教案吧 > 学科教案 > 数学教案 >

初中数学通用教案模板

时间: 新华 数学教案

教案编写需要依据不同的学科和教学内容,选取合适的教学方法和手段,明确教学目标和教学计划,以确保教学质量。下面是一些初中数学通用教案模板免费阅读下载,希望对大家写初中数学通用教案模板有用。

初中数学通用教案模板篇1

教学目标

1、使学生能把简单的与数量有关的词语用代数式表示出来;

2、初步培养学生观察、分析和抽象思维的能力

教学重点和难点

重点:把实际问题中的数量关系列成代数式?

难点:正确理解题意,从中找出数量关系里的运算顺序并能准确地写成代数式???

教学手段

现代课堂教学手段

教学方法

启发式教学

教学过程

(一)、从学生原有的认知结构提出问题

1、用代数式表示乙数:(投影)

(1)乙数比x大5;(x+5)

(2)乙数比x的2倍小3;(2x-3)

(3)乙数比x的倒数小7;(-7)

(4)乙数比x大16%?((1+16%)x)

(应用引导的方法启发学生解答本题)

2、在代数里,我们经常需要把用数字或字母叙述的一句话或一些计算关系式,列成代数式,正如上面的练习中的问题一样,这一点同学们已经比较熟悉了,但在代数式里也常常需要把用文字叙述的一句话或计算关系式(即日常生活语言)列成代数式?本节课我们就来一起学习这个问题?

(二)、讲授新课

例1用代数式表示乙数:

(1)乙数比甲数大5;(2)乙数比甲数的2倍小3;

(3)乙数比甲数的倒数小7;(4)乙数比甲数大16%?

分析:要确定的乙数,既然要与甲数做比较,那么就只有明确甲数是什么之后,才能确定乙数,因此写代数式以前需要把甲数具体设出来,才能解决欲求的乙数?

解:设甲数为x,则乙数的代数式为

(1)x+5(2)2x-3;(3)-7;(4)(1+16%)x?

(本题应由学生口答,教师板书完成)

最后,教师需指出:第4小题的答案也可写成x+16%x?

例2用代数式表示:

(1)甲乙两数和的2倍;

(2)甲数的与乙数的的差;

(3)甲乙两数的平方和;

(4)甲乙两数的和与甲乙两数的差的积;

(5)乙甲两数之和与乙甲两数的差的积?

分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式?

解:设甲数为a,乙数为b,则

(1)2(a+b);(2)a-b;(3)a2+b2;

(4)(a+b)(a-b);(5)(a+b)(b-a)或(b+a)(b-a)?

(本题应由学生口答,教师板书完成)

此时,教师指出:a与b的和,以及b与a的和都是指(a+b),这是因为加法有交换律?但a与b的差指的是(a-b),而b与a的差指的是(b-a)?两者明显不同,这就是说,用文字语言叙述的句子里应特别注意其运算顺序?

例3用代数式表示:

(1)被3整除得n的数;

(2)被5除商m余2的数?

分析本题时,可提出以下问题:

(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的数如何表示?

(2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?

解:(1)3n;(2)5m+2?

(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)?

例4设字母a表示一个数,用代数式表示:

(1)这个数与5的和的3倍;(2)这个数与1的差的;

(3)这个数的5倍与7的.和的一半;(4)这个数的平方与这个数的的和?

分析:启发学生,做分析练习?如第1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”?

解:(1)3(a+5);(2)(a-1);(3)(5a+7);(4)a2+a?

(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力?)

例5设教室里座位的行数是m,用代数式表示:

(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?

(2)教室里座位的行数是每行座位数的,教室里总共有多少个座位?

分析本题时,可提出如下问题:

(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?

(2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?

(3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)

解:(1)m(m+6)个;(2)(m)m个?

(三)、课堂练习

1?设甲数为x,乙数为y,用代数式表示:(投影)

(1)甲数的2倍,与乙数的的和;(2)甲数的与乙数的3倍的差;

(3)甲乙两数之积与甲乙两数之和的差;(4)甲乙的差除以甲乙两数的积的商?

2?用代数式表示:

(1)比a与b的和小3的数;(2)比a与b的差的一半大1的数;

(3)比a除以b的商的3倍大8的数;(4)比a除b的商的3倍大8的数?

3?用代数式表示:

(1)与a-1的和是25的数;(2)与2b+1的积是9的数;

(3)与2x2的差是x的数;(4)除以(y+3)的商是y的数?

〔(1)25-(a-1);(2);(3)2x2+2;(4)y(y+3)?〕

(四)、师生共同小结

首先,请学生回答:

1?怎样列代数式?2?列代数式的关键是什么?

其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:

(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不唯一);

(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;

(3)把用日常生活语言叙述的数量关系,列成代数式,是为今后学习列方程解应用题做准备?要求学生一定要牢固掌握

练习设计

1、用代数式表示:

(1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?

(2)体校里男生人数是x,女生人数是y,教练人数与学生人数之比是1∶10,教练人数是多?

2、已知一个长方形的周长是24厘米,一边是a厘米,

求:(1)这个长方形另一边的长;(2)这个长方形的面积?

板书设计

§3.2代数式

(一)知识回顾(三)例题解析(五)课堂小结

例1、例2

(二)观察发现(四)课堂练习练习设计

教学后记

由于列代数式的内容既是本章的重点,又是本书的重点,同时也是学生学习过程中的一个难点,故在设计其教学过程时,注意所选例题及练习题由易到难,循序渐进,使学生逐步地掌握好这一内容,为今后的学习打下一个良好的基础?同时,也使学生的抽象思维能力得到初的培养。

初中数学通用教案模板篇2

(一)教材分析

1、知识结构

2、重点、难点分析

重点:

找出命题的题设和结论.因为找出一个命题的题设和结论,是对该命题深刻理解的前提,而对命题理解能力是我们今后研究数学必备的能力,也是研究其它学科能力的基础.

难点:

找出一个命题的题设和结论.因为理解和掌握一个命题,一定要分清它的题设和结论,所以找出一个命题的题设和结论是十分重要的问题.但有些命题的`题设和结论不明显.例如,“对顶角相等”,“等角的余角相等”等.一些没有写成“如果那么”形式的命题,学生往往搞不清哪是题设,哪是结论,又没有一个通用的方法可以套用,所以分清题设和结论是教学的一个难点.

(二)教学建议

1、教师在教学过程中,组织或引导学生从具体到抽象,结合学生熟悉的事例,来理解命题的概念、找出一个命题的题设和结论,并能判断一些简单命题的真假.

2、命题是数学中一个非常重要的概念,虽然高中阶段我们还要学习,但对于程度好的A层学生还要理解:

(1)假命题可分为两类情况:

①题设只有一种情形,并且结论是错误的,例如,“1+3=7”就是一个错误的命题.

②题设有多种情形,其中至少有一种情形的结论是错误的.

例如,“内错角互补,两直线平行”这个命题的题设可分为两种情形:

第一种情形是两个内错角都等于90°,这时两直线平行;

第二种情形是两个内错角不都等于90°,这时两直线不平行.

整体说来,这是错误的命题.

(2)是否是命题:

命题的定义包括两层涵义:

①命题必须是一个完整的句子;

②这个句子必须对某件事情做出肯定或者否定的判断.即命题是判断某一件事情的句子.在语法上,这样的句子叫做陈述句,它由“题设+结论”构成.

另外也有一些句子不是陈述句,例如,祈使句(也叫做命令句)“过直线AB外一点作该直线的平行线.”疑问句“∠A是否等于∠B?”感叹句“竟然得到5>9的结果!”以上三个句子都不是命题.

(3)命题的组成

每个命题都是由题设、结论两部分组成.题设是已知事项;结论是由已知事项推出的事项.命题常写成“如果,那么”的形式.具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论.

有些命题,没有写成“如果,那么”的形式,题设和结论不明显.对于这样的命题,要经过分折才能找出题设和结论,也可以将它们改写成“如果那么”的形式.

另外命题的题设(条件)部分,有时也可用“已知”或者“若”等形式表述;命题的结论部分,有时也可用“求证”或“则”等形式表述.

初中数学通用教案模板篇3

一、教学目标知识与技能目标。

1、能熟练作出一次函数的图像,掌握一次函数及其图像的简单性质;

2、初步了解函数表达式与图像之间的关系。

过程与方法目标。

1、经历作图过程中由一般到特殊方法的转变过程,让学生体会研究问题的基本方法。

2、经历对一次函数性质的探索过程,增强学生数形结合的意识,培养学生识图能力;

3、经历对一次函数性质的探索过程,培养学生的观察力、语言表达能力。情感与态度目标

1、在作图的过程中,体会数学的美;

2、经历作图过程,培养学生尊重科学,实事求是的作风。

二、教材分析。

本节课是在学习了一次函数解析式的基础上,从图像这个角度对一次函数进行近一步的研究。教材先介绍了作函数图像的一般方法:列表、描点、连线法,再进一步总结出作一次函数图像的特殊方法——两点连线法。结合一次函数的图像,对一次函数的单调性作了探讨;对一次函数的几何意义也有涉及。在教学中要结合学生的认识情况,循序渐进,逐层深入,对教材内容可作适当增加,但不宜太难。为进一步学习图像及性质奠定了基础。教学重点:结合一次函数的图像,研究一次函数的简单性质教学难点:一次函数性质的应用

三、学情分析函数的图像的概念及作法对学生而言都是较为陌生的。

教材从作函数图像的一般步骤开始介绍,得出一次函数图像是条直线。在此基础上介绍用两点连线得一次函数的图像,学生就容易接受了。在函数解析式与图像二者之间的探讨这部分内容上,不要作更高要求,学生能回答书中的问题就可以了。教学中尽可能的多作几个一次函数的图像,让学生直观感受到一次函数的图像是条直线。

四、教学流程(一)、复习引入

1、什么叫做一次函数?

2、你能说说正比例函数y=kx(k≠0)的性质吗?

3、针对函数y=kx+b,要研究什么?怎样研究?

(二)做一做

例1、画出函数y1=2x与y2=2x+3,y3=2x-2的图像二、新课讲解把一个函数的自变量和对应的因变量的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图像。下面我们来作一次函数y1=2x与y2=2x+3,y3=2x-2的图像分析:根据定义,需要在直角坐标系中描出许多点,因此我们应先计算这些点的横、纵坐标,即x与对应的y的值。我们可借助一个表格来列出每一对x,y的值。因为一次函数的自变量X可以取一切实数,所以X一般在0附近取值。解:列表:x…-2-1012…y1=2x…0…y2=2x+3y3=2x-2描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点。连线:把这些点依次连接起来,得到图像(如图)它们是一条直线。

观察图像回答下列问题:

(1)这三个一次函数图像的形状都是,并且倾斜程度,即互相。

(2)y1=2x的图像经过。

(3)y2=2x+3的图像与y1=2x图像,且与y轴交于,即y2可以看作由y1向平移个单位长度得到,图像经过第象限,k,b的符号如何?()(4)y3=2x-2的图像与y1=2x图像,且与y轴交于,即y3可以看作由y1向平移个单位长度得到,图像经过第象限,k,b的符号如何?

结论:

1、一次函数y=kx+b(k≠0)的图像可以由直线y=kx平移个单位长度得到。(上加下减)

2、一次函数y=kx+b(k≠0)的图像是一条直线,我们称它为直线y=kx+b。

3、平行的直线k相等。

三、做一做。

(1)利用两点确定一条直线(两点画法)画出y=-x+3和y=-x及y=-x-4的图象的图像。

师:回顾刚才的作图过程,经历了几个步骤?

