教案吧 > 学科教案 > 数学教案 >

高中数学教案模板范文

时间: 新华 数学教案

教案的内容应该围绕教学目标和教学内容展开,明确教学重点和难点,以及需要讲解的知识点。什么才算好的高中数学教案模板范文?接下来给大家分享一些高中数学教案模板范文,供大家参考。

高中数学教案模板范文篇1

教材第108页例1,练习二十四第1、2题。

二、教材分析:

“渗透集合知识”是人教版《义务教育课程试验教科书数学》三年级下册第九单元《数学广角》第一课时的教学内容。小学生从一开始学习数学,就已经在运用集合的思想方法了。例如,学生在一年级学习数数时,把1个人、2朵花、3枝铅笔等等用一条封闭的曲线圈起来表示,这样表示的数学概念更直观、形象,给学生留下的印象更深刻。又如,我们学习过的分类实际上就是集合理论的基础。本节课教学的例1是借助学生熟悉的题材,渗透集合的思想,并利用直观图的方式求出两个小组的总人数。在教学例1时,我注重了三个方面的问题。(1)集合的理解。(2)有关计算。(3)巩固练习。基于以上的安排,结合新课程标准,我确定了本节课的教学目标:

三、教学目标:

(1)知识与技能:初步体会集合的思想方法,能够借助直观图及利用集合的思想方法解决简单的实际问题。

(2)过程与方法:使学生能借助具体内容,体会集合的思想方法,利用集合的思想方法去解决问题。

(3)情感态度与价值观:培养学生观察思考问题的能力。

四、重难点

重点:初步体会集合的思想方法。

突破方法:借助具体内容,初步体会集合的思想方法。

难点:用集合直观图来表示事物。

突破方法:通过动手操作,利用集合直观图来表示事物。

五、教法学法

集合问题属人教课改版小学数学第六册的智力游戏,所以学生对它的掌握程度允许有差异性,即学生能掌握到什么程度就到什么程度,所以设计的集合问题有较简单的,一题多法的,还有课后让学生继续研究集合问题的实践题目,使每个学生各取所需,各有所得,各有所乐,同时培养学生的创造意识和实践能力;同时由于集合问题中各部分之间的关系较复杂和抽象,所以设计让学生在操作活动中领会集合问题的基本结构,并根据确立的教学目标和学生的认知特点,在教学设计中,我将特别注重以下几个方面:

1、创设情境,适时引导

数学来源于生活,并应用于生活。我通过学生熟悉的队列问题导入新课,使学生置身于熟悉的生活情境中,多种感官被调动起来,主动参与学习过程。

2、设置认知冲突,感知体验集合图

以“参加两个兴趣小组的一共有多少人?”这一问题冲突为线索,让学生想想可能会出现的情况,当学生解答过程中出现分歧时,进而引导学生借助一种图(集合图)来理解解决这一问题,让学生充分感知体验到集合图的作用。

六、教学准备:导学卡、数字卡片。

七、教学流程:

1、创设情景(引出目标)

2、自主探究(感知目标)

3、巩固加深(巩固目标)

4、课堂小结(再现目标)

(一)情境引入、小故事引出大学问(理解重复)

我是用了一道同学们儿时的问题,在站队的时候,有一个小朋友从左数是第5个,从右数还是第5个,算一算这个队一共多少个同学?这个情景的设计,是让学生充分理解重复。把枯燥的数学知识贯穿于小学生实际生活当中,引发学生的学习兴趣,点燃他们求知欲望的火花,从而进入最佳的学习状态,为主动探究新知识聚集动力。

(二)探索新知(体会集合)

1、在教学例1时,我大胆的将例题进行了改写,我没有按照常规的教学方法先出示统计表告诉学生参加语文兴趣小组和数学兴趣小组的学生名单,让他们通过观察统计表得出信息,参加语文小组的有5人,参加数学小组的有7人,然后让学生提出问题并解决问题。而是直接告诉了学生参加两个兴趣小组的人数,然后让他们算一算参加两个小组的一共有多少人?学生列出算式5+7=12(人),此时我不去及时评判,目的在于我要让学生猜想可能会发生的情况,然后等学生掌握了新知识后,自己去发现、自己去解正,为锻炼学生的判断能力有意设局的。

2、接下来引导学生用图示的方法表示两个课外小组的人员组成情况。在这个环节我设计了一个对号入座的活动,请一名男生和一名女生到台前去贴号,再贴号的过程中当问到有什么好办法能一眼看出来两个组的人数时?很自然的就引出了集合圈,让学生理解了集合的意义,导出了课题《集合》。很快学生发现,既参加了语文小组又参加了数学小组的两名学生,安排在中间的位置是最合适的,这样就组成三个部分,如中间部分表示既参加语文兴趣小组又参加数学兴趣小组的同学,另外两边一边是只参加语文兴趣小组的同学,一边是只参加数学兴趣小组的同学。

3、经过学生和教师共同完成集合,再次的确定两个学生既参加了语文小组又参加了数学小组,计算时重复了,进而让学生进行小组合作,讨论交流得出在计算参加语文小组和数学小组总人数时,一定要减去重复的数据2,得出正确的算式5+7—2=12(人),在这个过程中,还要体现算法的多样化,并不是只有这一种列示方法。这一过程,锻炼了学生的观察能力和思维能力以及运用已有知识解答新问题的&39;能力,培养了学生运用数学知识的意识;不但知其然,而且知其所以然。

(三)巩固加深

这是教学中不可缺少的环节,这一环节是学生巩固知识,形成技能,技巧,发展智力的重要过程,还要确保学习任务的圆满完成。因此,练习的巩固我主要设计了两道习题。第一道题让学生把动物的序号填在合适的位置,一边是只会游泳的,一边是只会飞的,还要让学生说出中间部分表示的是什么?第二题是让学生算算文具商店两天一共进了多少种货?这道题中两天进的货是以图画的形式出现的,这就要求学生在完成的过程中一定要认真观察,养成细心的好习惯。

(四)总结

让学生真正成为学习的主人,对所学的内容理解深刻,记忆牢固。同时,还培养了学生归纳概括事物本质属性的能力。只要学生在平时多观察,就会发现在日常生活中,有很多事物具有双重性,或者在数量上是重复的。我们可以运用画集合圈的方法来分析类别,再计算它们的数量;但是在计算总数时必须减去重复的数量;还可以将左中右圈里的数量相加。

高中数学教案模板范文篇2

2。2。1等差数列学案

一、预习问题:

1、等差数列的定义:一般地,如果一个数列从起,每一项与它的前一项的差等于同一个,那么这个数列就叫等差数列,这个常数叫做等差数列的,通常用字母表示。

2、等差中项:若三个数组成等差数列,那么A叫做与的,

即或。

3、等差数列的.单调性:等差数列的公差时,数列为递增数列;时,数列为递减数列;时,数列为常数列;等差数列不可能是。

4、等差数列的通项公式:。

5、判断正误:

①1,2,3,4,5是等差数列;()

②1,1,2,3,4,5是等差数列;()

③数列6,4,2,0是公差为2的等差数列;()

④数列是公差为的等差数列;()

⑤数列是等差数列;()

⑥若,则成等差数列;()

⑦若,则数列成等差数列;()

⑧等差数列是相邻两项中后项与前项之差等于非零常数的数列;()

⑨等差数列的公差是该数列中任何相邻两项的差。()

6、思考:如何证明一个数列是等差数列。

二、实战操作:

例1、(1)求等差数列8,5,2,的第20项。

(2)是不是等差数列中的项?如果是,是第几项?

(3)已知数列的公差则

例2、已知数列的通项公式为,其中为常数,那么这个数列一定是等差数列吗?

例3、已知5个数成等差数列,它们的和为5,平方和为求这5个数。

高中数学教案模板范文篇3

高中数学备课教案模板(通用2篇)

高中数学备课模板篇1

一、教学目标:

知识与技能:了解直线参数方程的条件及参数的意义

过程与方法:能根据直线的几何条件,写出直线的参数方程及参数的意义

情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。

二、重难点:教学重点:曲线参数方程的定义及方法

教学难点:选择适当的参数写出曲线的参数方程.

三、教学方法:启发、诱导发现教学.

四、教学过程

(一)、复习引入:

1.写出圆方程的标准式和对应的参数方程。

圆参数方程(为参数)

(2)圆参数方程为:(为参数)

2.写出椭圆参数方程.

3.复习方向向量的概念.提出问题:已知直线的一个点和倾斜角,如何表示直线的参数方程?

