教案吧 > 学科教案 > 数学教案 >

初中数学教案经典

时间: 新华 数学教案

编写教案可以帮助教师规范教学流程,提高课堂教学的效率,避免随意性和盲目性。下面给大家整理一些初中数学教案经典,方便大家学习怎么写初中数学教案经典。

初中数学教案经典篇1

一、教学目标:

1、知道一次函数与正比例函数的定义。

2、理解掌握一次函数的图象的特征和相关的性质。

3、弄清一次函数与正比例函数的区别与联系。

4、掌握直线的平移法则简单应用。

5、能应用本章的基础知识熟练地解决数学问题。

二、教学重、难点:

重点:初步构建比较系统的函数知识体系。

难点:对直线的平移法则的理解,体会数形结合思想。

三、教学过程:

1、一次函数与正比例函数的定义:

一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数。

正比例函数:对于y=kx+b,当b=0,k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。

2、一次函数与正比例函数的区别与联系:

(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。

(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx

平行的一条直线。

基础训练:

1、写出一个图象经过点(1,—3)的函数解析式为:

2、直线y=—2X—2不经过第象限,y随x的增大而。

3、如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离是:

4、已知正比例函数y=(3k—1)x,,若y随x的增大而增大,则k是:

5、过点(0,2)且与直线y=3x平行的直线是:

6、若正比例函数y=(1—2m)x的图像过点A(x1,y1)和点B(x2,y2)当x1<x2时,y1>y2,则m的取值范围是:

7、若y—2与x—2成正比例,当x=—2时,y=4,则x=时,y=—4。

8、直线y=—5x+b与直线y=x—3都交y轴上同一点,则b的值为。

9、已知圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。

(1)求线段AB的长。

(2)求直线AC的解析式。

初中数学教案经典篇2

教学目标

1.经历不同的拼图方法验证公式的过程,在此过程中加深对因式分解、整式运算、面积等的认识。

2.通过验证过程中数与形的结合,体会数形结合的思想以及数学知识之间内在联系,每一部分知识并不是孤立的。

3.通过丰富有趣的拼图活动,经历观察、比较、拼图、计算、推理交流等过程,发展空间观念和有条理地思考和表达的能力,获得一些研究问题与合作交流方法与经验。

4.通过获得成功的体验和克服困难的经历,增进数学学习的信心。通过丰富有趣拼的图活动增强对数学学习的兴趣。

重点1.通过综合运用已有知识解决问题的过程,加深对因式分解、整式运算、面积等的认识。

2.通过拼图验证公式的过程,使学习获得一些研究问题与合作交流的方法与经验。

难点利用数形结合的方法验证公式

教学方法动手操作,合作探究课型新授课教具投影仪

教师活动学生活动

情景设置:

你已知道的关于验证公式的拼图方法有哪些?(教师在此给予学生独立思考和讨论的时间,让学生回想前面拼图。)

新课讲解:

把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子。美国第二十任总统伽菲尔德就由这个图(由两个边长分别为a、b、c的直角三角形和一个两条直角边都是c的直角三角形拼成一个新的图形)得出:c2=a2+b2他的证法在数学史上被传为佳话。他是这样分析的,如图所示:

教师接着在介绍教材第94页例题的拼法及相关公式

提问:还能通过怎样拼图来解决以下问题

(1)任意选取若干块这样的硬纸片,尝试拼成一个长方形,计算它的面积,并写出相应的等式;

(2)任意写出一个关于a、b的二次三项式,如a2+4ab+3b2

试用拼一个长方形的方法,把这个二次三项式因式分解。

这个问题要给予学生充足的时间和空间进行讨论和拼图,教师在这要引导适度,不要限制学生思维,同时鼓励学生在拼图过程中进行交流合作

了解学生拼图的情况及利用自己的拼图验证的情况。教师在巡视过程中,及时指导,并让学生展示自己的拼图及让学生讲解验证公式的方法,并根据不同学生的不同状况给予适当的引导,引导学生整理结论。

小结:

从这节课中你有哪些收获?

(教师应给予学生充分的时间鼓励学生畅所欲言,只要是学生的感受和想法,教师要多鼓励、多肯定。最后,教师要对学生所说的进行全面的总结。)

学生回答

a(b+c+d)=ab+ac+ad

(a+b)(c+d)=ac+ad+bc+bd

(a+b)2=a2+2ab+b2

学生拿出准备好的硬纸板制作

给学生充分的时间进行拼图、思考、交流经验,对于有困难的学生教师要给予适当引导。

作业第95页第3题

板书设计

复习例1板演

………………

………………

……例2……

………………

………………

教学后记

初中数学教案经典篇3

一、运用数形结合解答二次函数章节问题

“数形结合百般好,隔裂分家万事非.”数形结合思想抓住了数学学科数学语言的抽象性和平面图形的直观性特征,通过“数”“形”互补,使复杂问题简单化,抽象问题具体化.通过对二次函数章节内容的整体研析发现,二次函数章节知识点的抽象内容,通过图象的直观画面进行展示,同时借助图象反映出来的性质内容,进行二次函数问题的有效解答,达到变繁为简,优化解题途径的目的.