生:经历了列表、描点、连线这三个步骤。

师:回答得很好。作函数图像的一般步骤是列表、描点、连线。今后我们可以用这个方法去作出更多函数的图像。

师:从刚才同学们作出的一次函数的图像中我们可以观察到一次函数图像是一条直线。

(2)在所作的图像上取几个点,找出它们的横、纵坐标

四、议一议观察图像思考:

(1)一次函数的图像从左往右是上升还是下降,由图像怎么看函数的增减性(y随x的变化),你认为决定条件是什么?

(2)图像经过哪些象限?k,b的符号如何?

(3)y=-x+3和y=-x-4是由y=-x怎样平移得到的?一次函数y=kx+b的图像是一条直线,因此作一次函数的图像时,只要确定两个点,再过这两个点作直线就可以了。一次函数y=kx+b的图像也称为直线y=kx+b

例1做出下列函数的图像

(1)y=x+3

(2)y=-x+3

(3)y=2x-4

(4)y=-2x-4

五、课堂小结。

这节课我们学习了一次函数的图像。一次函数的图像是一条直线,正比例函数的图像是经过原点的一条直线。在作图时,只需确定直线上两点的位置,就可得到一次函数的图像。一般地,作函数图像的三个步骤是:列表、描点、连线。

六、课后练习。

书上93页练习五、教学反思本节课主要介绍作函数图像的一般方法,通过对一次函数图像的认识,得到作一次函数及正比例函数的图像的特殊方法(两点确定一条直线)。让学生能够迅速找到直线与坐标轴的交点,这是本节课的难点。数形结合,找准这两个特殊点坐标的特点(x=0或y=0),让学生理解的记忆才能收到较好的效果。

初中数学通用教案模板篇4

学习目标

1. 理解三线八角中没有公共顶点的角的位置关系 ,知道什么是同位角、内错角、同旁内角.毛

2. 通过比较、观察、掌握同位角、内错角、同旁内角的特征,能正确识别图形中的同位角、内错角和同旁内角.

重点难点

同位角、内错角、同旁内角的特征

教学过程

一·导入

1.指出右图中所有的邻补角和对顶角?

2. 图中的∠1与∠5,∠3与∠5,∠3与∠6 是邻补角或对顶角吗?

若都不是,请自学课本P6内容后回答它们各是什么关系的角?

二·问题导学

1.如图⑴,将木条,与木条c钉在一起,若把它们看成三条直 线则该图可说成"直线 和直线 与直线 相交" 也可以说成"两条直线 , 被第三条直线 所截".构成了小于平角的角共有 个,通常将这种图形称作为"三线八角"。其中直线 , 称为两被截线,直线 称为截线。

2. 如图⑶是"直线 , 被直线 所截"形成的图形

(1)∠1与∠5这对角在两被截线AB,CD的 ,在截线EF 的 ,形如" " 字型.具有这种关系的一对角叫同位角。

(2)∠3与∠5这对角在两被截线AB,CD的 ,在截线EF的 ,形如" " 字型.具有这种关系的一对角叫内错角。

(3)∠3与∠6这对角在两被截线AB,CD的 ,在截线EF的 ,形如" " 字型.具有这种关系的一对角叫同旁内角。

3.找出图⑶中所有的同位角、内错角、同旁内角

4.讨论与交流:

(1)"同位角、内错角、同旁内角"与"邻补角、对顶角"在识别方法上有什么区别?

(2)归纳总结同位角、内错角、同旁内角的特征:

同位角:"F" 字型,"同旁同侧"

"三线八角" 内错角:"Z" 字型,"之间两侧"

同旁内角:"U" 字型,"之间同侧"

三·典题训练

例1. 如图⑵中∠1与∠2,∠3与∠4, ∠1与∠4分别是哪两条直线被哪一条直线所截形成的什么角?

小结 将左右手的大拇指和食指各组成一个角,两食指相对成一条直线,两个大拇指反向的时候,组成内错角;

两食指相对成一条直线,两个大拇指同向的时候,组成同旁内角;

自我检测

⒈如图⑷,下列说法不正确的是( )

A、∠1与∠2是同位角 B、∠2与∠3是同位角

C、∠1与∠3是同位角 D、∠1与∠4不是同位角

⒉如图⑸,直线AB、CD被直线EF所截,∠A和 是同位角,∠A和 是内错角,∠A和 是同旁内角.

⒊如图⑹, 直线DE截AB, AC, 构成八个角:

① 指出图中所有的同位角、内错角、同旁内角.

②∠A与∠5, ∠A与∠6, ∠A与∠8, 分别是哪一条直线截哪两条直线而成的什么角?

⒋如图⑺,在直角ABC中,∠C=90°,DE⊥AC于E,交AB于D .

①指出当BC、DE被AB所截时,∠3的同位角、内错角和同旁内角.

②试说明∠1=∠2=∠3的理由.(提示:三角形内角和是1800)

相交线与平行线练习

课型:复习课: 备课人:徐新齐 审核人:霍红超

一.基础知识填空

1、如图,∵AB⊥CD(已知)

∴∠BOC=90°( )

2、如图,∵∠AOC=90°(已知)

∴AB⊥CD( )

3、∵a∥b,a∥c(已知)

∴b∥c( )

4、∵a⊥b,a⊥c(已知)

∴b∥c( )

5、如图,∵∠D=∠DCF(已知)

∴_____//______( )

6、如图,∵∠D+∠BAD=180°(已知)

∴_____//______( )

(第1、2题) (第5、6题) (第7题) (第9题)

7、如图,∵ ∠2 = ∠3( )

∠1 = ∠2(已知)

∴∠1 = ∠3( )

∴CD____EF ( )

8、∵∠1+∠2 =180°,∠2+∠3=180°(已知)

∴∠1 = ∠3( )

9、∵a//b(已知)

∴∠1=∠2( )

∠2=∠3( )

∠2+∠4=180°( )

10.如图,CD⊥AB于D,E是BC上一点,EF⊥AB于F,∠1=∠2.试说明∠BDG+∠B=180°.

二.基础过关题:

1、如图:已知∠A=∠F,∠C=∠D,求证:BD∥CE 。

证明:∵∠A=∠F ( 已知 )

∴AC∥DF ( )

∴∠D=∠ ( )

又∵∠C=∠D ( 已知 ),

∴∠1=∠C ( 等量代换 )

∴BD∥CE( )。

2、如图:已知∠B=∠BGD,∠DGF=∠F,求证:∠B + ∠F =180°。

证明:∵∠B=∠BGD ( 已知 )

∴AB∥CD ( )

∵∠DGF=∠F;( 已知 )

∴CD∥EF ( )

∵AB∥EF ( )

∴∠B + ∠F =180°( )。

3、如图,已知AB∥CD,EF交AB,CD于G、H, GM、HN分别平分∠AGF,∠EHD,试说明GM ∥HN.

初中数学通用教案模板篇5

一、说教材

本节内容是人民教育出版社的义务教育数学课程标准实验教科书《数学》初二下册第16章第二节第二课时《分式的加减法》,属于数与代数领域的知识。它是代数运算的基础,分两课时完成,我所设计的是第一课时的教学,主要内容是同分母的分式相加减及简单的异分母的分式相加减。

在此之前,学生已经学习了分数的加减法运算,同时也学习过分式的基本性质,这为本节课的学习打下了基础。而掌握好本节课的知识,将为《分式的加减法》第二课时以及《分式方程》的学习做好必备的知识储备。因此,在分式的学习中,占据重要的地位。本节课中掌握分式的加减运算法则是重点,运用法则计算分式的加减是难点,掌握计算的一般解题步骤是解决问题是关键。基于以上对教材的认识,考虑到学生已有的认识和结构与心理特征,我制定如下的教学目标。

二、说目标

根据学生已有的认识基础及本课教材的.地位和作用,依据新课程标准制定如下:知识与技能:会进行简单的分式加减运算,具有一定解决问题计算的能力;过程与方法:使学生经历探索分式加减运算法则的过程,理解其算理;情感态度与价值观:培养学生大胆猜想,积极探究的学习态度,发展学生有条理思考及代数表达能力,体会其价值。为突出重点,突破难点,抓住关键使学生能达到本节设定的教学目标,我载从教法和学法上谈谈设计思路。

三、说教学方法

教法选择与手段:本课我主要以“复习旧知,导入新知,例题讲解,拓展延伸”为主线,启发和引导贯穿教学始终,通过师生共同研究探讨,体现以教为主导、学为主体、练为主线的教学过程。学法指导:根据学生的认知水平,我设计了“观察思考、猜想归纳、例题学习和巩固提高”四个层次的学法。最后,我来具体谈一谈本节课的教学过程。

四、说教学过程

在分析教材、确定教学目标、合理选择教法与学法的基础上,我预设的教学过程是:观察导入、例题示范、习题巩固、归纳小结和作业布置。

五、分层作业

各位老师,以上所说只是我预设的一种方案,但课堂是千变万化的,会随着学生和教师的灵活发挥而随机生成的,预设效果如何,最终还有待于课堂教学实践的检验。

初中数学通用教案模板篇6

教材分析

立体图形的翻折问题是高二《代数》(下)中立体几何的一个学习内容,它融会贯通于各种立体几何和几何体中,对学生进一步理解立体图形起着至关重要的作用。立体图形的翻折是从学生生活周围熟悉的物体入手,使学生进一步认识立体图形于平面图形的关系;不仅要让学生了解几何体可由平面图形折叠而成,更重要的是让学生通过观察、思考和自己动手操作、经历和体验图形的变化过程,使学生了解研究立体图形的方法。

教学重点

了解平面图形于折叠后的立体图形之间的关系,找到变化过程中的不变量。

教学难点

转化思想的运用及发散思维的培养。

学生分析

学生在前面已经对一些简单几何体有了一定的认识,对于求解空间角及空间距离已具备了一定的能力,并且在班级中已初步形成合作交流,敢于探索与实践的良好习惯。学生间相互评价、相互提问的互动的气氛较浓。

设计理念

根据教育课程改革的具体目标,结合“注重开放与生成,构建充满生命活力的课堂教学运行体系”的要求,改变课程过于注重知识传授的倾向,强调形成积极生动的学习态度,关注学生的学习兴趣和经验,实施开放式教学,让学生主动参与学习活动,并引导学生在课堂活动中感悟知识的生成、发展与变化。

教学目标

1、使学生掌握翻折问题的解题方法,并会初步应用。

2、培养学生的动手实践能力。在实践过程中,使学生提高对立体图形的分析能力,并在设疑的同时培养学生的发散思维。

3、通过平面图形与折叠后的立体图形的对比,向学生渗透事物间的变化与联系观点,在解题过程中,使学生理解,将立体图形中的问题化归到平面图形中去解决的`转化思想。

教学流程

一、创设问题情境,引导学生观察、设想、导入课题。

1、如图(图略),是一个正方体的展开图,在原正方体中,有下列命题

(1)AB与EF所在直线平行

(2)AB与CD所在直线异面

(3)MN与EF所在直线成60度

(4)MN与CD所在直线互相垂直其中正确命题的序号是

2、引入课题----翻折

二、学生通过直观感知、操作确认等实践活动,加强对图形的认识和感受(引导学生在解题的过程中如何突破难点,从而体现在平面图形中求解一些不变量对于解空间问题的重要性)。

1、给学生一个展示自我的空间和舞台,让学生自己讲解。教师根据学生的讲解进一步提出问题。

(1)线段AE与EF的夹角为什么不是60度呢?

