据以前的学习,上述两个模拟试验的每个结果之间都有什么特点?]

「设计意图」通过课前的模拟实验,让学生感受与他人合作的重要性,培养学生运用数学语言的能力。随着新问题的提出,激发了学生的求知欲望,通过观察对比,培养了学生发现问题的能力。

㈡思考交流、形成概念

学生观察对比得出两个模拟试验的相同点和不同点,教师给出基本事件的概念,并对相关特点加以说明,加深对新概念的理解。

[基本事件有如下的两个特点:

(1)任何两个基本事件是互斥的;

(2)任何事件(除不可能事件)都可以表示成基本事件的和.]

「设计意图」让学生从问题的相同点和不同点中找出研究对象的对立统一面,这能培养学生分析问题的能力,同时也教会学生运用对立统一的辩证唯物主义观点来分析问题的一种方法。教师的注解可以使学生更好的把握问题的关键。

例1从字母a、b、c、d中任意取出两个不同字母的试验中,有哪些基本事件?

先让学生尝试着列出所有的基本事件,教师再讲解用树状图列举问题的优点。

「设计意图」将数形结合和分类讨论的思想渗透到具体问题中来。由于没有学习排列组合,因此用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏。解决了求古典概型中基本事件总数这一难点

观察对比,发现两个模拟试验和例1的共同特点:

让学生先观察对比,找出两个模拟试验和例1的共同特点,再概括总结得到的结论,教师最后补充说明。

[经概括总结后得到:

(1)试验中所有可能出现的基本事件只有有限个;(有限性)

(2)每个基本事件出现的可能性相等。(等可能性)

我们将具有这两个特点的概率模型称为古典概率概型,简称古典概型。

「设计意图」培养运用从具体到抽象、从特殊到一般的辩证唯物主义观点分析问题的能力,充分体现了数学的化归思想。启发诱导的同时,训练了学生观察和概括归纳的能力。通过列出相同和不同点,能让学生很好的理解古典概型。

㈢观察分析、推导方程

问题思考:在古典概型下,基本事件出现的概率是多少?随机事件出现的概率如何计算?

教师提出问题,引导学生类比分析两个模拟试验和例1的概率,先通过用概率加法公式求出随机事件的概率,再对比概率结果,发现其中的联系,最后概括总结得出古典概型计算任何事件的概率计算公式:

「设计意图」鼓励学生运用观察类比和从具体到抽象、从特殊到一般的辩证唯物主义方法来分析问题,同时让学生感受数学化归思想的优越性和这一做法的合理性,突出了古典概型的概率计算公式这一重点。

提问:

(1)在例1的实验中,出现字母"d"的概率是多少?

(2)在使用古典概型的概率公式时,应该注意什么?

「设计意图」教师提问,学生回答,深化对古典概型的概率计算公式的理解,也抓住了解决古典概型的概率计算的关键。

㈣例题分析、推广应用

例2单选题是标准化考试中常用的题型,一般是从A,B,c,D四个选项中选择一个正确答案。如果考生掌握了考差的内容,他可以选择唯一正确的答案。假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?

学生先思考再回答,教师对学生没有注意到的关键点加以说明。

「设计意图」让学生明确决概率的计算问题的关键是:先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。巩固学生对已学知识的掌握。

例3同时掷两个骰子,计算:

(1)一共有多少种不同的结果?

(2)其中向上的点数之和是5的结果有多少种?

(3)向上的点数之和是5的概率是多少?

先给出问题,再让学生完成,然后引导学生分析问题,发现解答中存在的问题。引导学生用列表来列举试验中的基本事件的总数。

「设计意图」利用列表数形结合和分类讨论,既能形象直观地列出基本事件的总数,又能做到列举的不重不漏。深化巩固对古典概型及其概率计算公式的理解。培养学生运用数形结合的思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣,形成学习数学知识的积极态度。

㈤探究思想、巩固深化

问题思考:为什么要把两个骰子标上记号?如果不标记号会出现什么情况?你能解释其中的原因吗?