图1问题1:有一座抛物线型拱桥,桥下面在正常水位AB时宽20m.水位上升3m,就达到警戒线CD,这时,水面宽度为10m.若洪水到来时,水位以每小时0.2m的速度上升,从警戒线开始,再持续多少小时才能到拱桥顶?

在该问题的教学活动中,如果单纯对问题条件内容进行分析,学生在理解抽象性的数学语言符号时,解决问题就有一定的难度.此时,教师利用数形结合的解题思想,根据问题条件内容,采用“以形补数”的形式,做出如图1所示的图形,这样,学生可以借助于图形的直观性和语言的精确性等特性,在对问题条件及解题策略的分析和找寻中变得更加“简便”、“易行”.

二、运用分类讨论解题思想解答二次函数章节问题

分类讨论思想是解决问题的一种逻辑方法,本质就是“化整为零,积零为整”,增加题设条件的解题策略,它能够有效提升学生思维活动的严密性、科学性和全面性.在二次函数问题案例教学中,分类讨论的解题思想有着深刻的运用.如在确定二次函数一般式y=ax2+bx+c图象与x轴的交点个数时,就运用到了分类讨论的解题思想:Δ=b2-4ac,当Δ>0时,二次函数一般式图象与x轴交于两点;当Δ=0,图象与x轴交于一点;当Δ

图2问题2:如图2所示,平面直角坐标系中,四边形OABC为矩形,点A,B的坐标分别是(6,0),(6,8),动点M,N分别从O,B同时出发,以每秒一个单位的速度前进,其中,点M沿OA向终点A运动,点N沿BC向终点C运动,过点N作NP垂直于BC,交AC于点P,连结MP,设运动时间为t秒.(1)求点P的坐标;(用含t的字母代数式表示);(2)试求MPA的面积最大值,并且求此时t的值;(3)请你探究:当t为何值时,MPA是一个等腰三角形?你发现了几种情况?写出你的探究成果.

分析:上述问题案例的第三小问题的解答过程中,实际就是蕴含了分类讨论的解题思想,需要对MPA的三边情况分类讨论,分别确定当MP=PA时、PA=AM时以及MP=AM时的三种情况下,t的取值范围.

三、利用函数特性,运用函数方程解题思想解答二次函数章节问题

二次函数章节作为函数教学的重要组成部分,它不仅是一次函数、反比例函数的有效延伸,更是三角函数、指数函数等高中阶段函数知识的有效基础.同时,通过对二次函数章节内容的整体分析,可以发现,二次函数与一元二次方程、二元一次不等式之间有着密切的联系.在解答该类型问题中,教师可以渗透函数方程解题思想策略进行解答问题活动.

问题3:设关于x的方程x2-mx+4=0在[-1,1]上有解,求实数m的取值范围.

分析:令f(x)=x2-mx+4,则问题转化为抛物线f(x)=x2-mx+4与x数轴在x∈[-1,1]上有交点的问题,将方程的问题转化为函数图象问题来解决的可将m看成x的函数.因为x≠0,所以有m=x+4/x,问题转化为求函数的值域问题.

解:因为x≠0,所以m=x+4/x此函数显然是奇函数,易证函数m在(0,1]上为减函数.所以当x∈(0,1]时,在x=1函数有最小值,m小=1+4=5,m∈[5,+∞)同理,当x∈[-1,0]时,在x=-1时,函数有最大值,m大=-5,m∈(-∞,-5].

故实数m的取值范围为(-∞,-5]∪[5,+∞).

问题4:若x、y∈R且(2x+y)13+x13+3x+y

证明:将条件化为(2x+y)13+(2x+y)

令f(t)=t13+t,则有f(2x+y)

又f(t)为奇函数,f(-x)=-f(t)

所以f(2x+y)

所以2x+y

评析:将方程的问题转化为函数图象或函数值域问题,可使方程问题迎刃而解.其中利用函数值域问题求解则更为简捷.

初中数学教案经典篇4

学习目标

1、学会用公式法因式法分解

2、综合运用提取公式法、公式法分解因式

学习重难点重点:

完全平方公式分解因式.

难点:综合运用两种公式法因式分解

自学过程设计

完全平方公式:

完全平方公式的逆运用:

做一做:

1.(1)16x2-8x+_______=(4x-1)2;

(2)_______+6x+9=(x+3)2;

(3)16x2+_______+9y2=(4x+3y)2;

(4)(a-b)2-2(a-b)+1=(______-1)2.

2.在代数式(1)a2+ab+b2;(2)4a2+4a+1;(3)a2-b2+2ab;(4)-4a2+12ab-9b2中,可用完全平方公式因式分解的是_________(填序号)

3.下列因式分解正确的是()

A.x2+y2=(x+y)2B.x2-xy+x2=(x-y)2

C.1+4x-4x2=(1-2x)2D.4-4x+x2=(x-2)2

4.分解因式:(1)x2-22x+121(2)-y2-14y-49(3)(a+b)2+2(a+b)+1

5.计算:20062-40102006+20052=___________________.

6.若x+y=1,则x2+xy+y2的值是_________________.

想一想

你还有哪些地方不是很懂?请写出来。

____________________________________________________________________________________预习展示一:

1.判别下列各式是不是完全平方式.