(2)AE与FG所成角呢?

(3)AE与GC所成角呢?

(4)在此正四棱柱上若有一小虫从A点爬到C点最短路径是什么?经过各面呢?

(通过对发散问题的提出培养学生的培养精神及转化的教学思想方法,让学生体会折叠图与展开图的不同应用。)

2、让学生观察电脑演示折叠过程后,再亲自动手折叠,针对问题做出回答。

(1)E、F分别处于G1G2、G2G3的什么位置?

(2)选择哪种摆放方式更利于求解体积呢?

(3)如何求G点到面PEF的距离呢?

(4)PG与面PEF所成角呢?

(5)面GEF与面PEF所成角呢?

(学生会发现这几个问题可在同一个直角三角形中找到答案,然后让学生在折纸中找到这个三角形的位置,既而发现折叠过程中的不变量。)

3、演示MN的运动过程,让学生观察分析解题过程强调证PN垂直AB的困难性。与学生共同品位解出这道2002高考题的喜悦的同时,引导学生用上题的思路能否更快捷地解出此题呢?

(学生大胆想象,并通过模型制作确认想象结果的正确性,从而开辟一条简捷的翻折思想解题思路。)

三、小结

1、画平面图,并折前图与折后图中的字母尽量保持一致。

2、寻找立体图形中的不变量到平面图形中求解是关键。

3、注意培养转化思想和发散思维。

(通过提问方式引导学生小结本节主要知识及学习活动,养成学习、总结、学习的良好学习习惯,发散自我评价的作用,培养学生的语言表达能力。)

四、课外活动

1、完成课上未解决的问题。

2、对与1题折成正三棱柱结果会怎样?对于2题改变E、F两点位置剪成正三棱柱呢?

(通过课外活动学习本节知识内容,培养学生的发散思维。)

课后反思

本课设计中,有梯度性的先安排三个小题,让学生经历先动手、思考、预习这一学习过程,然后在课堂上给学生一个充分展示自我的空间,并且适时发问的同时帮助学生找到解决方法。归纳总结解翻折问题的技巧和作为解题方法的优越性。在实施开放式教学的过程中,注重引导学生在课堂活动过程中感悟知识的生成、发展与变化,培养学生主动探索、敢于实践、善于发现的科学精神以及合作交流的精神和创新意识,将创新的教材、创新的教法与创新的课堂环境有机地结合起来,将学生自主学习与创新意识的培养落到实处。

初中数学通用教案模板篇7

教学目标

1、使学生能说出有理数大小的比较法则

2、能熟练运用法则结合数轴比较有理数的大小,特别是应用绝对值概念比较两个负数的大小,能利用数轴对多个有理数进行有序排列。

3、能正确运用符号"<"">""∵""∴"写出表示推理过程中简单的因果关系。

三、教学重点与难点

重点:运用法则借助数轴比较两个有理数的大小。

难点:利用绝对值概念比较两个负分数的大小。

四、教学准备

多媒体课件

五、教学设计

(一)交流对话,探究新知

1、说一说

(多媒体显示)某一天我们5个城市的最低气温    从刚才的图片中你获得了哪些信息?(从常见的气温入手,激发学生的求知欲望,可能有些学生会说从中知道广州的最低气温10℃比上海的最低气温0℃高,有些学生会说哈尔滨的最低气温零下20℃比北京的最低气温零下10℃低等;不会说的,老师适当点拔,从而学生在合作交流中不知不觉地完成了以下填空。

比较这一天下列两个城市间最低气温的高低(填"高于"或"低于")

广州_______上海;北京________上海;北京________哈尔滨;武汉________哈尔滨;武汉__________广州。

2、画一画:(1)把上述5个城市最低气温的数表示在数轴上,(2)观察这5个数在数轴上的位置,从中你发现了什么?

(3)温度的高低与相应的数在数轴上的位置有什么?

(通过学生自己动手操作,观察、思考,发现原点左边的数都是负数,原点右边的数都是正数;同时也发现5在0右边,5比0大;10在5右边,10比5大,初步感受在数轴上原点右边的两个数,右边的数总比左边的数大。教师趁机追问,原点左边的数也有这样的规律吗?从而激发学生探索知识的欲望,进一步验证了原点左边的数也有这样的规律。从而使学生亲身体验探索的乐趣,在探究中不知不觉获得了知识。)由小组讨论后,教师归纳得出结论:

在数轴上表示的两个数,右边的数总比左边的数大。

正数都大于零,负数都小于零,正数大于负数。

(二)应用新知,体验成功

1、练一练(师生共同完成例1后,学生完成随堂练习1)

例1:在数轴上表示数5,0,-4,-1,并比较它们的大小,将它们按从小到大的顺序用"<"号连接。(师生共同完成)

分析:本题意有几层含义?应分几步?

要点总结:小组讨论归纳,本题解题时的一般步骤:①画数轴②描点;③有序排列;④不等号连接。

随堂练习: P19 T1

2、做一做

(1)在数轴上表示下列各对数,并比较它们的大小

①2和7   ②-6和-1  ③-6和-36  ④-和-1.5

(2)求出图中各对数的绝对值,并比较它们的大小。

(3)由①、②从中你发现了什么?

(学生小组讨论后,代表站起来发言,口述自己组的发现,说明自己组发现的过程,逐步培养学生观察、归纳、用数学语言表达数学规律的能力。)

要点总结:两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小。

在学生讨论的基础上,由学生总结得出有理数大小的比较法则。

(1)正数都大于零,负数都小于零,正数大于负数。

(2)两个正数比较大小,绝对值大的数大。

(3)两个负数比较大小,绝对值大的数反而小。

3、师生共同完成例2后,学生完成随堂练习2、3、4。

例2比较下列每对数的大小,并说明理由:(师生共同完成)

(1)1与-10,(2)-0.001与0,(3)-8与+2;(4)-与-;(5)-(+)与-|-0.8|

分析:第(4)(5)题较难,第(4)题应先通分,第(5)题应先化简,再比较。同时在讲解时,要注意格式。

注:绝对值比较时,分母相同,分子大的数大;分子相同,则分母大的数反而小;分子分母都不相同时,则应先通分再比较,或把分子化相同再比较。

两个负数比较大小时的一般步骤:①求绝对值;②比较绝对值的大小;③比较负数的大小。

思考:还有别的方法吗?(分组讨论,积极思考)

4、想一想:我们有几种方法来判断有理数的大小?你认为它们各有什么特点?

由学生讨论后,得出比较有理数的大小共有两种方法,一种是法则,另一种是利用数轴,当两个数比较时一般选用第一种,当多个有理数比较大小时,一般选用第二种较好。

练一练:P19 T2、3、4

5、考考你:请你回答下列问题:

(1)有没有的有理数,有没有最小的有理数,为什么?

(2)有没有绝对值最小的有理数?若有,请把它写出来?

(3)在于-1.5且小于4.2的整数有_____个,它们分别是____。

(4)若a>0,b<0,a<|b|,则你能比较a、b、-a、-b这四个数的大小吗?(本题属提高题,不要求全体学生掌握)

(新颖的问题会激发学生的好奇心,通过合作交流,自主探究等活动,培养学生思维的习惯和数学语言的表达能力)

6、议一议,谈谈本节课你有哪些收获

(由师生共同完成本节课的小结)本节课主要学习了有理数大小比较的两种方法,一种是按照法则,两两比较,另一种是利用数轴,运用这种方法时,首先必须把要比较的数在数轴上表示出来,然后按照它们在数轴上的位置,从左到右(或从右到左)用"<"(或">")连接,这种方法在比较多个有理数大小时非常简便。

六、布置作业:P19 A组、B组

基础好的A、B两组都做

基础较差的同学选做A组。

初中数学通用教案模板篇8

12.6 一元二次方程的应用(二)

一、素质教育目标

(一)知识教学点:使学生会用列一元二次方程的方法解有关面积、体积方面的应用问题.

(二)能力训练点:进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养用数学的意识.

二、教学重点、难点

1.教学重点:会用列一元二次方程的方法解有关面积、体积方面的应用题.

2.教学难点 :找等量关系.列一元二次方程解应用题时,应注意是方程的解,但不一定符合题意,因此求解后一定要检验,以确定适合题意的解.例如线段的长度不为负值,人的个数不能为分数等.

三、教学步骤 

(一)明确目标.

(二)整体感知

(三)重点、难点的学习和目标完成过程

1.复习提问

(1)列方程解应用题的步骤?

(2)长方形的周长、面积?长方体的体积?

2.例1 现有长方形纸片一张,长19cm,宽15cm,需要剪去边长是多少的小正方形才能做成底面积为77cm2的无盖长方体型的纸盒?

解:设需要剪去的小正方形边长为xcm,则盒底面长方形的长为(19-2x)cm,宽为(15-2x)cm,

据题意:(19-2x)(15-2x)=77.

整理后,得x2-17x+52=0,

解得x1=4,x2=13.

∴ 当x=13时,15-2x=-11(不合题意,舍去.)

答:截取的小正方形边长应为4cm,可制成符合要求的无盖盒子.

练习1.章节前引例.

学生笔答、板书、评价.

练习2.教材P.42中4.

学生笔答、板书、评价.

注意:全面积=各部分面积之和.

剩余面积=原面积-截取面积.

例2 要做一个容积为750cm3,高是6cm,底面的长比宽多5cm的长方形匣子,底面的长及宽应该各是多少(精确到0.1cm)?

分析:底面的长和宽均可用含未知数的代数式表示,则长×宽×高=体积,这样便可得到含有未知数的等式——方程.

解:长方体底面的宽为xcm,则长为(x+5)cm,

解:长方体底面的宽为xcm,则长为(x+5)cm,

据题意,6x(x+5)=750,

整理后,得x2+5x-125=0.

解这个方程x1=9.0,x2=-14.0(不合题意,舍去).

当x=9.0时,x+17=26.0,x+12=21.0.

答:可以选用宽为21cm,长为26cm的长方形铁皮.

教师引导,学生板书,笔答,评价.

(四)总结、扩展

1.有关面积和体积的应用题均可借助图示加以分析,便于理解题意,搞清已知量与未知量的相互关系.

2.要深刻理解题意中的已知条件,正确决定一元二次方程的取舍问题,例如线段的长不能为负.

3.进一步体会数字在实践中的应用,培养学生分析问题、解决问题的能力.

四、布置作业 

教材P.42中A3、6、7.

教材P.41中3.4

五、板书设计 

12.6 一元二次方程的应用(二)

例1.略

例2.略

解:设……… 解:…………

………… …………

12.6 一元二次方程的应用(二)

一、素质教育目标

(一)知识教学点:使学生会用列一元二次方程的方法解有关面积、体积方面的应用问题.

(二)能力训练点:进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养用数学的意识.

二、教学重点、难点

1.教学重点:会用列一元二次方程的方法解有关面积、体积方面的应用题.

2.教学难点 :找等量关系.列一元二次方程解应用题时,应注意是方程的解,但不一定符合题意,因此求解后一定要检验,以确定适合题意的解.例如线段的长度不为负值,人的个数不能为分数等.

三、教学步骤 

(一)明确目标.

(二)整体感知

(三)重点、难点的学习和目标完成过程

1.复习提问

(1)列方程解应用题的步骤?

(2)长方形的周长、面积?长方体的体积?