要求学生观察对比两种结果,找出问题产生的原因。

「设计意图」通过观察对比,发现两种结果不同的根本原因是--研究的问题是否满足古典概型,从而再次突出了古典概型这一教学重点,体现了学生的主体地位,逐渐养成自主探究能力。

㈥总结概括、加深理解

1.基本事件的特点

2.古典概型的特点

3.古典概型的概率计算公式

学生小结归纳,不足的地方老师补充说明。

「设计意图」使学生对本节课的知识有一个系统全面的认识,并把学过的相关知识有机地串联起来,便于记忆和应用,也进一步升华了这节课所要表达的本质思想,让学生的认知更上一层。

㈦布置作业

课本练习1、2、3

「设计意图」进一步让学生掌握古典概型及其概率公式,并能够学以致用,加深对本节课的理解。

高中数学教案ppt下载篇17

一、教学目标

(一)知识与技能

1、进一步熟练掌握求动点轨迹方程的基本方法。

2、体会数学实验的直观性、有效性,提高几何画板的操作能力。

(二)过程与方法

1、培养学生观察能力、抽象概括能力及创新能力。

2、体会感性到理性、形象到抽象的思维过程。

3、强化类比、联想的方法,领会方程、数形结合等思想。

(三)情感态度价值观

1、感受动点轨迹的动态美、和谐美、对称美

2、树立竞争意识与合作精神,感受合作交流带来的成功感,树立自信心,激发提出问题和解决问题的勇气

二、教学重点与难点

教学重点:运用类比、联想的方法探究不同条件下的轨迹

教学难点:图形、文字、符号三种语言之间的过渡

三、、教学方法和手段

【教学方法】观察发现、启发引导、合作探究相结合的教学方法。启发引导学生积极思考并对学生的思维进行调控,帮助学生优化思维过程,在此基础上,提供给学生交流的机会,帮助学生对自己的思维进行组织和澄清,并能清楚地、准确地表达自己的数学思维。

【教学手段】利用网络教室,四人一机,多媒体教学手段。通过上述教学手段,一方面:再现知识产生的过程,通过多媒体动态演示,突破学生在旧知和新知形成过程中的障碍(静态到动态);另一方面:节省了时间,提高了课堂教学的效率,激发了学生学习的兴趣。

【教学模式】重点中学实施素质教育的课堂模式"创设情境、激发情感、主动发现、主动发展"。

四、教学过程

1、创设情景,引入课题

生活中我们四处可见轨迹曲线的影子

【演示】这是美丽的城市夜景图

【演示】许多人认为天体运行的轨迹都是圆锥曲线,研究表明,天体数目越多,轨迹种类也越多

【演示】建筑中也有许多美丽的轨迹曲线

设计意图:让学生感受数学就在我们身边,感受轨迹曲线的动态美、和谐美、对称美,激发学习兴趣。

2、激发情感,引导探索

靠在墙角的梯子滑落了,如果梯子上站着一个人,我们不禁会想,这个人是直直的摔下去呢?还是划了一条优美的曲线飞出去呢?我们把这个问题转化为数学问题就是新教材高二上册88页20题,也就是这里的例题1;

例1、线段长为,两个端点和分别在轴和轴上滑动,求线段的中点的轨迹方程。

第一步:让学生借助画板动手验证轨迹

第二步:要求学生求出轨迹方程

法一:设,则

由得,

化简得

法二:设,由得

化简得

法三:设, 由点到定点的距离等于定长,

根据圆的定义得;

第三步:复习求轨迹方程的一般步骤

(1)建立适当的坐标系

(2)设动点的坐标M(x,y)

(3)列出动点相关的约束条件p(M)

(4)将其坐标化并化简,f(x,y)=0

(5)证明

其中,最关键的一步是根据题意寻求等量关系,并把等量关系坐标化

设计意图:在这里我借助几何画板的动画功能,先让学生直观地、形象地、动态地感受动点的轨迹是圆,接着要求学生求出轨迹方程,最后师生共同回顾求轨迹方程的一般步骤,达到熟练掌握直译法、定义法,体会从感性到理性、从形象到抽象的思维过程。

3、主动发现、主动发展

由上述例1可知,如果人站在梯子中间,则他会划了一段优美的圆弧飞出去。学生很自然就会想,如果人不是站在中间,而是随意站,结果会怎样呢?让学生动手探究M不是中点时的轨迹。

第一步:利用网络平台展示学生得到的轨迹(教师有意识的整合在一起)

设计意图:借助数学实验,把原本属于教师行为的设疑激趣还原于学生,让学生自己在实践过程中发现疑问,更容易激发学生学习的热情,促使他们主动学习。

第二步:分解动作,向学生提出3个问题:

问题1:当M位置不同时,线段BM与MA的大小关系如何?