2、把下列各式因式分解:

(1)-x2+4xy-4y2

(2)3ax2+6axy+3ay2

(3)(2x+y)2-6(2x+y)+9

应用探究:

1、用简便方法计算

49.92+9.98+0.12

拓展提高:

(1)(a2+b2)(a2+b210)+25=0求a2+b2

(2)4x2+y2-4xy-12x+6y+9=0

求x、y关系

(3)分解因式:m4+4

教后反思 考察利用公式法因式分解的题目不会很难,但是需要学生记住公式的形式,之后利用公式把式子进行变形,从而达到进行因式分解的目的,但是这里有用到实际中去的例子,对学生来说会难一些。

初中数学教案经典篇5

一、教学目标:

知识与技能:理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算。

过程与方法:通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算能力。

情感态度与价值观:通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。

二、教学重点:运用有理数的减法法则,熟练进行减法运算。

三、教学难点:理解有理数减法法则。

四、教材分析:本节是在学习了正负数、相反数、有理数加法运算之后,以初中代数第一册第53页的有理数减法法则及有理数减法运算的例1、例2为课堂教学内容。有理数的减法运算是一种基本的有理数运算,对今后正确熟练地进行有理数的混合运算,并对解决实际问题都有十分重要的作用。

五、教学方法:师生互动法

六、教具:幻灯片

七、课时:1课时

八、教学过程:

1、计算(口答):

(1)1+(-2)

(2)-10+(+3)

(3)+10+(-3)

2、出示幻灯片二:

如图:

这是20__年11月某天北京的温度为-3~3℃,它的确切含义是什么?这一天北京的温差是多少?

教师引导观察

教师总结:这就是我们今天要学习的内容(引入新课,板书课题)

1、师:谁能把10-3=7这个式子中的性质符号补出来呢?

(+10)-(+3)=7

再计算:(+10)+(-3),师让学生观察两式结果,由此得到:

(+10)-(+3)=(+10)+(-3)

观察减法是否可以转化为加法计算呢?是如何转化的呢?

(教师发挥主导作用,注意学生的参与意识)

2、再看一题:

计算:(-10)-(-3)

教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与-3相加会得到-10,那么这个数是多少?

问题:计算:(-10)+(+3)

教师引导,学生观察上述两题结果,由此得到

(-10)-(-3)=(-10)+(+3)

教师进一步引导学生观察式子,你能得到什么结论呢?

教师总结:由以上两式可以看出减法运算可以转化成加法运算。

教师提问:通过以上的学习,同学们想一想两个有理数相减的法则是什么?

教师对学生回答给予点评,总结有理数减法法则:减去一个数,等于加上这个数的相反数。

强调法则:(1)减法转化为加法,减数要变成相反数(2)法则适用于任何两个有理数相减(3)用字母表示一般形式为a-b=a+(-b)

3、例题讲解:

出示幻灯片三(例1和例2)

例1计算:

(1)6-(-8)

(2)(-2)-3

(3)(-2.8)-(-1.7)

(4)0-4

(5)5+(-3)-(-2)

(6)(-5)-(-2.4)+(-1)

教师板书做示范,强调解题的规范性,然后师生共同总结解题步骤,(1)转化(2)进行加法运算。

例2:小明家蔬菜大棚的气温是24℃,此时棚外的气温是-13℃,棚内气温比棚外气温高多少摄氏度?

师巡视指导,最后师生讲评两个学生的解题过程。

课后练习1、2

教师巡视指导

师组织学生自己编题

1、谈谈本节课你有哪些收获和体会?[

2、本节课涉及的数学思想和数学方法是什么

教师点评:有理数减法法则是一个转化法则,要求同学们掌握并能应用进行计算。

课堂检测(包括基础题和能力提高题)

1、-9-(-11)

2、3-15

3、-37-12

4、水银的凝固点是-38.87℃,酒精的凝固点是-117.3℃。水银的凝固点比酒精的凝固点高多少摄氏度?

学生思考后抢答,尽量照顾不同层次的学生参与的积极性。

学生观察思考如何计算

学生观察思考

互相讨论

学生口述解题过程

由两个学生板演,其他学生在练习本上做

第1小题学生抢答

第2小题找两个学生板演。

学生回答

学生相互交流自己的收获和体会,教师参与互动并给予鼓励性评价。

综合考查学以致用

既复习巩固有理数加法法则,同时为进行有理数减法运算打下基础

创设问题情境,激发学生的认知兴趣。

让学生通过尝试,自己认识减法可以转化为加法计算。

学生通过一个问题易于充分发挥学习的主动性,同时也培养了学生分析问题的能力

可以培养学生严谨的学风和良好的学习习惯,同时锻炼学生的表达能力

可以照顾不层次的学生,调动学生学习积极性。

通过练习让学生进一步巩固新知,体验知识的应用性。

能增强学生学习的&39;主动性和参与意识。

学生尝试小结,疏理知识,自由发表学习心得,能锻炼学生的语言表达能力和归纳概括能力。

锻炼学生综合运用知识,独立解题的能力

板书设计:

2.6有理数的减法

有理数减法法则:

(+10)-(+3)=(+10)+(-3)

(-10)-(-3)=(-10)+(+3)

减去一个数等于加上这个数的相反数.例1:

例2:

练习:

教学反思:

本节课我在问题探索过程中,以提问的形式展现新问题,激发学生的好奇心,学生学习的积极性很高,讨论交流的气氛很热烈,解决问题后有一种成就感,从而使学生更积极主动的学习,并且营造了良好的学习氛围,从而收到较好的学习效果。

初中数学教案经典篇6

教学目标:

1、初步理解垂直与平行是同一平面内两直线的特殊位置关系,初步认识垂线和平行线。

2、在“演示操作验证解释应用”的过程中,发展学生的空间观念,渗透猜想、与验证的数学思想方法。

教学重点、难点:

正确理解“相交”、“互相平行”、“互相垂直”等概念,发展学生的空间想象力。

教学过程:

一、平面内两直线位置关系

1、操作:

请每位同学在一张纸上画两条直线,这两条直线的位置关系会出现哪些情况?

2、分类:根据学生想象,出示下图(网格):

师:老师课前也绘制了这样6幅图,想一想,按两条直线的不同位置关系,你可以分成哪几类?说说你的分类依据。

3、讨论交流,揭示平面内两条直线的位置关系。

小结:

两条直线,除了“相交”和“不相交”,还可能存在其他的位置关系吗?

板书:

相交

两条直线的位置关系

不相交

二、探究一:垂直

1、平面内两直线相交构成的4个角的特点。

师:首先来研究平面内两条直线“相交”这一情况。

师:平面内直线a和直线b相交与点O,已知1=60,谁能马上求出2、3、4的度数?你是怎么想的?

2、平面内两直线相交的特殊情况。

提问:这4个角的度数有什么特点?固定点O,旋转后,情况还是一样吗?

(旋转至垂直)

师:现在两条直线相交成直角了。继续旋转呢?

除了相交成直角以外,其余的情况,都是任意相交的。

板书:任意相交

相交

平面内两条直线的位置关系相交成直角

不相交

3、练习:

下列图形中哪两条直线相交成直角。

○1○2○3

4、揭示概念。(媒体出示)

板书:任意相交

相交

平面内两条直线的位置关系相交成直角垂直

不相交

5、平面图形中的垂直现象。

下面图形中哪些角是直角?在图上用直角记号标出。哪些线段互相垂直?用垂直符号表示。

○1○2○3

记作:记作:记作:

6、动手操作。

三、探究二:平行

1、提问:长方形中,如果把相对的两条边无限延长,是否会在某一点相交?

2、揭示概念

板书:任意相交

相交

平面内两条直线的位置关系相交成直角垂直

不相交平行

3、平面图中的平行现象

4、练习

(1)说说下列哪些直线互相垂直?哪些互相平行?

将图2改为:

提问:e和f还平行吗?

将图2改为:

当角1等于角2时,e和f还平行吗?

(2)渗透“同一”平面观念

长方体中,这两条棱相交吗?那么他们平行吗?

板书:任意相交

相交

同一平面内两条直线的位置关系相交成直角垂直

不相交平行

四、生活中的平行与垂直

1、举例:生活中,你有没有发现“垂直与平行”的现象?

2、提问:为什么这些地方要设计成“垂直”或者“平行”?

五、课堂总结

初中数学教案经典篇7

教学目标

1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题;

2、理解一元一次不等式组应用题的一般解题步骤,逐步形成分析问题和解决问题的能力;

3、体验数学学习的乐趣,感受一元一次不等式组在解决实际问题中的价值。

教学难点

正确分析实际问题中的不等关系,列出不等式组。

知识重点

建立不等式组解实际问题的数学模型。

探究实际问题

出示教科书第145页例2(略)

问:(1)你是怎样理解“不能完成任务”的数量含义的?

(2)你是怎样理解“提前完成任务”的数量含义的&39;?

(3)解决这个问题,你打算怎样设未知数?列出怎样的不等式?

师生一起讨论解决例2.

归纳小结

1、教科书146页“归纳”(略).

2、你觉得列一元一次不等式组解应用题与列二元一次方程组解应用题的步骤一样吗?

在讨论或议论的基础上老师揭示:

步法一致(设、列、解、答);本质有区别.(见下表)一元一次不等式组应用题与二元一次方程组应用题解题步骤异同表。

初中数学教案经典篇8

学生的发展是新课程标准实施的出发点和归宿,课程改革的重点是面向全体学生,以学生的发展为主体,转变学生的学习方式。“二次函数的图像的性质”这一课题,通过对传统教法的改进,以全新的自主的学习方式让学生接受问题挑战,充分展示自己的观点和见解,给学生创设一种宽松、愉快、和谐、民主的科研氛围,让学生感受“二次函数的性质”的探究发现过程,体验研究过程,体验成功的快乐。

教学目标

知识目标

1、利用计算机制作动画(让学观察抛物线的形成过程)培养学生以运动变化的观点来观察问题、分析问题、解决问题的意识。

2、会用描点法画出二次函数的图像,能通过图像认识二次函数的性质

3、通过具体例子,在探索二次函数图像和性质的过程中,学会利用配方法将数字系数的二次函数表达式表示成:y=a(x-h)^2+k的形式,从而确定二次函数图像的顶点和对称轴。