(二)、讲解新课:

1、问题的提出:一条直线L的倾斜角是,并且经过点P(2,3),如何描述直线L上任意点的位置呢?

如果已知直线L经过两个

定点Q(1,1),P(4,3),

那么又如何描述直线L上任意点的

位置呢?

2、教师引导学生推导直线的参数方程:

(1)过定点倾斜角为的直线的

参数方程

(为参数)

【辨析直线的参数方程】:设M(x,y)为直线上的任意一点,参数t的几何意义是指从点P到点M的位移,可以用有向线段数量来表示。带符号.

(2)、经过两个定点Q,P(其中)的直线的参数方程为。其中点M(X,Y)为直线上的任意一点。这里参数的几何意义与参数方程(1)中的t显然不同,它所反映的是动点M分有向线段的数量比。当时,M为内分点;当且时,M为外分点;当时,点M与Q重合。

(三)、直线的参数方程应用,强化理解。

1、例题:

学生练习,教师准对问题讲评。反思归纳:

1)求直线参数方程的方法;

2)利用直线参数方程求交点。

2、巩固导练:

补充:

1)直线与圆相切,那么直线的倾斜角为(A)

A.或B.或C.或D.或

2)(坐标系与参数方程选做题)若直线与直线(为参数)垂直,则.

解:直线化为普通方程是,

该直线的斜率为,

直线(为参数)化为普通方程是,

该直线的斜率为,

则由两直线垂直的充要条件,得,。

(四)、小结:

(1)直线参数方程求法;

(2)直线参数方程的特点;

(3)根据已知条件和图形的几何性质,注意参数的意义。

(五)、作业:

补充:设直线的参数方程为(t为参数),直线的方程为y=3x+4则与的距离为_______

【考点定位】本小题考查参数方程化为普通方程、两条平行线间的距离,基础题。

解析:由题直线的普通方程为,故它与与的距离为。

五、:

高中数学备课教案模板篇2

一、教学目标

1.知识与技能

(1)掌握画三视图的基本技能

(2)丰富学生的空间想象力

2.过程与方法

主要通过学生自己的亲身实践,动手作图,体会三视图的作用。

3.情感态度与价值观

(1)提高学生空间想象力

(2)体会三视图的作用

二、教学重点、难点

重点:画出简单组合体的三视图

难点:识别三视图所表示的空间几何体

三、学法与教学用具

1.学法:观察、动手实践、讨论、类比

2.教学用具:实物模型、三角板

四、教学思路

(一)创设情景,揭开课题

“横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图。

在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的三视图吗?

(二)实践动手作图

1.讲台上放球、长方体实物,要求学生画出它们的三视图,教师巡视,学生画完后可交流结果并讨论;

2.教师引导学生用类比方法画出简单组合体的三视图

(1)画出球放在长方体上的三视图

(2)画出矿泉水瓶(实物放在桌面上)的三视图

学生画完后,可把自己的作品展示并与同学交流,总结自己的作图心得。

作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图。

3.三视图与几何体之间的相互转化。

(1)投影出示图片(课本P10,图1.2-3)

请同学们思考图中的三视图表示的几何体是什么?

(2)你能画出圆台的三视图吗?

(3)三视图对于认识空间几何体有何作用?你有何体会?

教师巡视指导,解答学生在学习中遇到的困难,然后让学生发表对上述问题的看法。

4.请同学们画出1.2-4中其他物体表示的空间几何体的三视图,并与其他同学交流。

(三)巩固练习

课本P12练习1、2P18习题1.2A组1

(四)归纳整理

请学生回顾发表如何作好空间几何体的三视图

(五)课外练习

1.自己动手制作一个底面是正方形,侧面是全等的三角形的棱锥模型,并画出它的三视图。

2.自己制作一个上、下底面都是相似的正三角形,侧面是全等的等腰梯形的棱台模型,并画出它的三视图。

高中数学教案模板范文篇4

教学目标:理解集合的概念;掌握集合的三种表示方法,理解集合中元素的三性及元素与集合的关系;掌握有关符号及术语。

教学过程:

一、阅读下列语句:

1)全体自然数0,1,2,3,4,5,

2)代数式

3)抛物线上所有的点

4)今年本校高一(1)(或(2))班的全体学生

5)本校实验室的所有天平

6)本班级全体高个子同学

7)著名的科学家

上述每组语句所描述的对象是否是确定的?

二、

1)集合:

2)集合的元素:

3)集合按元素的个数分,可分为1)__________2)_________

三、集合中元素的三个性质:

1)___________2)___________3)_____________

四、元素与集合的关系:1)____________2)____________

五、特殊数集专用记号:

1)非负整数集(或自然数集)______2)正整数集_____3)整数集_______4)有理数集______5)实数集_____6)空集____

六、集合的表示方法:

1)

2)

3)

七、例题讲解:

例1、中三个元素可构成某一个三角形的三边长,那么此三角形一定不是()

a,直角三角形b,锐角三角形c,钝角三角形d,等腰三角形

例2、用适当的方法表示下列集合,然后说出它们是有限集还是无限集?

1)地球上的四大洋构成的集合;

2)函数的全体值的集合;

3)函数的全体自变量的集合;

4)方程组解的集合;

5)方程解的集合;

6)不等式的解的集合;

7)所有大于0且小于10的奇数组成的集合;

8)所有正偶数组成的集合;

例3、用符号或填空:

1)______q,0_____n,_____z,0_____

2)______,_____

3)3_____,

4)设,,则

例4、用列举法表示下列集合;

1.

2.

3.

4.

例5、用描述法表示下列集合

1.所有被3整除的数

2.图中阴影部分点(含边界)的坐标的集合

课堂练习:

例6、设含有三个实数的集合既可以表示为,也可以表示为,则的值等于___________

例7、已知:,若中元素至多只有一个,求的取值范围。

思考题:数集a满足:若,则,证明1):若2,则集合中还有另外两个元素;2)若则集合a不可能是单元素集合。

小结:

作业班级姓名学号

1.下列集合中,表示同一个集合的是()

a.m=,n=b.m=,n=

c.m=,n=d.m=,n=

2.m=,x=,y=,,.则()

a.b.c.d.

3.方程组的解集是____________________。

4.在(1)难解的题目,(2)方程在实数集内的解,(3)直角坐标平面内第四象限的一些点,(4)很多多项式。能够组成集合的序号是________________。

5.设集合a=,b=,

c=,d=,e=。

其中有限集的个数是____________。

6.设,则集合中所有元素的和为

7.设x,y,z都是非零实数,则用列举法将所有可能的值组成的集合表示为

8.已知f(x)=x2-ax+b,(a,br),a=,b=,

若a=,试用列举法表示集合b=

9.把下列集合用另一种方法表示出来:

(1)(2)

(3)(4)

10.设a,b为整数,把形如a+b的一切数构成的集合记为m,设,试判断x+y,x-y,xy是否属于m,说明理由。

11.已知集合a=

(1)若a中只有一个元素,求a的值,并求出这个元素;

(2)若a中至多只有一个元素,求a的取值集合。

12.若-3,求实数a的值。

高中数学教案模板范文篇5

一、教材分析

1.地位及作用

"余弦定理"是人教A版数学必修5主要内容之一,是解决有关斜三角形问题的两个重要定理之一,也是初中"勾股定理"内容的直接延拓,它是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具具有广泛的应用价值,起到承上启下的作用。

2.教学重、难点

重点:余弦定理的证明过程和定理的简单应用。

难点:利用向量的数量积证余弦定理的思路。

二、教学目标

知识目标:能推导余弦定理及其推论,能运用余弦定理解已知"边,角,边"和"边,边,边"两类三角形。

能力目标:培养学生知识的迁移能力;归纳总结的能力;运用所学知识解决实际问题的能力。

情感目标:从实际问题出发运用数学知识解决问题这个过程体验数学在实际生活中的运用,激发学生学习数学的兴趣。通过主动探索,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨。

三、教学方法

数学课堂上首先要重视知识的发生过程,既能展现知识的`获取,又能暴露解决问题的思维。在本节教学中,我将遵循"提出问题、分析问题、解决问题"的步骤逐步推进,以课堂教学的组织者、引导者、合作者的身份,组织学生探究、归纳、推导,引导学生逐个突破难点,师生共同解决问题,使学生在各种数学活动中掌握各种数学基本技能,初步学会从数学角度去观察事物和思考问题,产生学习数学的愿望和兴趣。

四、教学过程

本节教学中通过创设情境,充分调动学生已有的学习经验,让学生经历"现实问题转化为数学问题"的过程,发现新的知识,把学生的潜意识状态的好奇心变为自觉求知的创新意识。又通过实际操作,使刚产生的数学知识得到完善,提高了学生动手动脑的能力和增强了研究探索的综合素质。

帮助学生从平面几何、三角函数、向量知识等方面进行分析讨论,选择简洁的处理工具,引发学生的积极讨论。你能够有更好的具体的量化方法吗?问题可转化为已知三角形两边长和夹角求第三边的问题,即:在其中已知AC=b,AB=c和A,求a.