问题2、体现BM与MA大小关系还有什么常见的形式?

问题3、你能类比例1把这种数量关系表达出来吗?

第三步:展示学生归纳、概括出来的数学问题

1、线段AB的长为2a,两个端点B和A分别在X轴和Y轴上滑动,点M为AB上的点,满足,求点M的轨迹方程。

2、线段AB的长为2a,两个端点B和A分别在X轴和Y轴上滑动,点M为AB上的点,满足,求点M的轨迹方程。

3、线段AB的长为2a,两个端点B和A分别在X轴和Y轴上滑动,点M为AB上的点,满足,求点M的轨迹方程。(说明是什么轨迹)

第四步:课堂完成学生归纳出来的问题1,问题2和3课后完成

4、合作探究、实现创新

改变A、点的运动方式,同样考虑中点的轨迹,教师进行适当的指导(这里固定A点,运动B点)

学生主要列出了以下几种运动方式:圆、椭圆、双曲线、抛物线,并且得出了一些相应的轨迹。

5、布置作业、实现拓展

1、把上述同学们探究得到的轨迹图形用文字、符号描述出来,(仿造例1),并求出轨迹方程。

2、已知A(4,0),点B是圆上一动点,AB中垂线与直线OB相交于点P,求点P的轨迹方程。

3、已知A(2,0),点B是圆上一动点,AB中垂线与直线OB相交于点P,求点P的轨迹方程。

4若把上述问题中垂线改为一般的垂线与直线OB相交于点P,请同学们利用画板验证点P 的轨迹。

以下是学生课后探究得到的一些轨迹图形

课后有学生问,如果X轴和Y轴不垂直会有什么结果?定长的线段在上面滑动怎么做出来?

可以说,学生的这些问题我之前并没有想过,给了我很大的触动,同时也促使我更进一步去研究几何画板,提高自己的能力。在这里,我体会到了教师不再只是一根根蜡烛,更像是一盏盏明灯,在照亮别人的同时也照亮自己。

以下是X轴和Y轴不垂直时的轨迹图形

五、教学设计说明:

(一)、教材

《平面动点的轨迹》是高二一节探究课,轨迹问题具有深厚的生活背景,求平面动点的轨迹方程涉及集合、方程、三角、平面几何等基础知识,其中渗透着运动与变化、方程的思想、数形结合的思想等,是中学数学的重要内容,也是历年高考数学考查的重点之一。

(二)、校情、学情

校情:我校是一所省一级达标校,省级示范性高中,学校的硬件设施比较完善,每间教室都具备多媒体教学的功能,另外有两间网络教室和一个学生电子阅室,并且能随时上网。

学情:大部分学生家里都有电脑,而且能随时上网。对学生进行了几何画板基本操作的培训,学生能较快的画出圆、椭圆、双曲线、抛物线等基本的圆锥曲线。学生对求轨迹方程的基本方法有了一定的掌握,但是对文字、图形、符号三种语言之间的转换还存在很大的差异,在合作交流意识方面,发展不均衡,有待加强。

(三)学法

观察、实验、交流、合作、类比、联想、归纳、总结

(四)、教学过程

1、创设情景,引入课题

2、激发情感,引导探索

由梯子滑落问题抽象、概括出数学问题

第一步:让学生借助画板动手验证轨迹

第二步:要求学生求出轨迹方程

第三步:复习求轨迹方程的一般步骤

3、主动发现、主动发展

探究M不是中点时的轨迹

第一步:利用网络平台展示学生得到的轨迹

第二步:分解动作,向学生提出3个问题:

第三步:展示学生归纳、概括出来的数学问题

4、合作探究、实现创新

改变A、点的运动方式,同样考虑中点的轨迹,教师进行适当的指导(这里固定A点,运动B点)

学生主要列出了以下几种运动方式:圆、椭圆、双曲线、抛物线,并且得出了一些相应的轨迹。

5、布置作业、实现拓展

(五)、教学特色:

借助网络、多媒体教学平台,让学生自己动手实验,发现问题并解决问题,同时把学生的学习情况及时的展现出来,做到大家一起学习,一起评价的效果。同时节省了时间,提高了课堂效率。

整个教学过程,体现了四个统一:既学习书本知识与投身实践的统一、书本学习与现代信息技术学习的统一、书本知识与资源拓展的统一、课堂学习与课外实践的统一。

本节课学生精神饱满、兴趣浓厚、合作积极,与我保持良好的互动,还不时产生一些争执,给我提出了一些新的问题,折射出我不足的方面,促进了我的进步与提高,师生间的教与学就像一面镜子,互相折射,共同进步。

高中数学教案ppt下载篇18

说课内容:普通高中课程标准实验教科书(人教A版)《数学必修4》第二章第四节“平面向量的数量积”的第一课时---平面向量数量积的物理背景及其含义。

下面,我从背景分析、教学目标设计、课堂结构设计、教学过程设计、教学媒体设计及教学评价设计六个方面对本节课的思考进行说明。

一、背景分析

1、学习任务分析

平面向量的数量积是继向量的线性运算之后的又一重要运算,也是高中数学的一个重要概念,在数学、物理等学科中应用十分广泛。本节内容教材共安排两课时,其中第一课时主要研究数量积的概念,第二课时主要研究数量积的坐标运算,本节课是第一课时。

本节课的主要学习任务是通过物理中“功”的事例抽象出平面向量数量积的概念,在此基础上探究数量积的性质与运算律,使学生体会类比的思想方法,进一步培养学生的抽象概括和推理论证的能力。其中数量积的概念既是对物理背景的抽象,又是研究性质和运算律的基础。同时也因为在这个概念中,既有长度又有角度,既有形又有数,是代数、几何与三角的最佳结合点,不仅应用广泛,而且很好的体现了数形结合的数学思想,使得数量积的概念成为本节课的核心概念,自然也是本节课教学的重点。

2、学生情况分析

学生在学习本节内容之前,已熟知了实数的运算体系,掌握了向量的概念及其线性运算,具备了功等物理知识,并且初步体会了研究向量运算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再从概念出发,在与实数运算类比的基础上研究性质和运算律。这为学生学习数量积做了很好的铺垫,使学生倍感亲切。但也正是这些干扰了学生对数量积概念的理解,一方面,相对于线性运算而言,数量积的结果发生了本质的变化,两个有形有数的向量经过数量积运算后,形却消失了,学生对这一点是很难接受的;另一方面,由于受实数乘法运算的影响,也会造成学生对数量积理解上的偏差,特别是对性质和运算律的理解。因而本节课教学的难点数量积的概念。

二、教学目标设计

《普通高中数学课程标准(实验)》对本节课的要求有以下三条:

(1)通过物理中“功”等事例,理解平面向量数量积的含义及其物理意义。

(2)体会平面向量的数量积与向量投影的关系。

(3)能用运数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。

从以上的背景分析可以看出,数量积的概念既是本节课的重点,也是难点。为了突破这一难点,首先无论是在概念的引入还是应用过程中,物理中“功”的实例都发挥了重要作用。其次,作为数量积概念延伸的性质和运算律,不仅能够使学生更加全面深刻地理解概念,同时也是进行相关计算和判断的理论依据。最后,无论是数量积的性质还是运算律,都希望学生在类比的基础上,通过主动探究来发现,因而对培养学生的抽象概括能力、推理论证能力和类比思想都无疑是很好的载体。

综上所述,结合“课标”要求和学生实际,我将本节课的教学目标定为:

1、了解平面向量数量积的物理背景,理解数量积的含义及其物理意义;