4、通过一般式与顶点式的互化过程,了解互化的必要性。培养学生认识“事物都是相互联系、相互制约”的辩证唯物主义观点。

5、在经历“观察、猜测、探索、验证、应用”的过程中,渗透从“形”到“数”和从“数”到“形”的转化,培养了学生的转化、迁移能力,实现感性到理性的升华。

情感目标

1、通过主动操作、合作交流、自主评价,改进学生的学习方式及学习质量,激发学生的兴趣,唤起好奇心与求知欲,点燃起学生智慧的火花,使学生积极思维,勇于探索,主动获取知识。

2、让学生在猜想与探究的过程中,体验成功的快乐,培养他们主动参与的意识、协同合作的意识、勇于创新和实践的科学精神。

能力目标

1、拟通过本节课的学习,培养学生的观察能力、探索能力、数形结合能力、归纳概括能力,综合培养学生的思维能力及创新能力。

2、培养学生运用运动变化的观点来分析、探讨问题的意识。

教学重点:二次函数的性质

教学难点:通过研究、、、这几类函数图像,得出平移规律,并总结概括出二次函数的性质。

教学方法:

运用问题解决理论指导教学,力求体现“自主学习、动手实践、合作交流”的教学理念。

教学设备:计算机、网络

[教学内容]

步骤教学内容呈现方式

复习我们已经学习了一次函数与反比例函数,那么一次函数,反比例函数的图像分别是、.用媒体方式呈现,让学生填空,然后提交.

探索二次函数的图象是什么呢?(课前已经做过)

(1)画出图像经过了哪些过程?

(2)列表时自变量取了几个数?哪几个数?

(3)找几位同学展示一下自己画的图像。

(4)想一想,列表时如何合理选值?以什么数为中心?当x取互为相反数的值时,y的值如何?让学生结合老师强调的作图注意事项,再画函数的图图像。

然后老师用画函数工具作出的图像。由学生观察作比较。

教会学生用画函数工具画图,让学生比较两种画法,弄清学生自己所画的不足之处.

(2)观察函数的图象,你能得出什么结论?

用几何画板呈现已画好的函数图象,让学生观察图象上的点变化的过程,确认函数值随着自变量的变化而变化的规律.

让学生归纳函数的图象的性质.

老师作总结.

归纳:(1)二次函数的图象是抛物线,并且开口向上;

(2)二次函数的图象的对称轴是轴;

(3)抛物线与对称轴的交点叫做抛物线的顶点,那么二次函数的顶点坐标是;

(4)在对称轴的左边随着的增大而减小;在对称轴的右边随着的增大而增大.

实践一

一、1.利用画函数图象工具在同一直角坐标系下画出下列函数的图象,并观察图象,说出图象性质:

(1);

(2).

利用画函数图象工具。观察、比较两图象之间的关系。

2.练习:利用画函数图象工具在同一直角坐标系下画出下列函数的图象,并观察图象,说出图象性质:

(1);

(2).

学生观察、总结、交流

二、1.利用画函数图象工具在同一直角坐标系下画出下列函数的图象,并观察图象,说出图象性质,寻找两图象之间的关系:

(1),;

(2),.

利用画函数图象工具.

2.练习:利用画函数图象工具在同一直角坐标系下画出下列函数的图象:

,,

观察三条抛物线的相互关系,并分别指出它们的开口方向及对称轴、顶点的位置.你能说出抛物线的开口方向及对称轴、顶点的位置吗?

利用画函数图象工具.

三、1.利用画函数图象工具在同一直角坐标系下画出下列函数的图象,并观察图象,说出图象性质,寻找三个图象之间的关系:

(1),;

(2),;

(3),.

利用画函数图象工具.

2.不画出图象,你能说明抛物线与之间的关系吗?

四、1.利用画函数图象工具在同一直角坐标系下画出下列函数的图象,并观察图象,说出图象性质,寻找三个图象之间的关系:

(1),,;

(2),,;

(3),,.

利用画函数图象工具.教师指出就叫抛物线的顶点式。

2.把抛物线向左平移3个单位,再向下平移4个单位,所得的抛物线的函数关系式为.

讨论二次函数的图象可由函数怎样平移而得到?

归纳:由函数的图象沿对称轴向上(下)平移个单位(为向上,为向下),

向右(左)平移个单位(为向右,为向左)得到函数的图象.

实践二1.由二次函数解析式能否写出它的一般式.

2.讨论二次函数的图象怎样画,它的开口方向、对称轴和顶点坐标分别是什么?学生努力把它变形为顶点式

牛刀小试(1)抛物线,当x=时,y有最值,是.

(2)当m=时,抛物线开口向下.

(3)已知函数是二次函数,它的图象开口,当x时,y随x的增大而增大.

(4)抛物线的开口,对称轴是,顶点坐标是,它可以看作是由抛物线向平移个单位得到的.

(5)函数,当x时,函数值y随x的增大而减小.当x时,函数取得最值,最值y=.