2.例1 现有长方形纸片一张,长19cm,宽15cm,需要剪去边长是多少的小正方形才能做成底面积为77cm2的无盖长方体型的纸盒?

解:设需要剪去的小正方形边长为xcm,则盒底面长方形的长为(19-2x)cm,宽为(15-2x)cm,

据题意:(19-2x)(15-2x)=77.

整理后,得x2-17x+52=0,

解得x1=4,x2=13.

∴ 当x=13时,15-2x=-11(不合题意,舍去.)

答:截取的小正方形边长应为4cm,可制成符合要求的无盖盒子.

练习1.章节前引例.

学生笔答、板书、评价.

练习2.教材P.42中4.

学生笔答、板书、评价.

注意:全面积=各部分面积之和.

剩余面积=原面积-截取面积.

例2 要做一个容积为750cm3,高是6cm,底面的长比宽多5cm的长方形匣子,底面的长及宽应该各是多少(精确到0.1cm)?

分析:底面的长和宽均可用含未知数的代数式表示,则长×宽×高=体积,这样便可得到含有未知数的等式——方程.

解:长方体底面的宽为xcm,则长为(x+5)cm,

解:长方体底面的宽为xcm,则长为(x+5)cm,

据题意,6x(x+5)=750,

整理后,得x2+5x-125=0.

解这个方程x1=9.0,x2=-14.0(不合题意,舍去).

当x=9.0时,x+17=26.0,x+12=21.0.

答:可以选用宽为21cm,长为26cm的长方形铁皮.

教师引导,学生板书,笔答,评价.

(四)总结、扩展

1.有关面积和体积的应用题均可借助图示加以分析,便于理解题意,搞清已知量与未知量的相互关系.

2.要深刻理解题意中的已知条件,正确决定一元二次方程的取舍问题,例如线段的长不能为负.

3.进一步体会数字在实践中的应用,培养学生分析问题、解决问题的能力.

四、布置作业 

教材P.42中A3、6、7.

教材P.41中3.4

五、板书设计 

12.6 一元二次方程的应用(二)

例1.略

例2.略

解:设……… 解:…………

………… …………

初中数学通用教案模板篇9

4.1二元一次方程

【教学目标】

知识与技能目标

1、通过与一元一次方程的比较,能说出二元一次方程的概念,并会辨别一个方程是不是

二元一次方程;

2、通过探索交流,会辨别一个解是不是二元一次方程的解,能写出给定的二元一次方程的解,了解方程解的不唯一性;

3、会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。过程与方法目标经历观察、比较、猜想、验证等数学学习活动,培养分析问题的能力和数学说理能力;

情感与态度目标

1、通过与一元一次方程的类比,探究二元一次方程及其解的概念,进一步培养运用类比转化的思想解决问题的能力;

2、通过对实际问题的分析,培养关注生活,进一步体会方程是刻画现实世界的有效数学模型,培养良好的数学应用意识。

【重点、难点】

重点:二元一次方程的概念及二元一次方程的解的概念。

难点1、了解二元一次方程的解的不唯一性和相关性。即了解二元一次方程的解有无数个,

但不是任意的两个数是它的解。

2、把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。

【教学方法与教学手段】

1、通过创设问题情境,让学生在寻求问题解决的过程中认识二元一次方程,了解二元一

次方程的特点,体会到二元一次方程的引入是解决实际问题的需要。

2、通过观察、思考、交流等活动,激发学习情绪,营造学习气氛,给学生一定的时间和

空间,自主探讨,了解二元一次方程的解的不唯一性和相关性。

3、通过学练结合,以游戏的形式让学生及时巩固所学知识。

【教学过程】

一、创设情境导入新课

1、一个数的3倍比这个数大6,这个数是多少?

2、写有数字5的黄卡和写有数字2的蓝卡若干张,问黄卡和蓝卡各取几张,才能使取到的卡片上的数字之和为22?

思考:这个问题中,有几个未知数?能列一元一次方程求解吗?

如果设黄卡取x张,蓝卡取y张,你能列出方程吗?

3、在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米。如果设轿车的速度是a千米/时,卡车的速度是b千米/时,你能列出怎样的方程?

二、师生互动探索新知

1、推陈出新发现新知

引导学生观察所列的方程:5x?2y?22,2a?3b?20,这两个方程有哪些共同特征?这些特征与一元一次方程比较,哪些是相同的,哪些是不同的?你能给它们取个名字吗?

(板书:二元一次方程)

根据它们的共同特征,你认为怎样的方程叫做二元一次方程?(二元一次方程的定义:含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程。)

2、小试牛刀巩固新知

判断下列各式是不是二元一次方程

(1)x2?y?0(2)12a?b?2b?0(3)y?x(4)x??123y

3、师生互动再探新知

(1)什么是方程的解?(使方程两边的值相等的`未知数的值,叫做方程的解。)

(2)你能给二元一次方程的解下一个定义吗?(使二元一次方程两边的值相等的一对未

知数的值,叫做二元一次方程的一个解。)

?若未知数设为x,y,记做x?,若未知数设为a,b,记做

?y?

4、再试牛刀检验新知

(1)检验下列各组数是不是方程2a?3b?20的解:(学生感悟二元一次方程解的不唯一性)

a?4a?5a?0a?100

b?3b??1020b??b?6033

(2)你能写出方程x-y=1的一个解吗?(再一次让学生感悟二元一次方程的解的不唯一性)

5、自我挑战三探新知

有3张写有相同数字的蓝卡和2张写有相同数字的黄卡,这五张卡片上的数字之和为10。设蓝卡上的数字为x,黄卡上的数字为y,根据题意列方程。3x?2y?10

请找出这个方程的一个解,并写出你得到这个解的过程。

学生在解二元一次方程的过程中体验和了解二元一次方程解的不唯一性。

6、动动笔头巩固新知

独立完成课本第81页课内练习2

三、你说我说清点收获

比较一元一次方程和二元一次方程的相同点和不同点

相同点:方程两边都是整式

含有未知数的项的次数都是一次

如何求一个二元一次方程的解

四、知识巩固

1、必答题

(1)填空题:若mxy?9x?3yn?1?7是关于x,y的二元一次方程,则m?n?x?2y?5变形正确的有2

10?__?10①x?5?4y②x?10?4y③y?④y?44

(3x?7是方程2x?y?15的解。()(2)多选题:方程

y?1

x?7

(4)判断题:方程2x?y?15的解是。()y?1

2、抢答题

是方程2x?3y?5的一个解,求a的值。(1)已知x??2

y?a

(2)写出一个解为x?3的二元一次方程。

y?1

3、个人魅力题

写有数字5的黄卡和写有数字2的蓝卡若干张,问黄卡和蓝卡各取几张,才能使取到的卡片上的数字之和为22?设黄卡取x张,蓝卡取y张,根据题意列方程:5x?2y?22你能完成这道题目吗?

五、布置作业

初中数学通用教案模板篇10

第1课时

1.使学生了解因式分解的意义,了解因式分解和整式乘法是整式的两种相反方向的变形.

2.让学生会确定多项式中各项的公因式,会用提公因式法进行因式分解.

自主探索,合作交流.

1.通过与因数分解的类比,让学生感悟数学中数与式的共同点,体验数学的类比思想.

2.通过对因式分解的教学,培养学生“换元”的意识.

【重点】因式分解的概念及提公因式法的应用.

【难点】正确找出多项式中各项的公因式.

【教师准备】多媒体.

【学生准备】复习有关乘法分配律的知识.

导入一:

【问题】一块场地由三个长方形组成,这些长方形的长分别为,,,宽都是,求这块场地的面积.

解法1:这块场地的面积=×+×+×=++==2.

解法2:这块场地的面积=×+×+×=×=×4=2.

从上面的解答过程看,解法1是按运算顺序:先算乘法,再算加减法进行计算的,解法2是先逆用乘法分配律,再进行计算的,由此可知解法2要简单一些.这个事实说明,有时我们需要将多项式化为几个整式的积的形式,而提公因式法就是将多项式化为几个整式的积的形式的一种方法.

[设计意图]让学生通过利用乘法分配律的逆运算这一特殊算法,运用类比思想自然地过渡到提公因式法的概念上,从而为提公因式法的掌握打下基础.

导入二:

【问题】计算×15-×9+×2采用什么方法?依据是什么?

解法1:原式=-+==5.

解法2:原式=×(15-9+2)=×8=5.

解法1是按运算顺序:先算乘法,再算加减法进行计算的,解法2是先逆用乘法分配律,再进行计算的,由此可知解法2要简单一些.这个事实说明,有时我们需要将多项式化为几个整式的积的形式,而提公因式法就是把多项式化为几个整式的积的形式的一种方法.

[设计意图]让学生通过利用乘法分配律的逆运算这一特殊算法,运用类比思想自然地过渡到提公因式法的概念上,从而为提公因式法的掌握打下基础.

一、提公因式法分解因式的概念

思路一

[过渡语]上一节我们学习了什么是因式分解,那么怎样进行因式分解呢?我们来看下面的问题.

如果一块场地由三个长方形组成,这三个长方形的长分别为a,b,c,宽都是,那么这块场地的面积为a+b+c或(a+b+c),可以用等号来连接,即:a+b+c=(a+b+c).

大家注意观察这个等式,等式左边的每一项有什么特点?各项之间有什么联系?等式右边的项有什么特点?

分析:等式左边的每一项都含有因式,等式右边是与多项式a+b+c的乘积,从左边到右边的过程是因式分解.

由于是左边多项式a+b+c中的各项a,b,c都含有的一个相同因式,因此叫做这个多项式各项的公因式.

由上式可知,把多项式a+b+c写成与多项式a+b+c的乘积的形式,相当于把公因式从各项中提出来,作为多项式a+b+c的一个因式,把从多项式a+b+c的各项中提出后形成的多项式a+b+c,作为多项式a+b+c的另一个因式.

总结:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种因式分解的方法叫做提公因式法.

[设计意图]通过实例的教学,使学生明白什么是公因式和用提公因式法分解因式.

思路二

[过渡语]同学们,我们来看下面的问题,看看同学们谁先做出来.

多项式ab+ac中,各项都含有相同的因式吗?多项式3x2+x呢?多项式b2+nb-b呢?

结论:多项式中各项都含有的相同因式,叫做这个多项式各项的公因式.

多项式2x2+6x3中各项的公因式是什么?你能尝试将多项式2x2+6x3因式分解吗?

结论:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种因式分解的方法叫做提公因式法.

[设计意图]从让学生找出几个简单多项式的公因式,再到让学生尝试将多项式分解因式,使学生理解公因式以及提公因式法分解因式的概念.

二、例题讲解

[过渡语]刚刚我们学习了因式分解的一种方法,现在我们尝试下利用这种方法进行因式分解吧.

(教材例1)把下列各式因式分解:

(1)3x+x3;

(2)7x3-21x2;

(3)8a3b2-12ab3c+ab;

(4)-24x3+12x2-28x.

〔解析〕首先要找出各项的公因式,然后再提取出来.要避免提取公因式后,各项中还有公因式,即“没提彻底”的现象.

解:(1)3x+x3=x3+__2=x(3+x2).

(2)7x3-21x2=7x2x-7x23=7x2(x-3).

(3)8a3b2-12ab3c+ab

=ab8a2b-ab12b2c+ab1

=ab(8a2b-12b2c+1).

(4)-24x3+12x2-28x

=-(24x3-12x2+28x)

=-(4x6x2-4x3x+4x7)

=-4x(6x2-3x+7).