2、体会平面向量的数量积与向量投影的关系,掌握数量积的性质和运算律,

并能运用性质和运算律进行相关的运算和判断;

3、体会类比的数学思想和方法,进一步培养学生抽象概括、推理论证的能力。

三、课堂结构设计

本节课从总体上讲是一节概念教学,依据数学课程改革应关注知识的发生和发展过程的理念,结合本节课的知识的逻辑关系,我按照以下顺序安排本节课的教学:

即先从数学和物理两个角度创设问题情景,通过归纳和抽象得到数量积的概念,在此基础上研究数量积的性质和运算律,使学生进一步加深对概念的理解,然后通过例题和练习使学生巩固概念,加深印象,最后通过课堂小结提高学生认识,形成知识体系。

四、教学媒体设计

和“大纲”教材相比,“课标”教材在本节课的内容安排上,虽然将向量的夹角在“平面向量基本定理”一节提前做了介绍,但却将原来分两节课完成的内容合并成一节,相比较而言本节课的教学任务加重了许多。为了保证教学任务的完成,顺利实现本节课的教学目标,考虑到本节课的实际特点,在教学媒体的使用上,我的设想主要有以下两点:

1、制作高效实用的电脑多媒体课件,主要作用是改变相关内容的呈现方式,以此来节约课时,增加课堂容量。

2、设计科学合理的板书(见下),一方面使学生加深对主要知识的印象,另一方面使学生清楚本节内容知识间的逻辑关系,形成知识网络。

平面向量数量积的物理背景及其含义

一、数量积的概念二、数量积的性质四、应用与提高

1、概念:例1:

2、概念强调(1)记法例2:

(2)“规定”三、数量积的运算律例3:

3、几何意义:

4、物理意义:

五、教学过程设计

课标指出:数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下六个活动:

活动一:创设问题情景,激发学习兴趣

正如教材主编寄语所言,数学是自然的,而不是强加于人的。平面向量的数量积这一重要概念,和向量的线性运算一样,也有其数学背景和物理背景,为了体现这一点,我设计以下几个问题:

问题1:我们已经研究了向量的哪些运算?这些运算的结果是什么?

问题2:我们是怎么引入向量的加法运算的?我们又是按照怎样的顺序研究了这种运算的?

期望学生回答:物理模型→概念→性质→运算律→应用

问题3:如图所示,一物体在力F的作用下产生位移S,

(1)力F所做的功W=。

(2)请同学们分析这个公式的特点:

W(功)是量,

F(力)是量,

S(位移)是量,

α是。

问题1的设计意图在于使学生了解数量积的数学背景,让学生明白本节课所要研究的数量积与向量的加法、减法及数乘一样,都是向量的运算,但与向量的线性运算相比,数量积运算又有其特殊性,那就是其结果发生了本质的变化。

问题2的设计意图在于使学生在与向量加法类比的基础上明了本节课的研究方法和顺序,为教学活动指明方向。

问题3的设计意图在于使学生了解数量积的物理背景,让学生知道,我们研究数量积绝不仅仅是为了数学自身的完善,而是有其客观背景和现实意义的,从而产生了进一步研究这种新运算的愿望。同时,也为抽象数量积的概念做好铺垫。

活动二:探究数量积的概念

1、概念的抽象

在分析“功”的计算公式的基础上提出问题4

问题4:你能用文字语言来表述功的计算公式吗?如果我们将公式中的力与位移推广到一般向量,其结果又该如何表述?

学生通过思考不难回答:功是力与位移的大小及其夹角余弦的乘积;两个向量的大小及其夹角余弦的乘积。这样,学生事实上已经得到数量积概念的文字表述了,在此基础上,我进一步明晰数量积的概念。

2、概念的明晰

已知两个非零向量

,它们的夹角为

,我们把数量︱

︱·︱

︱cos

叫做

的数量积(或内积),记作:

·

,即:

·

=︱

︱·︱

︱cos

在强调记法和“规定”后,为了让学生进一步认识这一概念,提出问题5

问题5:向量的数量积运算与线性运算的结果有什么不同?影响数量积大小的因素有哪些?并完成下表:

的范围0°≤

<90°

=90°0°<

≤180°

·

的符号

通过此环节不仅使学生认识到数量积的结果与线性运算的结果有着本质的不同,而且认识到向量的夹角是决定数量积结果的重要因素,为下面更好地理解数量积的性质和运算律做好铺垫。

3、探究数量积的几何意义

这个问题教材是这样安排的:在给出向量数量积的概念后,只介绍了向量投影的定义,直到讲完例1后,为了证明运算律的第三条才直接以结论的形式呈现给学生,我觉得这样安排似乎不太自然,还不如在给出向量投影的概念后,直接由学生自己归纳得出,所以做了调整。为此,我首先给出给出向量投影的概念,然后提出问题5。

如图,我们把│

│cos

(│

│cos

)叫做向量

方向上(

方向上)的投影,记做:OB1=│

│cos

问题6:数量积的几何意义是什么?

这样做不仅让学生从“形”的角度重新认识数量积的概念,从中体会数量积与向量投影的关系,同时也更符合知识的连贯性,而且也节约了课时。

4、研究数量积的物理意义

数量积的概念是由物理中功的概念引出的,学习了数量积的概念后,学生就会明白功的数学本质就是力与位移的数量积。为此,我设计以下问题一方面使学生尝试计算数量积,另一方面使学生理解数量积的物理意义,同时也为数量积的性质埋下伏笔。

问题7:

(1)请同学们用一句话来概括功的数学本质:功是力与位移的数量积。

(2)尝试练习:一物体质量是10千克,分别做以下运动:

①、在水平面上位移为10米;

②、竖直下降10米;

③、竖直向上提升10米;

④、沿倾角为30度的斜面向上运动10米;

分别求重力做的功。

活动三:探究数量积的运算性质

1、性质的发现

教材中关于数量积的三条性质是以探究的形式出现的,为了很好地完成这一探究活动,在完成上述练习后,我不失时机地提出问题8:

(1)将尝试练习中的①②③的结论推广到一般向量,你能得到哪些结论?

(2)比较︱

·

︱与︱

︱×︱

︱的大小,你有什么结论?

在学生讨论交流的基础上,教师进一步明晰数量积的性质,然后再由学生利用数量积的定义给予证明,完成探究活动。

2、明晰数量积的性质

3、性质的证明

这样设计体现了教师只是教学活动的引领者,而学生才是学习活动的主体,让学生成为学习的研究者,不断地体验到成功的喜悦,激发学生参与学习活动的热情,不仅使学生获得了知识,更培养了学生由特殊到一般的思维品质。

活动四:探究数量积的运算律

1、运算律的发现

关于运算律,教材仍然是以探究的形式出现,为此,首先提出问题9

问题9:我们学过了实数乘法的哪些运算律?这些运算律对向量是否也适用?

通过此问题主要是想使学生在类比的基础上,猜测提出数量积的运算律。

学生可能会提出以下猜测:①

·

=

·

②(

·

)

=

(

·

)③(

+

=

·

+

·

猜测①的正确性是显而易见的。

关于猜测②的正确性,我提示学生思考下面的问题:

猜测②的左右两边的结果各是什么?它们一定相等吗?

学生通过讨论不难发现,猜测②是不正确的。

这时教师在肯定猜测③的基础上明晰数量积的运算律:

2、明晰数量积的运算律

3、证明运算律

学生独立证明运算律(2)

我把运算运算律(2)的证明交给学生完成,在证明时,学生可能只考虑到λ>0的情况,为了帮助学生完善证明,提出以下问题:

当λ<0时,向量

与λ

与λ

的方向的关系如何?此时,向量λ

与λ

的夹角与向量

的夹角相等吗?

师生共同证明运算律(3)

运算律(3)的证明对学生来说是比较困难的,为了节约课时,这个证明由师生共同完成,我想这也是教材的本意。

在这个环节中,我仍然是首先为学生创设情景,让学生在类比的基础上进行猜想归纳,然后教师明晰结论,最后再完成证明,这样做不仅培养了学生推理论证的能力,同时也增强了学生类比创新的意识,将知识的获得和能力的培养有机的结合在一起。

活动五:应用与提高

例1、(师生共同完成)已知︱

︱=6,︱

︱=4,

的夹角为60°,求

(

+2

)·(

-3

),并思考此运算过程类似于哪种运算?