(6)画图填空:抛物线的开口,对称轴是,顶点坐标是,它可以看作是由抛物线向平移个单位得到的.

(7)将抛物线如何平移可得到抛物线()

A.向左平移4个单位,再向上平移1个单位

B.向左平移4个单位,再向下平移1个单位

C.向右平移4个单位,再向上平移1个单位

D.向右平移4个单位,再向下平移1个单位

(8)抛物线可由抛物线向平移个单位,再向平移个单位而得到.

(9)二次函数的对称轴是.

(10)二次函数的图象的顶点是,当x时,y随x的增大而减小.

通过网络完成,然后反馈.

小结1、会用描点法画出二次函数的图象,概括出图象的特点及函数的性质.

2、会用工具画出、、、这几类函数的图象,通过比较,了解这几类函数的性质.

3、熟练掌握二次函数、、、这几类函数图象间的平移规律.

4、能通过配方把二次函数化成+k的形式,从而确定这类二次函数的性质.

作业1.在同一直角坐标系中,画出下列函数的图象.

(1)(2)

2.填空:

(1)抛物线,当x=时,y有最值,是.

(2)当m=时,抛物线开口向下.

(3)已知函数是二次函数,它的图象开口,当x时,y随x的增大而增大.

3.已知抛物线,求出它的对称轴和顶点坐标,并画出函数的图象.

4.利用配方法,把下列函数写成+k的形式,并写出它们的图象的开口方向、对称轴和顶点坐标.

(1)

(2)

初中数学教案经典篇9

说教学目标

一、知识与技能

1、了解全等形和全等三角形的概念,掌握全等三角形的性质。

2、能正确表示两个全等三角形,能找出全等三角形的对应元素。

二、过程与方法

通过观察、拼图以及三角形的平移、旋转和翻折等活动,来感知两个三角形全等,以及全等三角形的性质。

三、情感态度与价值观

通过全等形和全等三角形的学习,认识和熟悉生活中的全等图形,认识生活和数学的关系,激发学生学习数学的兴趣。

说教学重点

1、全等三角形的性质。

2、在通过观察、实际操作来感知全等形和全等三角形的基础上,形成理性认识,理解并掌握全等三角形的对应边相等,对应角相等。

说教学难点

正确寻找全等三角形的对应元素

难点突破

通过拼图、对三角形进行平移、旋转、翻折等活动,让学生在动手操作的过程中,感知全等三角形图形变换中的对应元素的变化规律,以寻找全等三角形的对应点、对应边、对应角。

说课前准备:

课件、三角形纸片

说教学过程

一、出示学习目标

1、知道什么是全等形、全等三角形及全等三角形的对应元素。

2、知道全等三角形的性质,能用符号正确地表示两个三角形全等。

二、直观感知,导入新课

教师演示一些全等的图形的课件,让学生直观感知图片并寻找每组图片的特点。二、合作探究,学习新知

1.全等形

我们给这样的图形起个名称----全等形。[板书:全等形]

教师让学生们想生活中还有那些图形是全等形.

2.全等三角形及相关对应元素的定义

教师用多媒体动态演示两个能完全重合地三角形。定义全等三角形:能够完全重合的两个三角形,叫全等三角形。

[板书课题:12.1全等三角形]

2.全等三角形的对应元素及表示

把三角形平移、翻折、旋转后,什么发生了变化,什么没有变?

归纳:旋转前后的两个三角形,位置变化了,但形状大小都没有变,它们依然全等。

以多媒体上的图形为例,全等三角形中的对应元素

(1)对应的顶点(三个)---重合的顶点

(2)对应边(三条)---重合的边

(3)对应角(三个)---重合的角

归纳:方法一---全等三角形对应角所对的边是对应边,两个对应角所夹的&39;边是对应边;方法二:全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。

另外:有公共边的,公共边一定是对应边;有对顶角的,对顶角一定是对应角。

.用符号表示全等三角形

抽学生表示图一、图二、三的全等三角形。

3.全等三角形的性质

思考:全等三角形的对应边、对应角有什么关系?为什么?

归纳:全等三角形的对应边相等、对应角相等。

4.小组活动合作升华

学生分小组动手操作摆图形

小组合作完成位置不同的三角形,写出它们的对应边,对应角。强调其他小组学生说的时候,自己一定要注意倾听,能够分辨出对错来。

三、巩固练习

四、教师用多媒体展示习题,学生做巩固练习。

五、小结:本节课都学到了什么

六、作业:

必做题课本33页习题第1题、2题.

选做题课本第34页第6题。

初中数学教案经典篇10

绝对值(一)

一、素质教育目标

(一)知识教学点

1.能根据一个数的绝对值表示“距离”,初步理解绝对值的概念.

2.给出一个数,能求它的绝对值.

(二)能力训练点

在把绝对值的代数定义转化成数学式子的过程中,培养学生运用数学转化思想指导思维活动的能力.

(三)德育渗透点

1.通过解释绝对值的几何意义,渗透数形结合的思想.

2.从上节课学的相反数到本节的绝对值,使学生感知数学知识具有普遍的联系性.

(四)美育渗透点

通过数形结合理解绝对值的意义和相反数与绝对值的联系,使学生进一步领略数学的和谐美.