学生对向量知识可能遗忘,注意复习;在利用数量积时,角度可能出现错误,出现不同的表示形式,让学生从错误中发现问题,巩固向量知识,明确向量工具的作用。同时,让学生明确数学中的转化思想:化未知为已知。将实际问题转化成数学问题,引导学生分析问题。其中已知a=5,b=7,c=8,求B.

学生思考或者讨论,若有同学答则顺势引出推论,若不能作答则由老师引导推出推论,然后返回解决该问题。

让学生观察推论的特征,讨论该推论有什么用。

高中数学教案模板范文篇6

一、教材分析

1、教材的地位和作用:

数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。

2、教学目标

根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标

a在知识上:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。

b在能力上:培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。

c在情感上:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。

3、教学重点和难点

根据教学大纲的要求我确定本节课的教学重点为:

①等差数列的概念。

②等差数列的通项公式的推导过程及应用。

由于学生第一次接触不完全归纳法,对此并不熟悉因此用不完全归纳法推导等差数列的同项公式是这节课的一个难点。同时,学生对“数学建模”的思想方法较为陌生,因此用数学思想解决实际问题是本节课的另一个难点。

二、学情分析对于三中的高一学生,知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了教强的抽象思维能力和演绎推理能力,所以我在授课时注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。

二、教法分析

针对高中生这一思维特点和心理特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。

三、学法指导在引导分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。

四、教学程序

本节课的教学过程由(一)复习引入(二)新课探究(三)应用例解(四)反馈练习(五)归纳小结(六)布置作业,六个教学环节构成。

(一)复习引入:

1.从函数观点看,数列可看作是定义域为__________对应的一列函数值,从而数列的通项公式也就是相应函数的______ 。(N﹡;解析式)

通过练习1复习上节内容,为本节课用函数思想研究数列问题作准备。

2. 小明目前会100个单词,他她打算从今天起不再背单词了,结果不知不觉地每天忘掉2个单词,那么在今后的五天内他的单词量逐日依次递减为: 100,98,96,94,92 ①

3. 小芳只会5个单词,他决定从今天起每天背记10个单词,那么在今后的五天内他的单词量逐日依次递增为 5,10,15,20,25 ②

通过练习2和3 引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发学生的求知欲。由学生观察两个数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。

(二) 新课探究

1、由引入自然的给出等差数列的概念:

如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。强调:

① “从第二项起”满足条件;

②公差d一定是由后项减前项所得;

③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );

在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:

an+1-an=d (n≥1)

同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。

1. 9 ,8,7,6,5,4,……;√ d=-1

2. 0.70,0.71,0.72,0.73,0.74……;√ d=0.01

3. 0,0,0,0,0,0,…….; √ d=0

4. 1,2,3,2,3,4,……;×

5. 1,0,1,0,1,……×

其中第一个数列公差<0, 第二个数列公差>0,第三个数列公差=0

由此强调:公差可以是正数、负数,也可以是0

高中数学教案模板范文篇7

教学目标:1、理解集合的概念和性质.

2、了解元素与集合的表示方法.

3、熟记有关数集.

4、培养学生认识事物的能力.

教学重点:集合概念、性质

教学难点:集合概念的理解

教学过程:

1、定义:

集合:一般地,某些指定的对象集在一起就成为一个集合(集).元素:集合中每个对象叫做这个集合的元素.

由此上述例中集合的元素是什么?

例(1)的元素为1、3、5、7,

例(2)的元素为到两定点距离等于两定点间距离的点,

例(3)的元素为满足不等式3x-2>x+3的实数x,

例(4)的元素为所有直角三角形,

例(5)为高一·六班全体男同学.

一般用大括号表示集合,{?}如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}。则上几例可表示为??

为方便,常用大写的拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

(1)确定性;(2)互异性;(3)无序性.

3、元素与集合的关系:隶属关系

元素与集合的关系有“属于∈”及“不属于?(?也可表示为)两种。如A={2,4,8,16},则4∈A,8∈A,32?A.

集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集A记作a?A,相反,a不属于集A记作a?A(或)

注:1、集合通常用大写的拉丁字母表示,如A、B、C、P、Q??

元素通常用小写的拉丁字母表示,如a、b、c、p、q??

2、“∈”的开口方向,不能把a∈A颠倒过来写。

4

注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0。

(2)非负整数集内排除0的集。记作N_或N+。Q、Z、R等其它数集内排除0

的集,也是这样表示,例如,整数集内排除0的集,表示成Z_

请回答:已知a+b+c=m,A={xax2+bx+c=m},判断1与A的关系。

1.1.2集合间的基本关系

教学目标:1.理解子集、真子集概念;

2.会判断和证明两个集合包含关系;

3.理解“?”、“?”的含义;≠

4.会判断简单集合的相等关系;

5.渗透问题相对的观点。

教学重点:子集的概念、真子集的概念

教学难点:元素与子集、属于与包含间区别、描述法给定集合的运算教学过程:

观察下面几组集合,集合A与集合B具有什么关系?

(1)A={1,2,3},B={1,2,3,4,5}.

(2)A={__>3},B={x3x-6>0}.

(3)A={正方形},B={四边形}.

(4)A=?,B={0}.

(5)A={银川九中高一(11)班的女生},B={银川九中高一(11)班的学生}。

1.子集

定义:一般地,对于两个集合A与B,如果集合A中的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A,记作A?B(或B?A),即若任意x?A,有x?B,则A?B(或A?B)。

这时我们也说集合A是集合B的子集(subset)。

如果集合A不包含于集合B,或集合B不包含集合A,就记作A?B(或B?A),即:若存在x?A,有x?B,则A?B(或B?A)

说明:A?B与B?A是同义的,而A?B与B?A是互逆的。

规定:空集?是任何集合的子集,即对于任意一个集合A都有??A。

(2)除去?与A本身外,集合A的其它子集与集合A的关系如何?

3.真子集:

由“包含”与“相等”的关系,可有如下结论:

(1)A?A(任何集合都是其自身的子集);

(2)若A?B,而且A?B(即B中至少有一个元素不在A中),则称集合A是集合B的真子集(propersubset),记作A≠B。(空集是任何非空集合的真

子集)

(3)对于集合A,B,C,若A?B,B?C,即可得出A?C;对A?B,B?C,同样≠≠

?有A≠C,即:包含关系具有“传递性”。

4.证明集合相等的方法:

?

第3/7页

(1)证明集合A,B中的元素完全相同;(具体数据)

(2)分别证明A?B和B?A即可。(抽象情况)

对于集合A,B,若A?B而且B?A,则A=B。

1.1.3集合的基本运算

教学目的:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并

集与交集;

(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补

集;

(3)能用Venn图表达集合的关系及运算,体会直观图示对理解抽

象概念的作用。

教学重点:集合的交集与并集、补集的概念;

教学难点:集合的交集与并集、补集“是什么”,“为什么”,“怎样做”;

【知识点】

1.并集

一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union)

记作:A∪B读作:“A并B”

即:A∪B={__∈A,或x∈B}

Venn图表示:

第4/7页

A与B的所有元素来表示。A与B的交集。

2.交集

一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集(intersection)。

记作:A∩B读作:“A交B”

即:A∩B={x∈A,且x∈B}

交集的Venn图表示

说明:两个集合求交集,结果还是一个集合,是由集合A与B的公共元素组成的集合。

拓展:求下列各图中集合A与B的并集与交集

A

说明:当两个集合没有公共元素时,两个集合的交集是空集,不能说两个集合没有交集

3.补集

全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe),通常记作U。

补集:对于全集U的一个子集A,由全集U中所有不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集(complementaryset),简称为集合A的补集,

记作:CUA

即:CUA={__∈U且x∈A}

第5/7页

补集的Venn图表示

说明:补集的概念必须要有全集的限制

4.求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分

交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法。

5.集合基本运算的一些结论:

A∩B?A,A∩B?B,A∩A=A,A∩?=?,A∩B=B∩A

A?A∪B,B?A∪B,A∪A=A,A∪?=A,A∪B=B∪A

(CUA)∪A=U,(CUA)∩A=?