【学生活动】通过刚才的练习,大家互相交流,总结出提取公因式的一般步骤和容易出现的问题.

总结:提取公因式的步骤:(1)找公因式;(2)提公因式.

容易出现的问题(以本题为例):(1)第(2)题中只提出7x作为公因式;(2)第(3)题中最后一项提出ab后,漏掉了“+1”;(3)第(4)题提出“-”号时,没有把后面的因式中的每一项都变号.

教师提醒:

(1)各项都含有的字母的最低次幂的积是公因式的字母部分;

(2)因式分解后括号内的多项式的项数与原多项式的项数相同;

(3)若多项式的首项为“-”,则先提取“-”号,然后再提取其他公因式;

(4)将分解因式后的式子再进行整式的乘法运算,其积应与原式相等.

[设计意图]经历用提公因式法进行因式分解的过程,在教师的启发与指导下,学生自己归纳出提公因式的步骤及提取公因式时容易出现的类似问题,为提取公因式积累经验.

1.提公因式法分解因式的一般形式,如:

a+b+c=(a+b+c).

这里的字母a,b,c,可以是一个系数不为1的.、多字母的、幂指数大于1的单项式.

2.提公因式法分解因式的关键在于发现多项式的公因式.

3.找公因式的一般步骤:

(1)若各项系数是整系数,则取系数的最大公约数;

(2)取各项中相同的字母,字母的指数取最低的;

(3)所有这些因式的乘积即为公因式.

1.多项式-6ab2+18a2b2-12a3b2c的公因式是()

A.-6ab2cB.-ab2

C.-6ab2D.-6a3b2c

解析:根据确定多项式各项的公因式的方法,可知公因式为-6ab2.故选C.

2.下列用提公因式法分解因式正确的是()

A.12abc-9a2b2=3abc(4-3ab)

B.3x2-3x+6=3(x2-x+2)

C.-a2+ab-ac=-a(a-b+c)

D.x2+5x-=(x2+5x)

解析:A.12abc-9a2b2=3ab(4c-3ab),错误;B.3x2-3x+6=3(x2-x+2),错误;D.x2+5x-=(x2+5x-1),错误.故选C.

3.下列多项式中应提取的公因式为5a2b的是()

A.15a2b-20a2b2

B.30a2b3-15ab4-10a3b2

C.10a2b-20a2b3+50a4b

D.5a2b4-10a3b3+15a4b2

解析:B.应提取公因式5ab2,错误;C.应提取公因式10a2b,错误;D.应提取公因式5a2b2,错误.故选A.

4.填空.

(1)5a3+4a2b-12abc=a();

(2)多项式32p2q3-8pq4的公因式是;

(3)3a2-6ab+a=(3a-6b+1);

(4)因式分解:+n=;

(5)-15a2+5a=(3a-1);

(6)计算:21×3.14-31×3.14=.

答案:(1)5a2+4ab-12bc(2)8pq3(3)a(4)(+n)(5)-5a(6)-31.4

5.用提公因式法分解因式.

(1)8ab2-16a3b3;

(2)-15x-5x2;

(3)a3b3+a2b2-ab;

(4)-3a3-6a2+12a.

解:(1)8ab2(1-2a2b).

(2)-5x(3+x).

(3)ab(a2b2+ab-1).

(4)-3a(a2+2a-4).

第1课时

一、教材作业

【必做题】

教材第96页随堂练习.

【选做题】

教材第96页习题4.2.

二、课后作业

【基础巩固】

1.把多项式4a2b+10ab2分解因式时,应提取的公因式是.

2.(20__淮安中考)因式分解:x2-3x=.

3.分解因式:12x3-18x22+24x3=6x.

【能力提升】

4.把下列各式因式分解.

(1)3x2-6x;

(2)5x23-25x32;

(3)-43+162-26;

(4)15x32+5x2-20x23.

【拓展探究】

5.分解因式:an+an+2+a2n.

6.观察下列各式:12+1=1×2;22+2=2×3;32+3=3×4;….这列式子有什么规律?请你将猜想到的规律用含有字母n(n为自然数)的式子表示出来.

【答案与解析】

1.2ab

2.x(x-3)

3.(2x2-3x+42)

4.解:(1)3x(x-2).(2)5x22(-5x).(3)-2(22-8+13).(4)5x2(3x+1-42).

5.解:原式=an1+ana2+anan=an(1+a2+an).

6.解:由题中给出的几个式子可得出规律:n2+n=n(n+1).

本节运用类比的思想方法,在新概念的提出、新知识点的讲授过程中,使学生易于理解和掌握.如学生在接受提公因式法时,由提公因数到提公因式,由整式乘法的逆运算到提公因式法的概念,都是利用了类比的数学思想,从而使得学生接受新的概念时显得轻松自然,容易理解.

在小组讨论之前,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问.

由于因式分解的主要目的是对多项式进行恒等变形,它的作用更多的是应用于多项式的计算和化简,比如在以后将要学习的分式运算、解分式方程等中都要用到因式分解的知识,因此应该注重因式分解的概念和方法的教学.

随堂练习(教材第96页)

解:(1)(a+b).(2)52(+4).(3)3x(2-3).(4)ab(a-5).(5)22(2-3).(6)b(a2-5a+9).(7)-a(a-b+c).(8)-2x(x2-2x+3).

习题4.2(教材第96页)

1.解:(1)2x2-4x=2x(x-2).(2)82n+2n=2n4+2n1=2n(4+1).(3)a2x2-ax2=axax-ax=ax(ax-).(4)3x3-3x2+9x=3x(x2-x+3).(5)-24x2-12x2-283=-(24x2+12x2+283)=-4(6x2+3x+72).(6)-4a3b3+6a2b-2ab=-(4a3b3-6a2b+2ab)=-2ab(2a2b2-3a+1).(7)-2x2-12x2+8x3=-(2x2+12x2-8x3)=-2x(x+62-43).(8)-3a3+6a2-12a=-(3a3-6a2+12a)=-3a(a2-2a+4).

2.解:(1)++=(++)=3.14×(202+162+122)=2512.(2)∵xz-z=z(x-),∴原式=×(17.8-28.8)=×(-11)=-7.(3)∵ab=7,a+b=6,∴a2b+ab2=ab(a+b)=7×6=42.

3.解:(1)不正确,因为提取的公因式不对,应为n(2n--1).(2)不正确,因为提取公因式-b后,第三项没有变号,应为-b(ab-2a+3).(3)正确.(4)不正确,因为最后的结果不是乘积的形式,应为(a-2)(a+1).

提公因式法是本章的第2小节,占两个课时,这是第一课时,它主要让学生经历从乘法分配律的逆运算到提公因式的过程,让学生体会数学中的一种主要思想——类比思想.运用类比的思想方法,在新概念的提出、新知识点的讲授过程中,可以使学生易于理解和掌握.如学生在接受提公因式法时,由整式乘法的逆运算到提公因式法的概念,就利用了类比的数学思想,从而使得学生接受新的概念时显得轻松自然,容易理解,进而使学生进一步理解因式分解与整式乘法运算之间的互逆关系.

已知方程组求7(x-3)2-2(3-x)3的值.

〔解析〕将代数式分解因式,产生x-3与2x+两个因式,再根据方程组整体代入,使计算简便.

解:7(x-3)2-2(3-x)3

=(x-3)2[7+2(x-3)]

=(x-3)2(7+2x-6)

=(x-3)2(2x+).

由方程组可得原式=12×6=6.

初中数学通用教案模板篇11

课题:

对数函数

(1)——定义、图象、性质目标:

1.了解对数函数的定义、图象及其性质以及它与指数函数间的关系,会求对数函数的定义域。

2.培养培养观察分析、抽象概括能力、归纳总结能力、逻辑推理能力、化归转化能力;

3.培养坚忍不拔的意志,培养发现问题和提出问题的意识、善于独立思考的习惯,体会事物之间普遍联系的辩证观点。

重点:对数函数的定义、图象、性质

难点:对数函数与指数函数间的关系

过程:

一、复习引入:实例引入:回忆学习指数函数时用的实例我们研究指数函数时,曾经讨论过细胞分裂问题,某种细胞分裂时,得到的细胞的个数是分裂次数的函数,这个函数可以用指数函数=表示。现在,我们来研究相反的问题,如果要求这种细胞经过多少次分裂,大约可以得到1万个,10万个……细胞,那么,分裂次数就是要得到的细胞个数的函数。根据对数的定义,这个函数可以写成对数的形式就是如果用表示自变量,表示函数,这个函数就是由反函数概念可知,与指数函数互为反函数这一节,我们来研究指数函数的反函数对数函数

二、新课

1.对数函数的定义:函数叫做对数函数;它是指数函数的反函数。对数函数的定义域为,值域为。

2.对数函数的图象由于对数函数与指数函数互为反函数,所以的图象与的图象关于直线对称。因此,我们只要画出和的图象关于对称的曲线,就可以得到的图象,然后根据图象特征得出对数函数的性质。

活动设计:由学生任意取底数作图,观察分析讨论,教师引导、整理3.对数函数的性质由对数函数的图象,观察得出对数函数的性质。见P87表图象性质定义域:(0,+∞)值域:R过点(1,0),即当时,时时时时在(0,+∞)上是增函数在(0,+∞)上是减函数活动设计:学生观察、分析讨论,教师引导、整理4.应用例1.(课本第94页)求下列函数的定义域:(1);(2);(3)分析:此题主要利用对数函数的定义域(0,+∞)求解。解:(1)由>0得,∴函数的定义域是;(2)由得,∴函数的定义域是(3)由9-得-3,∴函数的定义域是注:此题只是对数函数性质的简单应用,应强调学生注意书写格式。例2.求下列函数的反函数①②解:①∴②∴

三、小结:对数函数定义、图象、性质四、作业:课本第95页练习1,2习题2.81,2

初中数学通用教案模板篇12

教学目标

1.通过实验,使学生相信经过大量的重复实验后得到的频率值确实可以作为随机事件每次发生的机会的估计值,体会随机事件中所隐含着的确定性内涵。

2.使学生知道,通过实验的方法,用频率估计机会的大小,必须要求实验是在相同条件下进行的。且在相同条件下,实验次数越多,就越有可能得到较好的估计值,但个人所得的值也并不一定相同。

3.培养学生合作学习的能力,并学会与他人交流思维的过程和结果。

教学重难点

重点:频率与机会的关系。

难点:如何用频率估计机会的大小?教学准备数枚相同的图钉。

教学过程

一、提出问题

上一节课,通过一系列的实验和观察,我们已经知道:实验是估计机会大小的一种方法。我们可以通过实验,观察某事件出现的频率,当频率值逐渐稳定时,这个值就可以作为我们对该事件发生机会的估计。

实际上,在前面的问题中,即使不做实验,也可以设法预先推测出事件发生的机会,为什么还要花大量时间去进行实验呢?

下面让我们看另一类问题:

一枚图钉被抛起后钉尖触地的`机会有多大?

二、分组实验

1.两个学生一个小组,一人抛掷,一人记录

每个小组抛掷40次,记录出现钉尖触地的频数

教师负责把各小组的结果登录在黑板上

2.然后把每小组的结果合起来,分别计算抛掷80次、120次、160次、200次、240次、180次、320次、360次、400次、480次、520次、560次后出现钉尖触地的频数及频率

3.列出统计表,绘制折线图

4.根据实验结果估计一下钉尖触地的机会是百分之几?