二、学法引导

1.教学方法:采用引导发现法,辅之以讲授,学生讨论,力求体现“教为主导,学为主体”的教学要求,注意创设问题情境,使学生自得知识,自觅规律.

2.学生学法:研究+6和-6的不同点和相同点→绝对值概念→巩固练习→归纳小结(绝对值代数意义)

三、重点、难点、疑点及解决办法

1.重点:给出一个数会求出它的绝对值.

2.难点:绝对值的几何意义,代数定义的导出.

3.疑点:负数的绝对值是它的相反数.

四、课时安排

2课时

五、教具学具准备

投影仪(电脑)、三角板、自制胶片.

六、师生互动活动设计

教师提出+6和-6有何相同点和不同点,学生研究讨论得出绝对值概念;教师出示练习题,学生讨论解答归纳出绝对值代数意义.

七、教学步骤 

(一)创设情境,复习导入  

师:以上我们学习了数轴、相反数.在练习本上画一个数轴,并标出表示-6,,0及它们的相反数的点.

学生活动:一个学生板演,其他学生在练习本上画.

【教法说明】绝对值的学习是以相反数为基础的,在学生动手画数轴的同时,把相反数的知识进行复习,同时也为绝对值概念的引入奠定了基础,这里老师不包办代替,让学生自己练习.

(二)探索新知,导入  新课

师:同学们做得非常好!-6与6是相反数,它们只有符号不同,它们什么相同呢?

学生活动:思考讨论,很难得出答案.

师:在数轴上标出到原点距离是6个单位长度的点.

学生活动:一个学生板演,其他学生在练习本上做.

师:显然A点(表示6的点)到原点的距离是6,B点(表示-6的点)到原点距离是6个单位长吗?

学生活动:产生疑问,讨论.

师:+6与-6虽然符号不同,但表示这两个数的点到原点的距离都是6,是相同的.我们把这个距离叫+6与-6的绝对值.

[板书]2.4绝对值(1)

【教法说明】针对“互为相反数的两数只有符号不同”提出问题:“它们什么相同呢?”在学生头脑中产生疑问,激发了学生探索知识的欲望,但这时学生很难回答出此问题,这时教师注意引导再提出要求:“找到原点距离是6个单位长度的点”这时学生就有了一个攀登的台阶,自然而然地想到表示+6,-6的点到原点的距离相同,从而引出了绝对值的概念,这样一环紧扣一环,

绝对值(一)

一、素质教育目标

(一)知识教学点

1.能根据一个数的绝对值表示“距离”,初步理解绝对值的概念.

2.给出一个数,能求它的绝对值.

(二)能力训练点

在把绝对值的代数定义转化成数学式子的过程中,培养学生运用数学转化思想指导思维活动的能力.

(三)德育渗透点

1.通过解释绝对值的几何意义,渗透数形结合的思想.

2.从上节课学的相反数到本节的绝对值,使学生感知数学知识具有普遍的联系性.

(四)美育渗透点

通过数形结合理解绝对值的意义和相反数与绝对值的联系,使学生进一步领略数学的和谐美.

二、学法引导

1.教学方法:采用引导发现法,辅之以讲授,学生讨论,力求体现“教为主导,学为主体”的教学要求,注意创设问题情境,使学生自得知识,自觅规律.

2.学生学法:研究+6和-6的不同点和相同点→绝对值概念→巩固练习→归纳小结(绝对值代数意义)

三、重点、难点、疑点及解决办法

1.重点:给出一个数会求出它的绝对值.

2.难点:绝对值的几何意义,代数定义的导出.

3.疑点:负数的绝对值是它的相反数.

四、课时安排

2课时

五、教具学具准备

投影仪(电脑)、三角板、自制胶片.

六、师生互动活动设计

教师提出+6和-6有何相同点和不同点,学生研究讨论得出绝对值概念;教师出示练习题,学生讨论解答归纳出绝对值代数意义.

七、教学步骤 

(一)创设情境,复习导入  

师:以上我们学习了数轴、相反数.在练习本上画一个数轴,并标出表示-6,,0及它们的相反数的点.

学生活动:一个学生板演,其他学生在练习本上画.

【教法说明】绝对值的学习是以相反数为基础的,在学生动手画数轴的同时,把相反数的知识进行复习,同时也为绝对值概念的引入奠定了基础,这里老师不包办代替,让学生自己练习.

(二)探索新知,导入  新课

师:同学们做得非常好!-6与6是相反数,它们只有符号不同,它们什么相同呢?

学生活动:思考讨论,很难得出答案.

师:在数轴上标出到原点距离是6个单位长度的点.

学生活动:一个学生板演,其他学生在练习本上做.

师:显然A点(表示6的点)到原点的距离是6,B点(表示-6的点)到原点距离是6个单位长吗?

学生活动:产生疑问,讨论.

师:+6与-6虽然符号不同,但表示这两个数的点到原点的距离都是6,是相同的.我们把这个距离叫+6与-6的绝对值.