若A∩B=A,则A?B,反之也成立

若A∪B=B,则A?B,反之也成立

若x∈(A∩B),则x∈A且x∈B

若x∈(A∪B),则x∈A,或x∈B

¤例题精讲:

【例1】设集合U?R,A?{x?1?x?5},B?{x3?x?9},求A?B,?U(A?B).解:在数轴上表示出集合A、B

【例2】设A?{x?Zx?6},B??1,2,3?,C??3,4,5,6?,求:

(1)A?(B?C);(2)A??A(B?C).

【例3】已知集合A?{x?2?x?4},B?{__?m},且A?B?A,求实数m的取值范围.

_且x?N}【例4】已知全集U?{__?10,,A?{2,4,5,8},B?{1,3,5,8},求

CU(A?B),CU(A?B),(CUA)?(CUB),(CUA)?(CUB),并比较它们的关系.

高中数学教案模板范文篇8

本文题目:高三数学复习教案:古典概型复习教案

【高考要求】古典概型(B);互斥事件及其发生的概率(A)

【学习目标】:1、了解概率的频率定义,知道随机事件的发生是随机性与规律性的统一;

2、理解古典概型的特点,会解较简单的古典概型问题;

3、了解互斥事件与对立事件的概率公式,并能运用于简单的概率计算.

【知识复习与自学质疑】

1、古典概型是一种理想化的概率模型,假设试验的结果数具有性和性.解古典概型问题关键是判断和计数,要掌握简单的记数方法(主要是列举法).借助于互斥、对立关系将事件分解或转化是很重要的方法.

2、(A)在10件同类产品中,其中8件为正品,2件为次品。从中任意抽出3件,则下列4个事件:①3件都是正品;②至少有一件是正品;③3件都是次品;④至少有一件是次品.是必然事件的是.

3、(A)从5个红球,1个黄球中随机取出2个,所取出的两个球颜色不同的概率是。

4、(A)同时抛两个各面上分别标有1、2、3、4、5、6均匀的正方体玩具一次,向上的两个数字之和为3的概率是.

5、(A)某人射击5枪,命中3枪,三枪中恰好有2枪连中的概率是.

6、(B)若实数,则曲线表示焦点在y轴上的双曲线的概率是.

【例题精讲】

1、(A)甲、乙两人参加知识竞答,共有10道不同的题目,其中选择题6道,判断题4道,甲、乙两人依次各抽一题.(1)甲抽到选择题、乙抽到判断题的概率是多少?

(2)甲、乙两人中至少有一人抽到选择题的概率是多少?

2、(B)黄种人群中各种血型的人所占的比例如下表所示:

血型ABABO

该血型的人所占的比(%)2829835

已知同种血型的人可以输血,O型血可以输给任一种血型的人,任何人的血都可以输给AB型血的人,其他不同血型的人不能互相输血.小明是B型血,若小明因病需要输血,问:

(1)任找一个人,其血可以输给小明的概率是多少?

(2)任找一个人,其血不能输给小明的概率是多少?

3、(B)将两粒骰子投掷两次,求:(1)向上的点数之和是8的概率;(2)向上的点数之和不小于8的概率;(3)向上的点数之和不超过10的概率.

4、(B)将一个各面上均涂有颜色的正方体锯成(n个同样大小的正方体,从这些小正方体中任取一个,求下列事件的概率:(1)三面涂有颜色;(2)恰有两面涂有颜色;

(3)恰有一面涂有颜色;(4)至少有一面涂有颜色.

【矫正反馈】

1、(A)一个三位数的密码锁,每位上的数字都可在0到10这十个数字中任选,某人忘记了密码最后一个号码,开锁时在对好前两位号码后,随意拨动最后一个数字恰好能开锁的概率是.

2、(A)第1、2、5、7路公共汽车都要停靠的一个车站,有一位乘客等候着1路或5路汽车,假定各路汽车首先到站的可能性相等,那么首先到站的正好是这位乘客所要乘的的车的概率是.

3、(A)某射击运动员在打靶中,连续射击3次,事件至少有两次中靶的对立事件是.

4、(B)某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下出现乙级品和丙级品的概率分别为3%和1%,求抽验一只是正品(甲级)的概率.

5、(B)袋中装有4只白球和2只黑球,从中先后摸出2只求(不放回).求:(1)第一次摸出黑球的概率;(2)第二次摸出黑球的概率;(3)第一次及第二次都摸出黑球的概率.

【迁移应用】

1、(A)将一粒骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率是.

2、(A)从鱼塘中打一网鱼,共M条,做上标记后放回池塘中,过了几天,又打上来一网鱼,共N条,其中K条有标记,估计池塘中鱼的条数为.

3、(A)从分别写有A,B,C,D,E的5张卡片中,任取2张,这两张上的字母恰好按字母顺序相邻的概率是.

4、(B)电子钟一天显示的时间是从00:00到23:59的每一时刻都由四个数字组成,则一天中任一时刻的四个数字之和为23的概率是.

5、(B)将甲、乙两粒骰子先后各抛一次,a,b分别表示抛掷甲、乙两粒骰子所出现的点数.

(1)若点P(a,b)落在不等式组表示的平面区域记为A,求事件A的概率;

(2)求P(a,b)落在直线x+y=m(m为常数)上,且使此事件的概率最大,求m的值.

高中数学教案模板范文篇9

课题:

等比数列的概念

教学目标

1、通过教学使学生理解等比数列的概念,推导并掌握通项公式、

2、使学生进一步体会类比、归纳的思想,培养学生的观察、概括能力、

3、培养学生勤于思考,实事求是的精神,及严谨的科学态度、

教学重点,难点

重点、难点是等比数列的定义的归纳及通项公式的推导、

教学用具

投影仪,多媒体软件,电脑、

教学方法

讨论、谈话法、

教学过程

一、提出问题

给出以下几组数列,将它们分类,说出分类标准、(幻灯片)

①—2,1,4,7,10,13,16,19,…

②8,16,32,64,128,256,…

③1,1,1,1,1,1,1,…

④243,81,27,9,3,1,,,…

⑤31,29,27,25,23,21,19,…

⑥1,—1,1,—1,1,—1,1,—1,…

⑦1,—10,100,—1000,10000,—100000,…

⑧0,0,0,0,0,0,0,…

由学生发表意见(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摆动数列,也可能分为等差、等比两类),统一一种分法,其中②③④⑥⑦为有共同性质的一类数列(学生看不出③的情况也无妨,得出定义后再考察③是否为等比数列)、

二、讲解新课

请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题、假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,…,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数

这个数列也具有前面的几个数列的共同特性,这是我们将要研究的另一类数列——等比数列、(这里播放变形虫分裂的多媒体软件的第一步)

等比数列(板书)

1、等比数列的定义(板书)

根据等比数列与等差数列的名字的区别与联系,尝试给等比数列下定义、学生一般回答可能不够完美,多数情况下,有了等差数列的基础是可以由学生概括出来的教师写出等比数列的定义,标注出重点词语、

请学生指出等比数列②③④⑥⑦各自的公比,并思考有无数列既是等差数列又是等比数列、学生通过观察可以发现③是这样的数列,教师再追问,还有没有其他的例子,让学生再举两例、而后请学生概括这类数列的一般形式,学生可能说形如的数列都满足既是等差又是等比数列,让学生讨论后得出结论:当时,数列既是等差又是等比数列,当时,它只是等差数列,而不是等比数列、教师追问理由,引出对等比数列的认识:

2、对定义的认识(板书)

(1)等比数列的首项不为0;

(2)等比数列的每一项都不为0,即

问题:一个数列各项均不为0是这个数列为等比数列的什么条件?