5.课本第105页表15.2.1和图15.2.2是一位同学在抛掷图钉的实验中画的统计表和折线图。这与你实验的结果相同吗?为什么?

三、深入思考

如果两个小组使用的是两种不同形状的图钉,那么这两种图钉钉尖触地的机会相同吗?

能把两个小组的实验数据合起来进行实验吗?

四、概括小结

从上面的问题可以看出:

1.通过实验的方法用频率估计机会的大小,必须要求实验是在相同条件下进行的。比如,以同样的方式抛掷同一种图钉。

2.在相同的条件下,实验次数越多,就越有可能得到较好的估计值,但每人所得的值也并不一定相同。

五、用心观察

我们已经知道,在相同条件下,实验次数越多,就越有可能得到较好的估计值。那么,总共要做多少次实验才认为得到的结果比较可靠呢?

观察课本第105页表15.2.1和图15.2.2。

当实验进行到多少次以后,所得频率值就趋于平稳了?

(小结:实验到频率值较稳定时,结果比较可靠。这个频率值也就可以作为这个事件发生机会的估计值。)

六、巩固练习

课本第107页练习第1、2题。

七、课堂小结

这节课你有什么收获?还有哪些问题需要老师帮你解决的?

注意:通过实验的方法用频率估计机会大小,必须要求实验是在相同条件下进行的。

八、布置作业

1、课本第108页习题15.2第2题

2、课本第106页做一做

2、数字之积为奇数与偶数的机会

初中数学通用教案模板篇13

教材分析:

一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。教材通过一元二次方程ax2+bx+c=0(a≠0)的根x1、x2得出一元二次方程根与系数的关系,以及以数x1、x2为根的一元二次方程的求方程模型。然后通过4个例题介绍了利用根与系数的关系简化一些计算的知识。

学情分析:

1.学生已学习用求根公式法解一元二次方程。

2.本课的教学对象是九年级学生,学生对事物的认识多是直观、形象的,他们所注意的多是事物外部的、直接的、具体形象的特征。

3.在教学初始,出示一些学生所熟悉和感兴趣的东西,结合一元二次方程求根公式使他们在现代化的教学模式和传统的教学模式相结合的基础上掌握一元二次方程根与系数的关系。

教学目标:

1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。

2、能力目标:通过韦达定理的教学过程,使学生经历观察、实验、猜想、证明等数学活动过程,发展推理能力,能有条理地、清晰地阐述自己的观点,进一步培养学生的创新意识和创新精神。

3、情感目标:通过情境教学过程,激发学生的求知欲望,培养学生积极学习数学的态度。体验数学活动中充满着探索与创造,体验数学活动中的成功感,建立自信心。

教学重难点:

1、重点:一元二次方程根与系数的关系。

2、难点:让学生从具体方程的根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个已知方程求作新方程,使新方程的根与已知的方程的根有某种关系,比较抽象,学生真正掌握有一定的难度,是教学的难点。

板书设计:

一元二次方程根与系数的关系如果ax+bx+c=0(a≠0)的两根是x1,x2,那么x1+x2=,x1x2=。

问题6.在方程ax+bx+c=0(a≠0)中,a、b、c的作用吗?①二次项系数a是否为零,决定着方程是否为二次方程;②当a≠0时,b=0,a、c异号,方程两根互为相反数;③当a≠0时,△=b-4ac可判定根的情况;④当a≠0,b-4ac≥0时,x1+x2=,x1x2=。⑤当a≠0,c=0时,方程必有一根为0。

学生学习活动评价设计:

本节课充分让学生分析、观察、提高了学生的归纳能力及推理论证的能力。

教学反思:

1.一元二次方程根与系数的关系的推导是在求根公式的基础上进行。它深化了两根的和与积同系数之间的关系,是我们今后继续研究一元二次方程根的情况的主要工具,必须熟记,为进一步使用打下基础。

2.以一元二次方程根与系数的关系的探索与推导,向学生展示认识事物的一般规律,提倡积极思维,勇于探索的精神,借此锻炼学生分析、观察、归纳的能力及推理论证的能力。

3.一元二次方程的根与系数的关系,在中考中多以填空,选择,解答题的形式出现,考查的频率较高,也常与几何、二次函数等问题结合考查,是考试的热点,它是方程理论的重要组成部分。

4.使学生体会解题方法的多样性,开阔解题思路,优化解题方法,增强择优能力。力求让学生在自主探索和合作交流的过程中进行学习,获得数学活动经验,教师应注意引导。

初中数学通用教案模板篇14

【教材分析】

一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。通过一元二次方程的学习,可以对已学过实数、一元一次方程、因式分解、二次根式等知识加以巩固,同时又是今后学习可化为一元二次方程的其它高元方程、一元二次不等式、二次函数等知识的基础。此外,学习一元二次方程对其它学科有重要意义。本节课是一元二次方程的概念,是通过丰富的实例,让学生建立一元二次方程,并通过观察归纳出一元二次方程的概念。

【教学目标】

1、理解一元二次方程的概念,能熟练地把一元二次方程整理成一般形式(≠0)并知道各项及其系数。

2、在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的进一步认识。

【教学重点与难点】

理解一元二次方程的概念及一般形式,会正确识别一般式中的“项”及“系数”。

【教法、学法】

因为学生已经学习了一元一次方程及相关概念,所以本节课我主要采用启发式、类比法教学。教学中力求体现“问题情景---数学模型-----概念归纳”的模式。本节课借助多媒体辅助教学,指导学生从具体的问题情景中抽象出数学问题,建立数学方程,从而突破难点。同时学生在现实的生活情景中,经历数学建模,经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力。

【教学过程】

一、复习旧知,类比新知

1、一元一次方程的概念

像这样的等号两边都是整式,只含有一个未知数(一元),并且未知数的次数是1(一次)的方程叫做一元一次方程

2、一般形式:

是常数且

设计意图:复习一元一次方程,让学生回忆起一元一次方程的概念,回忆起“项”及“系数”的概念,通过类比,让学生能更好的理解一元二次方程的概念。

二、生活情境,自主学习

(1)正方形桌面的面积是2m,设正方形桌面的边长是xm,可得方程

(2)矩形花圃一面靠墙,另外三面所围的栅栏的总长度是19米。如果花圃的面积是24m2,设花圃的宽是xm则花圃的长是m,可得方程

(3)一张面积是600cm2的长方形纸片,把它的一边剪短10cm,恰好得到一个正方形。设这个正方形的边长是xcm,可得方程

(4)长5米的梯子斜靠在墙上,梯子的底端与墙的距离比梯子的顶端到地面的距离多1m,设梯子的底端到墙面的距离是xm,可得方程

设计意图:因为数学来源与生活,所以以学生的实际生活背景为素材创设情景,易于被学生接受、感知。让学生从实际问题中提炼出数学问题,初步培养学生的空间概念和抽象能力。情景分析中学生自然会想到用方程来解决问题,但所列的方程不是以前学过的`,从而激发学生的求知欲望,顺利地进入新课。

三、探究学习:

1、概念得出

讨论交流:以上所列方程有哪些共同特征?

设计意图:英国一位著名的数学教育心理学家曾说:概念的教学要从大量实例出发,通过实例帮助完成定义,而不是教定义。让学生充分感受所列方程的特点,再通过类比的方法得到定义,从而达到真正理解定义的目的.

2、巩固概念

下列方程中那些是一元二次方程。

设计意图:

这组练习目的在于巩固学生对一元二次方程定义中3个特征的理解.题目的设置,目的在于进一步加深学生对定义的掌握,提高学生对变式的理解能力.此环节采取抢答的形式,提高学生学习数学的兴趣和积极性.

3、一元二次方程的一般形式:

设计意图:此环节让学生通过自主探究,类比一元一次方程一般形式,得出一元二次方程一般形式和项,系数的概念,从而达到真正理解并掌握的目的.

4.典型例题

例将下列方程化为一元二次方程的一般形式,并分别指出它们的二次项系数、一次项系数和常数项

设计意图:此题设置的目的在于加深学生对一般形式的理解。

5.巩固练习

把下列方程化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项

设计意图:此题设置的目的在于加深学生对一般形式的理解

6、拓展应用

(1)、若是关于x的一元二次方程,则()

p为任意实数B、p=0C、p≠0D、p=0或1

(2)、若关于x的方程mx-2x+1=2x(x-1)是一元二次方程,那么m的取值范围是

(3)、若方程是关于x的一元二次方程,则m的值为

设计意图:此题让学生进行思考,讨论,让学生进行讲解,教师作适当归纳,可留疑,让学生课下思考。此题需进行分类讨论,开拓学生思维,体现数学的严谨性。

7.课堂小结

设计意图:小结反思中,不同学生有不同的体会,要尊重学生的个体差异,激发学生主动参与意识,.为每个学生都创造了数学活动中获得活动经验的机会。

【课后作业】

1、下列方程中哪些是一元二次方程?试说明理由。

2、将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项:

初中数学通用教案模板篇15

一、教学目标:

1、理解二元一次方程及二元一次方程的解的概念;

2、学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;

3、学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;

4、在解决问题的过程中,渗透类比的思想方法,并渗透德育教育。

二、教学重点、难点:

重点:二元一次方程的意义及二元一次方程的解的概念。

难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。

三、教学方法与教学手段:

通过与一元一次方程的比较,加强学生的类比的思想方法;通过“合作学习”,使学生认识数学是根据实际的需要而产生发展的观点。

四、教学过程:

1、情景导入:

新闻链接:x70岁以上老人可领取生活补助。

得到方程:80a+150b=902880、

2、新课教学:

引导学生观察方程80a+150b=902880与一元一次方程有异同?

得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程。

做一做:

(1)根据题意列出方程:

①小明去看望奶奶,买了5kg苹果和3kg梨共花去23元,分别求苹果和梨的单价、设苹果的单价x元/kg,梨的单价y元/kg;

②在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,如果设轿车的速度是a千米/小时,卡车的速度是b千米/小时,可得方程:

(2)课本P80练习2、判定哪些式子是二元一次方程方程。

合作学习:

活动背景爱心满人间——记求是中学“学雷锋、关爱老人”志愿者活动。

问题:参加活动的36名志愿者,分为劳动组和文艺组,其中劳动组每组3人,文艺组每组6人、团支书拟安排8个劳动组,2个文艺组,单从人数上考虑,此方案是否可行?为什么?把x=8,y=2代入二元一次方程3x+6y=36,看看左右两边有没有相等?由学生检验得出代入方程后,能使方程两边相等、得出二元一次方程的解的概念:使二元一次方程两边的值相等的&39;一对未知数的值叫做二元一次方程的一个解。

并提出注意二元一次方程解的书写方法。

3、合作学习:

给定方程x+2y=8,男同学给出y(x取绝对值小于10的整数)的值,女同学马上给出对应的x的值;接下来男女同学互换、(比一比哪位同学反应快)请算的最快最准确的同学讲他的计算方法、提问:给出x的值,计算y的值时,y的系数为多少时,计算y最为简便?

出示例题:已知二元一次方程x+2y=8。

(1)用关于y的代数式表示x;

(2)用关于x的代数式表示y;

(3)求当x=2,0,—3时,对应的y的值,并写出方程x+2y=8的三个解。

(当用含x的一次式来表示y后,再请同学做游戏,让同学体会一下计算的速度是否要快)

4、课堂练习:

(1)已知:5xm—2yn=4是二元一次方程,则m+n=;

(2)二元一次方程2x—y=3中,方程可变形为y=当x=2时,y=;

5、你能解决吗?