例2、(学生独立完成)对任意向量

,b是否有以下结论:

(1)(

+

)2=

2+2

·

+

2

(2)(

+

)·(

-

)=

2—

2

例3、(师生共同完成)已知︱

︱=3,︱

︱=4,且

不共线,k为何值时,向量

+k

-k

互相垂直?并思考:通过本题你有什么收获?

本节教材共安排了四道例题,我根据学生实际选择了其中的三道,并对例1和例3增加了题后反思。例1是数量积的性质和运算律的综合应用,教学时,我重点从对运算原理的分析和运算过程的规范书写两个方面加强示范。完成计算后,进一步提出问题:此运算过程类似于哪种运算?目的是想让学生在类比多项式乘法的基础上自己猜测提出例2给出的.两个公式,再由学生独立完成证明,一方面这并不困难,另一方面培养了学生通过类比这一思维模式达到创新的目的。例3的主要作用是,在继续巩固性质和运算律的同时,教给学生如何利用数量积来判断两个向量的垂直,是平面向量数量积的基本应用之一,教学时重点给学生分析数与形的转化原理。

为了使学生更好的理解数量积的含义,熟练掌握性质及运算律,并能够应用数量积解决有关问题,再安排如下练习:

1、下列两个命题正确吗?为什么?

①、若

≠0,则对任一非零向量

,有

·

≠0.

②、若

≠0,

·

=

·

,则

=

.

2、已知△ABC中,

=

,

=

,当

·

<0或

·

=0时,试判断△ABC的形状。

安排练习1的主要目的是,使学生在与实数乘法比较的基础上全面认识数量积这一重要运算,

通过练习2使学生学会用数量积表示两个向量的夹角,进一步感受数量积的应用价值。

活动六:小结提升与作业布置

1、本节课我们学习的主要内容是什么?

2、平面向量数量积的两个基本应用是什么?

3、我们是按照怎样的思维模式进行概念的归纳和性质的探究?在运算律的探究过程中,渗透了哪些数学思想?

4、类比向量的线性运算,我们还应该怎样研究数量积?

通过上述问题,使学生不仅对本节课的知识、技能及方法有了更加全面深刻的认识,同时也为下

一节做好铺垫,继续激发学生的求知欲。

布置作业:

1、课本P121习题2.4A组1、2、3。

2、拓展与提高:

已知

都是非零向量,且

+3

与7

-5

垂直,

-4

与7

-2

垂直求

的夹角。

在这个环节中,我首先考虑检测全体学生是否都达到了“课标”的基本要求,因此安排了一组教材中的习题,目的是让所有的学生继续加深对数量积概念的理解和应用,为后续学习打好基础。其次,为了能让不同的学生在数学领域得到不同的发展,我又安排了一道有一定难度的问题供学有余力的同学选做。

六、教学评价设计

评价方式的转变是新课程改革的一大亮点,课标指出:相对于结果,过程更能反映每个学生的发展变化,体现出学生成长的历程。因此,数学学习的评价既要重视结果,也要重视过程。结合“课标”对数学学习的评价建议,对本节课的教学我主要通过以下几种方式进行:

1、通过与学生的问答交流,发现其思维过程,在鼓励的基础上,纠正偏差,并对其进行定

性的评价。

2、在学生讨论、交流、协作时,教师通过观察,就个别或整体参与活动的态度和表现做出评价,以此来调动学生参与活动的积极性。

3、通过练习来检验学生学习的效果,并在讲评中,肯定优点,指出不足。

4、通过作业,反馈信息,再次对本节课做出评价,以便查漏补缺。

高中数学教案ppt下载篇19

一、教学目标

1.知识与技能

(1)掌握画三视图的基本技能

(2)丰富学生的空间想象力

2.过程与方法

主要通过学生自己的亲身实践,动手作图,体会三视图的作用。

3.情感态度与价值观

(1)提高学生空间想象力

(2)体会三视图的作用

二、教学重点、难点

重点:画出简单组合体的三视图

难点:识别三视图所表示的空间几何体

三、学法与教学用具

1.学法:观察、动手实践、讨论、类比

2.教学用具:实物模型、三角板

四、教学思路

(一)创设情景,揭开课题

“横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图。

在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的三视图吗?