(3)公比不为0、

用数学式子表示等比数列的定义、

是等比数列

①、在这个式子的写法上可能会有一些争议,如写成

,可让学生研究行不行,好不好;接下来再问,能否改写为

是等比数列?为什么不能?式子给出了数列第项与第

项的数量关系,但能否确定一个等比数列?(不能)确定一个等比数列需要几个条件?当给定了首项及公比后,如何求任意一项的值?所以要研究通项公式、

3、等比数列的通项公式(板书)

问题:用和表示第项

①不完全归纳法

②叠乘法,…,,这个式子相乘得,所以(板书)

(1)等比数列的通项公式得出通项公式后,让学生思考如何认识通项公式、(板书)

(2)对公式的认识

由学生来说,最后归结:

①函数观点;

②方程思想(因在等差数列中已有认识,此处再复习巩固而已)、

这里强调方程思想解决问题、方程中有四个量,知三求一,这是公式最简单的应用,请学生举例(应能编出四类问题)、解题格式是什么?(不仅要会解题,还要注意规范表述的训练)

如果增加一个条件,就多知道了一个量,这是公式的更高层次的应用,下节课再研究、同学可以试着编几道题。

三、小结

1、本节课研究了等比数列的概念,得到了通项公式;

2、注意在研究内容与方法上要与等差数列相类比;

3、用方程的思想认识通项公式,并加以应用。

探究活动

将一张很大的薄纸对折,对折30次后(如果可能的话)有多厚?不妨假设这张纸的厚度为0、01毫米。

参考答案:

30次后,厚度为,这个厚度超过了世界最高的山峰——珠穆朗玛峰的高度。如果纸再薄一些,比如纸厚0、001毫米,对折34次就超过珠穆朗玛峰的高度了、还记得国王的承诺吗?第31个格子中的米已经是1073741824粒了,后边的格子中的米就更多了,最后一个格子中的米应是粒,用计算器算一下吧(对数算也行)。

高中数学教案模板范文篇10

●知识梳理

函数的综合应用主要体现在以下几方面:

1.函数内容本身的相互综合,如函数概念、性质、图象等方面知识的综合.

2.函数与其他数学知识点的综合,如方程、不等式、数列、解析几何等方面的内容与函数的综合.这是高考主要考查的内容.

3.函数与实际应用问题的综合.

●点击双基

1.已知函数f(x)=lg(2x-b)(b为常数),若x[1,+)时,f(x)0恒成立,则

A.b1B.b1C.b1D.b=1

解析:当x[1,+)时,f(x)0,从而2x-b1,即b2x-1.而x[1,+)时,2x-1单调增加,

b2-1=1.

答案:A

2.若f(x)是R上的减函数,且f(x)的图象经过点A(0,3)和B(3,-1),则不等式f(x+1)-12的解集是___________________.

解析:由f(x+1)-12得-2

又f(x)是R上的减函数,且f(x)的图象过点A(0,3),B(3,-1),

f(3)

答案:(-1,2)

●典例剖析

【例1】取第一象限内的点P1(x1,y1),P2(x2,y2),使1,x1,x2,2依次成等差数列,1,y1,y2,2依次成等比数列,则点P1、P2与射线l:y=x(x0)的关系为

A.点P1、P2都在l的上方B.点P1、P2都在l上

C.点P1在l的下方,P2在l的上方D.点P1、P2都在l的下方

剖析:x1=+1=,x2=1+=,y1=1=,y2=,∵y1

P1、P2都在l的下方.

答案:D

【例2】已知f(x)是R上的偶函数,且f(2)=0,g(x)是R上的奇函数,且对于xR,都有g(x)=f(x-1),求f(20__)的值.

解:由g(x)=f(x-1),xR,得f(x)=g(x+1).又f(-x)=f(x),g(-x)=-g(x),

故有f(x)=f(-x)=g(-x+1)=-g(x-1)=-f(x-2)=-f(2-x)=-g(3-x)=

g(x-3)=f(x-4),也即f(x+4)=f(x),xR.

f(x)为周期函数,其周期T=4.

f(20__)=f(4500+2)=f(2)=0.

评述:应灵活掌握和运用函数的奇偶性、周期性等性质.

【例3】函数f(x)=(m0),x1、x2R,当x1+x2=1时,f(x1)+f(x2)=.

(1)求m的值;

(2)数列{an},已知an=f(0)+f()+f()++f()+f(1),求an.

解:(1)由f(x1)+f(x2)=,得+=,

4+4+2m=[4+m(4+4)+m2].

∵x1+x2=1,(2-m)(4+4)=(m-2)2.

4+4=2-m或2-m=0.

∵4+42=2=4,

而m0时2-m2,4+42-m.

m=2.

(2)∵an=f(0)+f()+f()++f()+f(1),an=f(1)+f()+f()++f()+f(0).

2an=[f(0)+f(1)]+[f()+f()]++[f(1)+f(0)]=+++=.

an=.

深化拓展

用函数的思想处理方程、不等式、数列等问题是一重要的思想方法.

【例4】函数f(x)的定义域为R,且对任意x、yR,有f(x+y)=f(x)+f(y),且当x0时,f(x)0,f(1)=-2.

(1)证明f(x)是奇函数;

(2)证明f(x)在R上是减函数;

(3)求f(x)在区间[-3,3]上的最大值和最小值.

(1)证明:由f(x+y)=f(x)+f(y),得f[x+(-x)]=f(x)+f(-x),f(x)+f(-x)=f(0).又f(0+0)=f(0)+f(0),f(0)=0.从而有f(x)+f(-x)=0.

f(-x)=-f(x).f(x)是奇函数.

(2)证明:任取x1、x2R,且x10.f(x2-x1)0.

-f(x2-x1)0,即f(x1)f(x2),从而f(x)在R上是减函数.

(3)解:由于f(x)在R上是减函数,故f(x)在[-3,3]上的最大值是f(-3),最小值是f(3).由f(1)=-2,得f(3)=f(1+2)=f(1)+f(2)=f(1)+f(1+1)=f(1)+f(1)+f(1)=3f(1)=3(-2)=-6,f(-3)=-f(3)=6.从而最大值是6,最小值是-6.

深化拓展

对于任意实数x、y,定义运算x__y=ax+by+cxy,其中a、b、c是常数,等式右边的运算是通常的加法和乘法运算.现已知1__2=3,2__3=4,并且有一个非零实数m,使得对于任意实数x,都有x__m=x,试求m的值.

提示:由1__2=3,2__3=4,得

b=2+2c,a=-1-6c.

又由x__m=ax+bm+cmx=x对于任意实数x恒成立,

b=0=2+2c.

c=-1.(-1-6c)+cm=1.

-1+6-m=1.m=4.

答案:4.

●闯关训练

夯实基础

1.已知y=f(x)在定义域[1,3]上为单调减函数,值域为[4,7],若它存在反函数,则反函数在其定义域上

A.单调递减且最大值为7B.单调递增且最大值为7

C.单调递减且最大值为3D.单调递增且最大值为3

解析:互为反函数的两个函数在各自定义区间上有相同的增减性,f-1(x)的值域是[1,3].

答案:C

2.关于x的方程x2-4x+3-a=0有三个不相等的实数根,则实数a的值是___________________.

解析:作函数y=x2-4x+3的图象,如下图.

由图象知直线y=1与y=x2-4x+3的图象有三个交点,即方程x2-4x+3=1也就是方程x2-4x+3-1=0有三个不相等的实数根,因此a=1.

答案:1

3.若存在常数p0,使得函数f(x)满足f(px)=f(px-)(xR),则f(x)的一个正周期为__________.

解析:由f(px)=f(px-),

令px=u,f(u)=f(u-)=f[(u+)-],T=或的整数倍.

答案:(或的整数倍)

4.已知关于x的方程sin2x-2sinx-a=0有实数解,求a的取值范围.

解:a=sin2x-2sinx=(sinx-1)2-1.

∵-11,0(sinx-1)24.

a的范围是[-1,3].

5.记函数f(x)=的定义域为A,g(x)=lg[(x-a-1)(2a-x)](a1)的定义域为B.

(1)求A;

(2)若BA,求实数a的取值范围.

解:(1)由2-0,得0,

x-1或x1,即A=(-,-1)[1,+).

(2)由(x-a-1)(2a-x)0,得(x-a-1)(x-2a)0.

∵a1,a+12a.B=(2a,a+1).

∵BA,2a1或a+1-1,即a或a-2.

而a1,1或a-2.

故当BA时,实数a的取值范围是(-,-2][,1).

培养能力

6.(理)已知二次函数f(x)=x2+bx+c(b0,cR).

若f(x)的定义域为[-1,0]时,值域也是[-1,0],符合上述条件的函数f(x)是否存在?若存在,求出f(x)的表达式;若不存在,请说明理由.

解:设符合条件的f(x)存在,

∵函数图象的对称轴是x=-,

又b0,-0.

①当-0,即01时,

函数x=-有最小值-1,则

或(舍去).

②当-1-,即12时,则

(舍去)或(舍去).

③当--1,即b2时,函数在[-1,0]上单调递增,则解得

综上所述,符合条件的函数有两个,

f(x)=x2-1或f(x)=x2+2x.