小红到邮局给远在农村的爷爷寄挂号信,需要邮资3元8角、小红有票额为6角和8角的邮票若干张,问各需要多少张这两种面额的邮票?说说你的方案。

6、课堂小结:

(1)二元一次方程的意义及二元一次方程的解的概念(注意书写格式);

(2)二元一次方程解的不定性和相关性;

(3)会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。

7、布置作业:

初中数学通用教案模板篇16

学习目标:

1、会推导完全平方公式,并能用几何图形解释公式;

2、利用公式进行熟练地计算;

3、经历探索完全平方公式的推导过程,发展符号感,体会特殊一般特殊的认知规律。

学习过程:

(一)自主探索

1、计算:(1)(a+b)2(2)(a-b)2

2、你能用文字叙述以上的结论吗?

(二)合作交流:

你能利用下图的面积关系解释公式(a+b)2=a2+2ab+b2吗?与同学交流。

(三)试一试,我能行。

1、利用完全平方公式计算:

(1)(x+6)2(2)(a+2b)2(3)(3s-t)2[来源:中.考.资.源.网]

(四)巩固练习

利用完全平方公式计算:

A组:

(1)(x+y)2(2)(-2m+5n)2

(3)(2a+5b)2(4)(4p-2q)2

B组:

(1)(x-y2)2(2)(1.2m-3n)2

(3)(-a+5b)2(4)(-x-y)2

C组:

(1)1012(2)542(3)9972

(五)小结与反思

我的.收获:

我的疑惑:

(六)达标检测

1、(a-b)2=a2+b2+.

2、(a+2b)2=.

3、如果(x+4)2=x2+kx+16,那么k=.

4、计算:

(1)(3m-)2(2)(x2-1)2

(2)(-a-b)2(4)(s+t)2

初中数学通用教案模板篇17

学生的发展是新课程标准实施的出发点和归宿,课程改革的重点是面向全体学生,以学生的发展为主体,转变学生的学习方式。“二次函数的图像的性质”这一课题,通过对传统教法的改进,以全新的自主的学习方式让学生接受问题挑战,充分展示自己的观点和见解,给学生创设一种宽松、愉快、和谐、民主的科研氛围,让学生感受“二次函数的性质”的探究发现过程,体验研究过程,体验成功的快乐。

教学目标

知识目标

1、利用计算机制作动画(让学观察抛物线的形成过程)培养学生以运动变化的观点来观察问题、分析问题、解决问题的意识。

2、会用描点法画出二次函数的图像,能通过图像认识二次函数的性质

3、通过具体例子,在探索二次函数图像和性质的过程中,学会利用配方法将数字系数的二次函数表达式表示成:y=a(x-h)^2+k的形式,从而确定二次函数图像的顶点和对称轴。

4、通过一般式与顶点式的互化过程,了解互化的必要性。培养学生认识“事物都是相互联系、相互制约”的辩证唯物主义观点。

5、在经历“观察、猜测、探索、验证、应用”的过程中,渗透从“形”到“数”和从“数”到“形”的转化,培养了学生的转化、迁移能力,实现感性到理性的升华。

情感目标

1、通过主动操作、合作交流、自主评价,改进学生的学习方式及学习质量,激发学生的兴趣,唤起好奇心与求知欲,点燃起学生智慧的火花,使学生积极思维,勇于探索,主动获取知识。

2、让学生在猜想与探究的过程中,体验成功的快乐,培养他们主动参与的意识、协同合作的意识、勇于创新和实践的科学精神。

能力目标

1、拟通过本节课的学习,培养学生的观察能力、探索能力、数形结合能力、归纳概括能力,综合培养学生的思维能力及创新能力。

2、培养学生运用运动变化的观点来分析、探讨问题的意识。

教学重点:二次函数的性质

教学难点:通过研究、、、这几类函数图像,得出平移规律,并总结概括出二次函数的性质。

教学方法:

运用问题解决理论指导教学,力求体现“自主学习、动手实践、合作交流”的教学理念。

教学设备:计算机、网络

[教学内容]

步骤教学内容呈现方式

复习我们已经学习了一次函数与反比例函数,那么一次函数,反比例函数的图像分别是、.用媒体方式呈现,让学生填空,然后提交.

探索二次函数的图象是什么呢?(课前已经做过)

(1)画出图像经过了哪些过程?

(2)列表时自变量取了几个数?哪几个数?

(3)找几位同学展示一下自己画的图像。

(4)想一想,列表时如何合理选值?以什么数为中心?当x取互为相反数的值时,y的值如何?让学生结合老师强调的作图注意事项,再画函数的图图像。

然后老师用画函数工具作出的图像。由学生观察作比较。

教会学生用画函数工具画图,让学生比较两种画法,弄清学生自己所画的不足之处.

(2)观察函数的图象,你能得出什么结论?

用几何画板呈现已画好的函数图象,让学生观察图象上的点变化的过程,确认函数值随着自变量的变化而变化的规律.

让学生归纳函数的图象的性质.

老师作总结.

归纳:(1)二次函数的图象是抛物线,并且开口向上;

(2)二次函数的图象的对称轴是轴;

(3)抛物线与对称轴的交点叫做抛物线的顶点,那么二次函数的顶点坐标是;

(4)在对称轴的左边随着的增大而减小;在对称轴的右边随着的增大而增大.

实践一

一、1.利用画函数图象工具在同一直角坐标系下画出下列函数的图象,并观察图象,说出图象性质:

(1);

(2).

利用画函数图象工具。观察、比较两图象之间的关系。

2.练习:利用画函数图象工具在同一直角坐标系下画出下列函数的图象,并观察图象,说出图象性质:

(1);

(2).

学生观察、总结、交流

二、1.利用画函数图象工具在同一直角坐标系下画出下列函数的图象,并观察图象,说出图象性质,寻找两图象之间的关系:

(1),;

(2),.

利用画函数图象工具.

2.练习:利用画函数图象工具在同一直角坐标系下画出下列函数的图象:

,,

观察三条抛物线的相互关系,并分别指出它们的开口方向及对称轴、顶点的位置.你能说出抛物线的开口方向及对称轴、顶点的位置吗?

利用画函数图象工具.

三、1.利用画函数图象工具在同一直角坐标系下画出下列函数的图象,并观察图象,说出图象性质,寻找三个图象之间的关系:

(1),;

(2),;

(3),.

利用画函数图象工具.

2.不画出图象,你能说明抛物线与之间的关系吗?

四、1.利用画函数图象工具在同一直角坐标系下画出下列函数的图象,并观察图象,说出图象性质,寻找三个图象之间的关系:

(1),,;

(2),,;

(3),,.

利用画函数图象工具.教师指出就叫抛物线的顶点式。

2.把抛物线向左平移3个单位,再向下平移4个单位,所得的抛物线的函数关系式为.

讨论二次函数的图象可由函数怎样平移而得到?

归纳:由函数的图象沿对称轴向上(下)平移个单位(为向上,为向下),

向右(左)平移个单位(为向右,为向左)得到函数的图象.

实践二1.由二次函数解析式能否写出它的一般式.

2.讨论二次函数的图象怎样画,它的开口方向、对称轴和顶点坐标分别是什么?学生努力把它变形为顶点式

牛刀小试(1)抛物线,当x=时,y有最值,是.

(2)当m=时,抛物线开口向下.

(3)已知函数是二次函数,它的图象开口,当x时,y随x的增大而增大.

(4)抛物线的开口,对称轴是,顶点坐标是,它可以看作是由抛物线向平移个单位得到的.

(5)函数,当x时,函数值y随x的增大而减小.当x时,函数取得最值,最值y=.

(6)画图填空:抛物线的开口,对称轴是,顶点坐标是,它可以看作是由抛物线向平移个单位得到的.

(7)将抛物线如何平移可得到抛物线()

A.向左平移4个单位,再向上平移1个单位

B.向左平移4个单位,再向下平移1个单位

C.向右平移4个单位,再向上平移1个单位

D.向右平移4个单位,再向下平移1个单位

(8)抛物线可由抛物线向平移个单位,再向平移个单位而得到.

(9)二次函数的对称轴是.

(10)二次函数的图象的顶点是,当x时,y随x的增大而减小.

通过网络完成,然后反馈.

小结1、会用描点法画出二次函数的图象,概括出图象的特点及函数的性质.

2、会用工具画出、、、这几类函数的图象,通过比较,了解这几类函数的性质.

3、熟练掌握二次函数、、、这几类函数图象间的平移规律.

4、能通过配方把二次函数化成+k的形式,从而确定这类二次函数的性质.

作业1.在同一直角坐标系中,画出下列函数的图象.

(1)(2)

2.填空:

(1)抛物线,当x=时,y有最值,是.

(2)当m=时,抛物线开口向下.

(3)已知函数是二次函数,它的图象开口,当x时,y随x的增大而增大.

3.已知抛物线,求出它的对称轴和顶点坐标,并画出函数的图象.

4.利用配方法,把下列函数写成+k的形式,并写出它们的图象的开口方向、对称轴和顶点坐标.

(1)

(2)

初中数学通用教案模板篇18

教学目的

1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。

2.使学生会列一元一次方程解决一些简单的应用题。

3.会判断一个数是不是某个方程的解。

重点、难点

1.重点:会列一元一次方程解决一些简单的应用题。

2.难点:弄清题意,找出“相等关系”。

教学过程

一、复习提问

一本笔记本1.2元。小红有6元钱,那么她最多能买到几本这样的笔记本呢?

解:设小红能买到工本笔记本,那么根据题意,得

1.2x=6

因为1.2×5=6,所以小红能买到5本笔记本。

二、新授:

问题1:某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆?(让学生思考后,回答,教师再作讲评)

算术法:(328-64)÷44=264÷44=6(辆)

列方程:设需要租用x辆客车,可得。

44x+64=328(1)

解这个方程,就能得到所求的结果。

问:你会解这个方程吗?试试看?

问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”

通过分析,列出方程:13+x=(45+x)

问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?

把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,

因为左边=右边,所以x=3就是这个方程的解。

这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。

问:若把例2中的“三分之一”改为“二分之一”,那么答案是多少?动手试一试,大家发现了什么问题?

同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?