(二)实践动手作图

1.讲台上放球、长方体实物,要求学生画出它们的三视图,教师巡视,学生画完后可交流结果并讨论;

2.教师引导学生用类比方法画出简单组合体的三视图

(1)画出球放在长方体上的三视图

(2)画出矿泉水瓶(实物放在桌面上)的三视图

学生画完后,可把自己的作品展示并与同学交流,总结自己的作图心得。

作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图。

3.三视图与几何体之间的相互转化。

(1)投影出示图片(课本P10,图1.2-3)

请同学们思考图中的三视图表示的几何体是什么?

(2)你能画出圆台的三视图吗?

(3)三视图对于认识空间几何体有何作用?你有何体会?

教师巡视指导,解答学生在学习中遇到的困难,然后让学生发表对上述问题的看法。

4.请同学们画出1.2-4中其他物体表示的空间几何体的三视图,并与其他同学交流。

(三)巩固练习

课本P12练习1、2

P18习题1.2A组1

(四)归纳整理

请学生回顾发表如何作好空间几何体的三视图

(五)课外练习

1.自己动手制作一个底面是正方形,侧面是全等的三角形的棱锥模型,并画出它的三视图。

2.自己制作一个上、下底面都是相似的正三角形,侧面是全等的等腰梯形的棱台模型,并画出它的三视图。

高中数学教案ppt下载篇20

一、教学目标

掌握用向量方法建立两角差的余弦公式.通过简单运用,使学生初步理解公式的结构及其功能,为建立其它和(差)公式打好基础.

二、教学重、难点

1.教学重点:通过探索得到两角差的余弦公式;

2.教学难点:探索过程的组织和适当引导,这里不仅有学习积极性的问题,还有探索过程必用的基础知识是否已经具备的问题,运用已学知识和方法的能力问题,等等.

三、学法与教学用具

1.学法:启发式教学

2.教学用具:多媒体

四、教学设想:

(一)导入:我们在初中时就知道?,,由此我们能否得到大家可以猜想,是不是等于呢?

根据我们在第一章所学的&39;知识可知我们的猜想是错误的!下面我们就一起探讨两角差的余弦公式

(二)探讨过程:

在第一章三角函数的学习当中我们知道,在设角的终边与单位圆的交点为,等于角与单位圆交点的横坐标,也可以用角的余弦线来表示,大家思考:怎样构造角和角?(注意:要与它们的正弦线、余弦线联系起来.)

展示多媒体动画课件,通过正、余弦线及它们之间的几何关系探索与__之间的关系,由此得到,认识两角差余弦公式的结构.

思考:我们在第二章学习用向量的知识解决相关的几何问题,两角差余弦公式我们能否用向量的知识来证明?

提示:

1、结合图形,明确应该选择哪几个向量,它们是怎样表示的?

2、怎样利用向量的数量积的概念的计算公式得到探索结果?

展示多媒体课件

比较用几何知识和向量知识解决问题的不同之处,体会向量方法的作用与便利之处.

思考:再利用两角差的余弦公式得出

(三)例题讲解

例1、利用和、差角余弦公式求、的值.

解:分析:把、构造成两个特殊角的和、差.

点评:把一个具体角构造成两个角的和、差形式,有很多种构造方法,例如:,要学会灵活运用.

例2、已知,是第三象限角,求的值.

解:因为,由此得

又因为是第三象限角,所以

所以

点评:注意角、的象限,也就是符号问题.

(四)小结:本节我们学习了两角差的余弦公式,首先要认识公式结构的特征,了解公式的推导过程,熟知由此衍变的两角和的余弦公式.在解题过程中注意角、的象限,也就是符号问题,学会灵活运用.

45834