(文)已知二次函数f(x)=x2+(b+1)x+c(b0,cR).

若f(x)的定义域为[-1,0]时,值域也是[-1,0],符合上述条件的函数f(x)是否存在?若存在,求出f(x)的表达式;若不存在,请说明理由.

解:∵函数图象的对称轴是

x=-,又b0,--.

设符合条件的f(x)存在,

①当--1时,即b1时,函数f(x)在[-1,0]上单调递增,则

②当-1-,即01时,则

(舍去).

综上所述,符合条件的函数为f(x)=x2+2x.

7.已知函数f(x)=x+的定义域为(0,+),且f(2)=2+.设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.

(1)求a的值.

(2)问:PMPN是否为定值?若是,则求出该定值;若不是,请说明理由.

(3)设O为坐标原点,求四边形OMPN面积的最小值.

解:(1)∵f(2)=2+=2+,a=.

(2)设点P的坐标为(x0,y0),则有y0=x0+,x00,由点到直线的距离公式可知,PM==,PN=x0,有PMPN=1,即PMPN为定值,这个值为1.

(3)由题意可设M(t,t),可知N(0,y0).

∵PM与直线y=x垂直,kPM1=-1,即=-1.解得t=(x0+y0).

又y0=x0+,t=x0+.

S△OPM=+,S△OPN=x02+.

S四边形OMPN=S△OPM+S△OPN=(x02+)+1+.

当且仅当x0=1时,等号成立.

此时四边形OMPN的面积有最小值1+.

探究创新

8.有一块边长为4的正方形钢板,现对其进行切割、焊接成一个长方体形无盖容器(切、焊损耗忽略不计).有人应用数学知识作了如下设计:如图(a),在钢板的四个角处各切去一个小正方形,剩余部分围成一个长方体,该长方体的高为小正方形边长,如图(b).

(1)请你求出这种切割、焊接而成的长方体的最大容积V1;

(2)由于上述设计存在缺陷(材料有所浪费),请你重新设计切、焊方法,使材料浪费减少,而且所得长方体容器的容积V2V1.

解:(1)设切去正方形边长为x,则焊接成的长方体的底面边长为4-2x,高为x,

V1=(4-2x)2x=4(x3-4x2+4x)(0

V1=4(3x2-8x+4).

令V1=0,得x1=,x2=2(舍去).

而V1=12(x-)(x-2),

又当x时,V10;当

当x=时,V1取最大值.

(2)重新设计方案如下:

如图①,在正方形的两个角处各切下一个边长为1的小正方形;如图②,将切下的小正方形焊在未切口的正方形一边的中间;如图③,将图②焊成长方体容器.

新焊长方体容器底面是一长方形,长为3,宽为2,此长方体容积V2=321=6,显然V2V1.

故第二种方案符合要求.

●思悟小结

1.函数知识可深可浅,复习时应掌握好分寸,如二次函数问题应高度重视,其他如分类讨论、探索性问题属热点内容,应适当加强.

2.数形结合思想贯穿于函数研究的各个领域的全部过程中,掌握了这一点,将会体会到函数问题既千姿百态,又有章可循.

●教师下载中心

教学点睛

数形结合和数形转化是解决本章问题的重要思想方法,应要求学生熟练掌握用函数的图象及方程的曲线去处理函数、方程、不等式等问题.

拓展题例

【例1】设f(x)是定义在[-1,1]上的奇函数,且对任意a、b[-1,1],当a+b0时,都有0.

(1)若ab,比较f(a)与f(b)的大小;

(2)解不等式f(x-)

(3)记P={xy=f(x-c)},Q={xy=f(x-c2)},且PQ=,求c的取值范围.

解:设-1x1

0.

∵x1-x20,f(x1)+f(-x2)0.

f(x1)-f(-x2).

又f(x)是奇函数,f(-x2)=-f(x2).

f(x1)

f(x)是增函数.

(1)∵ab,f(a)f(b).

(2)由f(x-)

-.

不等式的解集为{x-}.

(3)由-11,得-1+c1+c,

P={x-1+c1+c}.

由-11,得-1+c21+c2,

Q={x-1+c21+c2}.

∵PQ=,

1+c-1+c2或-1+c1+c2,

解得c2或c-1.

【例2】已知函数f(x)的图象与函数h(x)=x++2的图象关于点A(0,1)对称.

(1)求f(x)的解析式;

(2)(文)若g(x)=f(x)x+ax,且g(x)在区间(0,2]上为减函数,求实数a的取值范围.

(理)若g(x)=f(x)+,且g(x)在区间(0,2]上为减函数,求实数a的取值范围.

解:(1)设f(x)图象上任一点坐标为(x,y),点(x,y)关于点A(0,1)的对称点(-x,2-y)在h(x)的图象上.

2-y=-x++2.

y=x+,即f(x)=x+.

(2)(文)g(x)=(x+)x+ax,

即g(x)=x2+ax+1.

g(x)在(0,2]上递减-2,

a-4.

(理)g(x)=x+.

∵g(x)=1-,g(x)在(0,2]上递减,

1-0在x(0,2]时恒成立,

即ax2-1在x(0,2]时恒成立.

∵x(0,2]时,(x2-1)max=3,

a3.

【例3】在4月份(共30天),有一新款服装投放某专卖店销售,日销售量(单位:件)f(n)关于时间n(130,nN__)的函数关系如下图所示,其中函数f(n)图象中的点位于斜率为5和-3的两条直线上,两直线的交点的横坐标为m,且第m天日销售量最大.

(1)求f(n)的表达式,及前m天的销售总数;

(2)按规律,当该专卖店销售总数超过400件时,社会上流行该服装,而日销售量连续下降并低于30件时,该服装的流行会消失.试问该服装在社会上流行的天数是否会超过10天?并说明理由.

解:(1)由图形知,当1m且nN__时,f(n)=5n-3.

由f(m)=57,得m=12.

f(n)=

前12天的销售总量为

5(1+2+3++12)-312=354件.

(2)第13天的销售量为f(13)=-313+93=54件,而354+54400,

从第14天开始销售总量超过400件,即开始流行.

设第n天的日销售量开始低于30件(1221.

从第22天开始日销售量低于30件,

即流行时间为14号至21号.

该服装流行时间不超过10天.

高中数学教案模板范文篇11

1.掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用。

(1)能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个函数图象间的关系正确描绘对数函数的图象。

(2)能把握指数函数与对数函数的实质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题。

2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想,注重培养学生的观察,分析,归纳等逻辑思维能力。

3.通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性。

高一数学对数函数教案:教材分析

(1)对数函数又是函数中一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的。故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解。对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸。它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础。

(2)本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质。难点是利用指数函数的图象和性质得到对数函数的图象和性质。由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,故应成为教学的重点。

(3)本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开。而通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,所以应是本节课的难点。

高一数学对数函数教案:教法建议

(1)对数函数在引入时,就应从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质。

(2)在本节课中结合对数函数教学的特点,一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地反函数这条主线引导学生思考的方向。这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣。

高中数学教案模板范文篇12

一、教学内容分析

二面角是我们日常生活中经常见到的一个图形,它是在学生学过空间异面直线所成的角、直线和平面所成角之后,研究的一种空间的角,二面角进一步完善了空间角的概念.掌握好本节课的知识,对学生系统地理解直线和平面的知识、空间想象能力的培养,乃至创新能力的培养都具有十分重要的意义.

二、教学目标设计

理解二面角及其平面角的概念;能确认图形中的已知角是否为二面角的平面角;能作出二面角的平面角,并能初步运用它们解决相关问题.

三、教学重点及难点

二面角的平面角的概念的形成以及二面角的平面角的作法.

四、教学流程设计

五、教学过程设计

一、 新课引入

1.复习和回顾平面角的有关知识.

平面中的角

定义 从一个顶点出发的两条射线所组成的图形,叫做角图形

结构 射线—点—射线

表示法 ∠AOB,∠O等

2.复习和回顾异面直线所成的角、直线和平面所成的角的定义,及其共同特征.(空间角转化为平面角)

3.观察:陡峭与否,跟山坡面与水平面所成的角大小有关,而山坡面与水平面所成的角就是两个平面所成的角.在实际生活当中,能够转化为两个平面所成角例子非常多,比如在这间教室里,谁能举出能够体现两个平面所成角的实例?(如图1,课本的开合、门或窗的开关.)从而,引出“二面角”的定义及相关内容.