三、巩固练习

教科书第3页练习1、2。

四、小结。

本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。

五、作业。

教科书第3页,习题6.1第1、3题。

初中数学通用教案模板篇19

(一)本节内容在教材中的地位与作用。

对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。它是两三角形间最简单、最常见的关系。本节《探索三角形全等的条件》是学生在认识三角形的基础上,在了解全等图形和全等三角形以后进行学习的,它既是前面所学知识的延伸与拓展,又是后继学习探索相似形的条件的基础,并且是用以说明线段相等、两角相等的重要依据。因此,本节课的知识具有承上启下的作用。同时,苏科版教材将“边角边”这一识别方法作为五个基本事实之一,说明本节的内容对学生学习几何说理来说具有举足轻重的作用。

(二)教学目标

在本课的教学中,不仅要让学生学会“边角边”这一全等三角形的识别方法,更主要地是要让学生掌握研究问题的方法,初步领悟分类讨论的数学思想。同时,还要让学生感受到数学来源于生活,又服务于生活的基本事实,从而激发学生学习数学的兴趣。为此,我确立如下教学目标:

(1)经历探索三角形全等条件的过程,体会分析问题的方法,积累数学活动的经验。

(2)掌握“边角边”这一三角形全等的识别方法,并能利用这些条件判别两个三角形是否全等,解决一些简单的实际问题。

(3)培养学生勇于探索、团结协作的精神。

(三)教材重难点

由于本节课是第一次探索三角形全等的条件,故我确立了以“探究全等三角形的必要条件的个数及探究边角边这一识别方法作为教学的重点,而将其发现过程以及边边角的辨析作为教学的难点。同时,我将采用让学生动手操作、合作探究、媒体演示的方式以及渗透分类讨论的数学思想方法教学来突出重点、突破难点。

(四)教学具准备,教具:相关多媒体课件;学具:剪刀、纸片、直尺。画有相关图片的作业纸。

二、教法选择与学法指导

本节课主要是“边角边”这一基本事实的发现,故我在课堂教学中将尽量为学生提供“做中学”的时空,让学生进行小组合作学习,在“做”的过程中潜移默化地渗透分类讨论的数学思想方法,遵循“教是为了不教”的原则,让学生自得知识、自寻方法、自觅规律、自悟原理。

三、教学流程

(一)创设情景,激发求知欲望

首先,我出示一个实际问题:

问题:皮皮公司接到一批三角形架的加工任务,客户的要求是所有的三角形必须全等。质检部门为了使产品顺利过关,提出了明确的要求:要逐一检查三角形的三条边、三个角是不是都相等。技术科的毛毛提出了质疑:分别检查三条边、三个角这6个数据固然可以。但为了提高我们的效率,是不是可以找到一个更优化的方法,只量一个数据可以吗?两个呢?……

然后,教师提出问题:毛毛已提出了这么一个设想,同学们是否可以和毛毛一起来攻克这个难题呢?

这样设计的目的是既交代了本节课要研究和学习的主要问题,又能较好地激发学生求知与探索的欲望,同时也为本节课的教学做好了铺垫。

(二)引导活动,揭示知识产生过程

数学教学的本质就是数学活动的教学,为此,本节课我设计了如下的系列活动,旨在让学生通过动手操作、合作探究来揭示“边角边”判定三角形全等这一知识的产生过程。

活动一:让学生通过画图或者举例说明,只量一个数据,即一条边或一个角不能判断两个三角形全等。

活动二:让学生就测量两个数据展开讨论。先让学生分析有几种情况:即边边、边角、角角。再由各小组自行探索。同样可以让学生举反例说明,也可以通过画图说明。

活动三:在两个条件不能判定的基础上,只能再添加一个条件。先让学生讨论分几种情况,教师在启发学生有序思考,避免漏解。如:

1

2

3

3

2

1

教师提出3个角不能判定两三角形全等,实质我们已经讨论过了。明确今天的任务:讨论两条边一个角是否可以判定两三角形全等。师生再共同探讨两边一角又分为两边一夹角与两边一对角两种情况。

活动四:讨论第一种情况:各小组每人用一张长方形纸剪一个直角三角形(只用直尺和剪刀),怎样才能使各小组内部剪下的直角三角形都全等呢?主要是让学生体验研究问题通常可以先从特殊情况考虑,再延伸到一般情况。

活动五:出示课本上的3幅图,让学生通过观察、进行猜想,再测量或剪下来验证。并说说全等的图形之间有什么共同点。

活动六:小组竞赛:每人画一个三角形,其中一个角是30°,有两条边分别是7cm、5cm,看哪组先完成,并且小组内是全等的。这样既调动了学生的积极性,又便于发现边角边的识别方法。

最后教师再用几何画板演示,学生进行观察、比较后,师生共同分析、归纳出“边角边”这一识别方法。

若有小组画成边边角的形式,则顺势引出下面的探究活动。否则提出:若两个三角形有两条边及其中一边的对角对应相等,则这两个三角形一定全等吗?

活动七:在给出的画有的图上,让学生自主探究(其中另一条边为5cm),看画出的三角形是否一定全等。让学生在给出的图上研究是为了减小探索的麻木性。

教师用几何画板演示,让学生在辨析中再次认识边角边。同时完成课后练习第一题。

(三)例题教学,发挥示范功能

例题教学是课堂教学的一个重要环节,因此,如何充分地发挥好例题的教学功能是十分重要的。为此,我将充分利用好这道例题,培养学生有条理的说理能力,同时,通过对例题的变式与引伸培养学生发散思维能力。

首先,我将出示课本例1,并设计下列系列问题,让学生一步一步地走向“知识获得与应用”的理想彼岸。

问题1:请说说本例已知了哪些条件,还差一个什么条件,怎么办?(让学生学会找隐含条件)。

问题2:你能用“因为……根据……所以……”的表达形式说说本题的说理过程吗?

问题3:ADC可以看成是由ABC经过怎样的图形变换得到的?

在探索完上述3个问题的基础上,对例题作如下的变式与引伸:

ABC与ADC全等了,你又能得到哪些结论?连接BD交AC于O,你能说明BOC与DOC全等吗?若全等,你又能得到哪些结论?

这样设计的目的在于体现“数学教学不仅仅是数学知识的教学,更重要的发展学生数学思维的教学”这一思想。

在例题教学的基础上,为了及时的反馈教学效果,也为提高学生知识应用的水平,达到及时巩固的目的,我设计了如下两个练习:

(1)基础知识应用。完成教材P139练一练2。

(2)已知如图:,请你添加一些适当的条件,再根据SAS的识别方法说明两个三角形全等。对学生进行逆向思维训练,同时让学生发现对顶角这一隐含条件。

(四)课堂小结,建立知识体系。

(1)本节课你有哪些收获:重点是将研究问题的方法进行一次梳理,对边角边的识别方法进行一次回顾。

(2)你还有哪些疑问?

附板书设计:

三角

探索三角形全等的条件

两角一边

探究活动一:两个三角形全等至少要几个条件

一角两边

一个条件行不通两个条件行不通三个条件

三边

探究活动二:全等三角形的识别方法:

特殊------一般

初中数学通用教案模板篇20

一、说教材

(一)教材的地位与作用

因式分解是代数式的一种重要恒等变形·它是学习分式的基础,又在恒等变形、代数式的运算、解方程、函数中有广泛的应用,就本节课而言,着重阐述了两个方面,一是因式分解的概念,二是与整式乘法的相互关系·它是继整式乘法的基础上来讨论因式分解概念,继而,通过探究与整式乘法的关系,来寻求因式分解的原理·这一思想实质贯穿后继学习的各种因式分解方法·通过本节课的学习,不仅使学生掌握因式分解的概念和原理,而且又为后面学习因式分解作好了充分的准备·因此,它起到了承上启下的作用·

(二)教学目标

根据新课程标准以及因式分解这一节课的内容,对于掌握各种因式分解的方法,乃至整个代数教学中的地位和作用,我制定了以下教学目标、

1·知识目标、

理解因式分解的概念;掌握从整式乘法得出因式分解的方法·

2·能力目标、

培养分工协作及合作能力,锻炼学生的语言表达及用数学语言的能力;培养学生观察、分析、归纳的能力,并向学生渗透对比、类比的数学思想方法·

3·情感目标、

培养学生积极主动参与的意识,使学生形成自主学习、合作学习的良好的学习习惯;体会事物之间互相转化的辨证思想,从而初步接受对立统一观点·

(三)教学重点与难点·

本节课理解因式分解的概念的本质属性是学习整章因式分解的关键,而学生由乘法到因式分解的变形是一个逆向思维·在前一章整式乘法的较长时间的学习,造成思维定势,学生容易产生“倒摄抑制”作用,阻碍学生新概念的形成·因此我将本课的学习重点、难点确定为、

教学的重点、因式分解的概念

教学的难点、认识因式分解与整式乘法的关系,并能意识到可以运用整式乘法的一系列法则来解决因式分解的各种问题·

二、说学情

1·学生已经学习整式的乘法、乘法公式以及整式的除法的学习·

2·八年级的学生接受能力、思维能力、自我控制能力都有很大变化和提高,自学能力较强,通过类比学习加快知识的学习·

三、说教法学法

教发与学法是互相和统一的,正如新《数学课程标准》所要求的,让学生“动手实践、自主探索、合作交流”·就本节课而言,在教法上不妨利用对比教学,让学生体验因式分解概念产生的过程;利用类比教法、讲练结合的教学方法,以概念的形成和同化相结合,促进学生对因式分解概念的理解;利用尝试教学,让学生主动暴露思维过程,及时得到信息的反馈·不管用什么教法,一节课应该不断研究学生的学习心理机制,不断优化教师本身的教学行为,自始至终对学生充满情感、创造和谐的课堂氛围,这是最重要的·

四、教学过程·

本节课教学过程分以下六个环节、

创设情景,引出新知;观察分析,探究新知;

师生互动,运用新知;强化训练,掌握新知;

整理知识,形成结构;布置作业,巩固提高·

具体过程设计如下、

第一环节、创设情景,引出新知

我先出示几个整式乘法的练习,让学生做·教师巡视·

学生完成习,一是复习整式的乘法,激活学生原有整式乘法的认知结构,满足“温故而知新”的后,教师引导、把上述等式逆过来看一看还成立吗?

安排这样的练教学原理·二是为本节课目标的达成作好铺垫·在此基础上引出课题——因式分解·

第二环节、观察分析,探究新知

全班两个组,比赛看哪一组算的快,当a=101,b=99时,第一组求a2—b2的值,第二组求(a+b)(a—b)·教师巡视,代表性地抽取两名学生板演,给出两种解法·

安排这一过程是想利用对比分析,让学生体会,把a2—b2化为整式积的形式,会给计算带来简便,顺应了因式分解概念的引出·

问题是数学的心脏,而一个好的问题的提出,将会使学生产生求知欲,引发教学高潮,是学生知识及能力获得发展的有效动力·故在教因式分解概念时,我设计以下两个问题、

(1)你能尝试把a2—b2化成几个整式的积的形式吗?并与小学所学的因数分解作比较·

(2)因式分解与整式乘法有什么关系?

让学生分四人小组讨论·归纳因式分解的定义·

一个多项式→几个整式+积→因式分解

我特设三个例题,这几个题目完全放手让学生自主进行,充分暴露学生的思维过程,使学生真正成为学习的主体·通过例1、例2罗列一些似是而非、容易产生错误的对象让学生辨析,让学生进一步体会整式乘法与因式分解的互逆关系·促使他们认识概念的本质、确定概念的外延,从而形成良好的认知结构·通过例3体会用分解因式解决相关问题的简捷性·

第三环节、强化训练,掌握新知

数学家华罗庚先生说过、“学数学而不练,犹如入宝山而空返”·适当的巩固性,应用性练习是学习新知识,掌握新知识所必不可少的·为了促进学生对新知识的理解和掌握,我及时安排学生完成两个练习·通过这两个练习让学生学会辨析因式分解这种变形·使学生进一步理解和掌握因式分解,为下一节提取公因式法进行因式分解打基础;同时又训练、培养和发展学生的基本技能和能力·

第四环节、整理知识,形成结构·

最后我设计了一个表格的形式进行归纳小结·使学生对知识的掌握上升为一种能力,并纳入已有的认知结构,同时也培养了学生的概括提炼能力·

第五环节、布置作业,巩固提高·

在作业上我布置了看书、作业本、思考题·这样既有利于学生巩固所学内容,又让不同层次的学生得到相应的发展·

五、说板书

在本节课中我将采用提纲式的板书设计,因为提纲式—条理清楚、从属关系分明,给人以清晰完整的印象,便于学生对教材内容和知识体系的理解和记忆·

45850