二、学习新课

(一)二面角的定义

平面中的角 二面角

定义 从一个顶点出发的两条射线所组成的图形,叫做角 课本P17

图形

结构 射线—点—射线 半平面—直线—半平面

表示法 ∠AOB,∠O等 二面角α—a—β或α-AB-β

(二)二面角的图示

1.画出直立式、平卧式二面角各一个,并分别给予表示.

2.在正方体中认识二面角.

(三)二面角的平面角

平面几何中的“角”可以看作是一条射线绕其端点旋转而成,它有一个旋转量,它的大小可以度量,类似地,"二面角"也可以看作是一个半平面以其棱为轴旋转而成,它也有一个旋转量,那么,二面角的大小应该怎样度量?

1.二面角的平面角的定义(课本P17).

2.∠AOB的大小与点O在棱上的位置无关.

[说明]①平面与平面的位置关系,只有相交或平行两种情况,为了对相交平面的相互位置作进一步的探讨,有必要来研究二面角的度量问题.

②与两条异面直线所成的角、直线和平面所成的角做类比,用“平面角”去度量.

③二面角的平面角的三个主要特征:角的顶点在棱上;角的两边分别在两个半平面内;角的两边分别与棱垂直.

3.二面角的平面角的范围:

(四)例题分析

例1 一张边长为a的正三角形纸片ABC,以它的高AD为折痕,将其折成一个 的二面角,求此时B、C两点间的距离.

[说明] ①检查学生对二面角的平面角的定义的掌握情况.

②翻折前后应注意哪些量的位置和数量发生了变化, 哪些没变?

例2 如图,已知边长为a的等边三角形 所在平面外有一点P,使PA=PB=PC=a,求二面角 的大小.

[说明] ①求二面角的步骤:作—证—算—答.

②引导学生掌握解题可操作性的通法(定义法和线面垂直法).

例3 已知正方体 ,求二面角 的大小.(课本P18例1)

[说明] 使学生进一步熟悉作二面角的平面角的方法.

(五)问题拓展

例4 如图,山坡的倾斜度(坡面与水平面所成二面角的度数)是 ,山坡上有一条直道CD,它和坡脚的水平线AB的夹角是 ,沿这条路上山,行走100米后升高多少米?

[说明]使学生明白数学既来源于实际又服务于实际.

三、巩固练习

1.在棱长为1的正方体 中,求二面角 的大小.

2. 若二面角 的大小为 ,P在平面 上,点P到 的距离为h,求点P到棱l的距离.

四、课堂小结

1.二面角的定义

2.二面角的平面角的定义及其范围

3.二面角的平面角的常用作图方法

4.求二面角的大小(作—证—算—答)

五、作业布置

1.课本P18练习14.4(1)

2.在 二面角的一个面内有一个点,它到另一个面的距离是10,求它到棱的距离.

3.把边长为a的正方形ABCD以BD为轴折叠,使二面角A-BD-C成 的二面角,求A、C两点的距离.

六、教学设计说明

本节课的设计不是简单地将概念直接传受给学生,而是考虑到知识的形成过程,设法从学生的数学现实出发,调动学生积极参与探索、发现、问题解决全过程.“二面角”及“二面角的平面角”这两大概念的引出均运用了类比的手段和方法.教学过程中通过教师的层层铺垫,学生的主动探究,使学生经历概念的形成、发展和应用过程,有意识地加强了知识形成过程的教学.

高中数学教案模板范文篇13

圆的方程

教学目标

(1)掌握圆的标准方程,能根据圆心坐标和半径熟练地写出圆的标准方程,也能根据圆的标准方程熟练地写出圆的圆心坐标和半径.

(2)掌握圆的一般方程,了解圆的一般方程的结构特征,熟练掌握圆的标准方程和一般方程之间的互化.

(3)了解参数方程的概念,理解圆的参数方程,能够进行圆的普通方程与参数方程之间的互化,能应用圆的参数方程解决有关的简单问题.

(4)掌握直线和圆的位置关系,会求圆的切线.

(5)进一步理解曲线方程的概念、熟悉求曲线方程的方法.

教学建议

教材分析

(1)知识结构

(2)重点、难点分析

①本节内容教学的重点是圆的标准方程、一般方程、参数方程的推导,根据条件求圆的方程,用圆的方程解决相关问题.

②本节的难点是圆的一般方程的结构特征,以及圆方程的求解和应用.

教法建议

(1)圆是最简单的曲线.这节教材安排在学习了曲线方程概念和求曲线方程之后,学习三大圆锥曲线之前,旨在熟悉曲线和方程的理论,为后继学习做好准备.同时,有关圆的问题,特别是直线与圆的位置关系问题,也是解析几何中的基本问题,这些问题的解决为圆锥曲线问题的解决提供了基本的思想方法.因此教学中应加强练习,使学生确实掌握这一单元的知识和方法.

(2)在解决有关圆的问题的过程中多次用到配方法、待定系数法等思想方法,教学中应多总结.

(3)解决有关圆的问题,要经常用到一元二次方程的理论、平面几何知识和前边学过的解析几何的基本知识,教师在教学中要注意多复习、多运用,培养学生运算能力和简化运算过程的意识.

(4)有关圆的内容非常丰富,有很多有价值的问题.建议适当选择一些内容供学生研究.例如由过圆上一点的切线方程引申到切点弦方程就是一个很有价值的问题.类似的还有圆系方程等问题.

教学设计示例

圆的一般方程

教学目标:

(1)掌握圆的一般方程及其特点.

(2)能将圆的一般方程转化为圆的标准方程,从而求出圆心和半径.

(3)能用待定系数法,由已知条件求出圆的一般方程.

(4)通过本节课学习,进一步掌握配方法和待定系数法.

教学重点:(1)用配方法,把圆的一般方程转化成标准方程,求出圆心和半径.

(2)用待定系数法求圆的方程.

教学难点:圆的一般方程特点的研究.

教学用具:计算机.

教学方法:启发引导法,讨论法.

教学过程:

【引入】

前边已经学过了圆的标准方程

把它展开得

任何圆的方程都可以通过展开化成形如

的方程

【问题1】

形如①的方程的曲线是否都是圆?

师生共同讨论分析:

如果①表示圆,那么它一定是某个圆的标准方程展开整理得到的.我们把它再写成原来的形式不就可以看出来了吗?运用配方法,得

显然②是不是圆方程与 是什么样的数密切相关,具体如下:

(1)当 时,②表示以 为圆心、以 为半径的圆;

(2)当 时,②表示一个点 ;

(3)当 时,②不表示任何曲线.

总结:任意形如①的方程可能表示一个圆,也可能表示一个点,还有可能什么也不表示.

圆的一般方程的定义:

当 时,①表示以 为圆心、以 为半径的圆,

此时①称作圆的一般方程.

即称形如 的方程为圆的一般方程.

【问题2】圆的一般方程的特点,与圆的标准方程的异同.

(1) 和 的系数相同,都不为0.

(2)没有形如 的二次项.

圆的一般方程与一般的二元二次方程

相比较,上述(1)、(2)两个条件仅是③表示圆的必要条件,而不是充分条件或充要条件.

圆的一般方程与圆的标准方程各有千秋:

(1)圆的标准方程带有明显的几何的影子,圆心和半径一目了然.

(2)圆的一般方程表现出明显的代数的形式与结构,更适合方程理论的运用.

【实例分析】

例1:下列方程各表示什么图形.

(1) ;

(2) ;

(3) .

学生演算并回答

(1)表示点(0,0);

(2)配方得 ,表示以 为圆心,3为半径的圆;

(3)配方得 ,当 、 同时为0时,表示原点(0,0);当 、 不同时为0时,表示以 为圆心, 为半径的圆.

例2:求过三点 , , 的圆的方程,并求出圆心坐标和半径.

分析:由于学习了圆的标准方程和圆的一般方程,那么本题既可以用标准方程求解,也可以用一般方程求解.

解:设圆的方程为

因为 、 、 三点在圆上,则有

解得: , ,

所求圆的方程为

可化为

圆心为 ,半径为5.

请同学们再用标准方程求解,比较两种解法的区别.

【概括总结】通过学生讨论,师生共同总结:

(1)求圆的方程多用待定系数法.其步骤为:由题意设方程(标准方程或一般方程);根据条件列出关于待定系数的方程组;解方程组求出系数,写出方程.

(2)如何选用圆的标准方程和圆的一般方程.一般地,易求圆心和半径时,选用标准方程;如果给出圆上已知点,可选用一般方程.

下面再看一个问题:

例3: 经过点 作圆 的割线,交圆 于 、 两点,求线段 的中点 的轨迹.

解:圆 的方程可化为 ,其圆心为 ,半径为2.设 是轨迹上任意一点.

化简得

点 在曲线上,并且曲线为圆 内部的一段圆弧.

【练习巩固】

(1)方程 表示的曲线是以 为圆心,4为半径的圆.求 、 、 的值.(结果为4,-6,-3)

(2)求经过三点 、 、 的圆的方程.

分析:用圆的一般方程,代入点的坐标,解方程组得圆的方程为 .

(3)课本第79页练习1,2.

【小结】师生共同总结:

(1)圆的一般方程及其特点.

(2)用配方法化圆的一般方程为圆的标准方程,求圆心坐标和半径.

(3)用待定系数法求圆的方程.

【作业】课本第82页5,6,7,8.

高中数学教案模板范文篇14

开学第一课讲点什么,我想最好不讲学习的事情,不要讲作业什么的。最好的就是谈谈理想,或者写写梦想,描绘一下自己在本学期结束后会变成一个什么样的人。作为老师,我想我会讲三个故事。

第一个故事:我会讲《山体滑坡的故事》

一个灰心丧气的青年人,因科举没考上,便颓废不堪,一蹶不振,整天关在屋子里,抱头痛哭。有一天,一位老者跨进门,语重心长地说:“假如山上滑坡,你该怎么办?”年青人喃喃:“往下跑。”老者仰头大笑:“那你就葬身山中了。你应该往山上跑,你只有勇敢地面对它,才有生还的希望,天下事皆然。”说完便飘然而去。

需要告诉学生的是:只有勇敢面对挑战和困难,才能战胜它。往上走,不要往下走,学习亦如此。

第二个故事:我会讲《老鹰的故事》

一个人在高山之巅的鹰巢里,抓到了一只幼鹰,他把幼鹰带回家,养在鸡笼里。这只幼鹰和鸡一起啄食、嬉闹和休息,它以为自己是一只鸡。这只鹰渐渐长大,羽翼丰满了,主人想把它训练成猎鹰,可是由于终日和鸡混在一起,它已经变得和鸡完全一样,根本没有飞的愿望了。主人试了各种办法,都毫无效果,最后把它带到山顶上,一把将它扔了出去。这只鹰像块石头似的,直掉下去,慌乱之中它拼命地扑打翅膀,就这样,它终于飞了起来!

需要告诉学生的是:相信自己是一只雄鹰,勇敢面对一切挑战和失败。

第三故事:我会讲《苏格拉底的故事》

开学第一天,大哲学家苏格拉底对学生们说:“今天,我们只做一件最简单也是最容易做的事儿:每个人把胳膊尽量都往前甩,然后再尽量往后甩。”说着,苏格拉底示范了一遍,“从今天开始,每天做300下,大家能做到吗?”学生们都笑了,这么简单的事情,有什么做不到的?过了一个月,苏格拉底问学生们:“每天甩手300下,哪些同学坚持了?”有90%的同学骄傲地举起了手。又过了一个月,苏格拉底再问,这回,坚持下来的同学只剩下了八成。一年过后,苏格拉底再一次问大家:“请大家告诉我,最简单的甩手运动,还有哪几位同学坚持了?”这时候,整个教室里,只有一个人举起了手。这个学生就是后来成为古希腊另一位大哲学家的柏拉图。

需要告诉学生的是:成功在于坚持,这是一个并不神秘的秘诀。

三个故事讲完之后,我还会问问,成功除了学会面对困难,相信自己,学会坚持之外,还需要那些成功因素?当然还需要养成好习惯和掌握好方法。

最后我还会讲两个小故事。来结束我的第一课。

故事一:

父子两住山上,每天都要赶牛车下山卖柴。老父较有经验,坐镇驾车,山路崎岖,弯道特多,儿子眼神较好,总是在要转弯时提醒道:“爹,转弯啦!”有一次父亲因病没有下山,儿子一人驾车。到了弯道,牛怎么也不肯转弯,儿子用尽各种方法,下车又推又拉,用青草诱之,牛一动不动。到底是怎么回事?儿子百思不得其解。最后只有一个办法了,他左右看看无人,贴近牛的耳朵大声叫道:“爹,转弯啦!”牛应声而动。

——要培养好的习惯来代替坏的习惯,当好的习惯积累多了,自然会有一个好的人生。

有个老人在河边钓鱼,一个小孩走过去看他钓鱼,老人技巧纯熟,所以没多久就钓上了满篓的鱼,老人见小孩很可爱,要把整篓的鱼送给他,小孩摇摇头,老人惊异的问道你为何不要?小孩回答:“我想要你手中的钓竿。”老人问:“你要钓竿做什么?小孩说:”这篓鱼没多久就吃完了,要是我有钓竿,我就可以自己钓,一辈子也吃不完。“你们说,这个小孩是不是很聪明?

——重要的还在钓技。学习,不能只记住知识,更重要的是掌握方法,形成能力。

高中数学教案模板范文篇15

教学目标:

1.结合实际问题情景,理解分层抽样的必要性和重要性;

2.学会用分层抽样的方法从总体中抽取样本;

3.并对简单随机抽样、系统抽样及分层抽样方法进行比较,揭示其相互关系.

教学重点:

通过实例理解分层抽样的方法.

教学难点:

分层抽样的步骤.

教学过程:

一、问题情境

1.复习简单随机抽样、系统抽样的概念、特征以及适用范围.

2.实例:某校高一、高二和高三年级分别有学生名,为了了解全校学生的视力情况,从中抽取容量为的样本,怎样抽取较为合理?

二、学生活动

能否用简单随机抽样或系统抽样进行抽样,为什么?

指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或系统抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要注意总体中个体的层次性.

由于样本的容量与总体的个体数的比为100∶2500=1∶25,

所以在各年级抽取的个体数依次是,,,即40,32,28.

三、建构数学

1.分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”.

说明:①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;

②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用.

2.三种抽样方法对照表:

类别

共同点

各自特点

相互联系

适用范围

简单随机抽样

抽样过程中每个个体被抽取的概率是相同的

从总体中逐个抽取

总体中的个体数较少

系统抽样

将总体均分成几个部分,按事先确定的规则在各部分抽取

在第一部分抽样时采用简单随机抽样

总体中的个体数较多

分层抽样

将总体分成几层,分层进行抽取

各层抽样时采用简单随机抽样或系统

总体由差异明显的几部分组成

3.分层抽样的步骤:

(1)分层:将总体按某种特征分成若干部分.

(2)确定比例:计算各层的个体数与总体的个体数的比.

(3)确定各层应抽取的样本容量.

(4)在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样本.

四、数学运用

1.例题.

例1(1)分层抽样中,在每一层进行抽样可用_________________.

(2)①教育局督学组到学校检查工作,临时在每个班各抽调2人参加座谈;

②某班期中考试有15人在85分以上,40人在60-84分,1人不及格.现欲从中抽出8人研讨进一步改进教和学;

③某班元旦聚会,要产生两名“幸运者”.

对这三件事,合适的抽样方法为()

A.分层抽样,分层抽样,简单随机抽样

B.系统抽样,系统抽样,简单随机抽样

C.分层抽样,简单随机抽样,简单随机抽样

D.系统抽样,分层抽样,简单随机抽样

例2某电视台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12000人,其中持各种态度的人数如表中所示:

很喜爱

喜爱

一般

不喜爱

2435

4567

3926

1072

电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,应怎样进行抽样?

解:抽取人数与总的比是60∶12000=1∶200,

则各层抽取的人数依次是12.175,22.835,19.63,5.36,

取近似值得各层人数分别是12,23,20,5.

然后在各层用简单随机抽样方法抽取.

答用分层抽样的方法抽取,抽取“很喜爱”、“喜爱”、“一般”、“不喜爱”的人

数分别为12,23,20,5.

说明:各层的抽取数之和应等于样本容量,对于不能取整数的情况,取其近似值.

(3)某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的某意见,拟抽取一个容量为20的样本.

分析:(1)总体容量较小,用抽签法或随机数表法都很方便.

(2)总体容量较大,用抽签法或随机数表法都比较麻烦,由于人员没有明显差异,且刚好32排,每排人数相同,可用系统抽样.

(3)由于学校各类人员对这一问题的看法可能差异较大,所以应采用分层抽样方法.

五、要点归纳与方法小结

本节课学习了以下内容:

1.分层抽样的概念与特征;

2.三种抽样方法相互之间的区别与联系.

45950