[板书]2.4绝对值(1)

【教法说明】针对“互为相反数的两数只有符号不同”提出问题:“它们什么相同呢?”在学生头脑中产生疑问,激发了学生探索知识的欲望,但这时学生很难回答出此问题,这时教师注意引导再提出要求:“找到原点距离是6个单位长度的点”这时学生就有了一个攀登的台阶,自然而然地想到表示+6,-6的点到原点的距离相同,从而引出了绝对值的概念,这样一环紧扣一环,

初中数学教案经典篇11

教学目标

1、使学生能说出有理数大小的比较法则

2、能熟练运用法则结合数轴比较有理数的大小,特别是应用绝对值概念比较两个负数的大小,能利用数轴对多个有理数进行有序排列。

3、能正确运用符号"<"">""∵""∴"写出表示推理过程中简单的因果关系。

三、教学重点与难点

重点:运用法则借助数轴比较两个有理数的大小。

难点:利用绝对值概念比较两个负分数的大小。

四、教学准备

多媒体课件

五、教学设计

(一)交流对话,探究新知

1、说一说

(多媒体显示)某一天我们5个城市的最低气温    从刚才的图片中你获得了哪些信息?(从常见的气温入手,激发学生的求知欲望,可能有些学生会说从中知道广州的最低气温10℃比上海的最低气温0℃高,有些学生会说哈尔滨的最低气温零下20℃比北京的最低气温零下10℃低等;不会说的,老师适当点拔,从而学生在合作交流中不知不觉地完成了以下填空。

比较这一天下列两个城市间最低气温的高低(填"高于"或"低于")

广州_______上海;北京________上海;北京________哈尔滨;武汉________哈尔滨;武汉__________广州。

2、画一画:(1)把上述5个城市最低气温的数表示在数轴上,(2)观察这5个数在数轴上的位置,从中你发现了什么?

(3)温度的高低与相应的数在数轴上的位置有什么?

(通过学生自己动手操作,观察、思考,发现原点左边的数都是负数,原点右边的数都是正数;同时也发现5在0右边,5比0大;10在5右边,10比5大,初步感受在数轴上原点右边的两个数,右边的数总比左边的数大。教师趁机追问,原点左边的数也有这样的规律吗?从而激发学生探索知识的欲望,进一步验证了原点左边的数也有这样的规律。从而使学生亲身体验探索的乐趣,在探究中不知不觉获得了知识。)由小组讨论后,教师归纳得出结论:

在数轴上表示的两个数,右边的数总比左边的数大。

正数都大于零,负数都小于零,正数大于负数。

(二)应用新知,体验成功

1、练一练(师生共同完成例1后,学生完成随堂练习1)

例1:在数轴上表示数5,0,-4,-1,并比较它们的大小,将它们按从小到大的顺序用"<"号连接。(师生共同完成)

分析:本题意有几层含义?应分几步?

要点总结:小组讨论归纳,本题解题时的一般步骤:①画数轴②描点;③有序排列;④不等号连接。

随堂练习: P19 T1

2、做一做

(1)在数轴上表示下列各对数,并比较它们的大小

①2和7   ②-6和-1  ③-6和-36  ④-和-1.5

(2)求出图中各对数的绝对值,并比较它们的大小。

(3)由①、②从中你发现了什么?

(学生小组讨论后,代表站起来发言,口述自己组的发现,说明自己组发现的过程,逐步培养学生观察、归纳、用数学语言表达数学规律的能力。)

要点总结:两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小。

在学生讨论的基础上,由学生总结得出有理数大小的比较法则。

(1)正数都大于零,负数都小于零,正数大于负数。

(2)两个正数比较大小,绝对值大的数大。

(3)两个负数比较大小,绝对值大的数反而小。

3、师生共同完成例2后,学生完成随堂练习2、3、4。

例2比较下列每对数的大小,并说明理由:(师生共同完成)

(1)1与-10,(2)-0.001与0,(3)-8与+2;(4)-与-;(5)-(+)与-|-0.8|

分析:第(4)(5)题较难,第(4)题应先通分,第(5)题应先化简,再比较。同时在讲解时,要注意格式。

注:绝对值比较时,分母相同,分子大的数大;分子相同,则分母大的数反而小;分子分母都不相同时,则应先通分再比较,或把分子化相同再比较。

两个负数比较大小时的一般步骤:①求绝对值;②比较绝对值的大小;③比较负数的大小。

思考:还有别的方法吗?(分组讨论,积极思考)

4、想一想:我们有几种方法来判断有理数的大小?你认为它们各有什么特点?

由学生讨论后,得出比较有理数的大小共有两种方法,一种是法则,另一种是利用数轴,当两个数比较时一般选用第一种,当多个有理数比较大小时,一般选用第二种较好。

练一练:P19 T2、3、4

5、考考你:请你回答下列问题:

(1)有没有的有理数,有没有最小的有理数,为什么?

(2)有没有绝对值最小的有理数?若有,请把它写出来?

(3)在于-1.5且小于4.2的整数有_____个,它们分别是____。

(4)若a>0,b<0,a<|b|,则你能比较a、b、-a、-b这四个数的大小吗?(本题属提高题,不要求全体学生掌握)

(新颖的问题会激发学生的好奇心,通过合作交流,自主探究等活动,培养学生思维的习惯和数学语言的表达能力)

6、议一议,谈谈本节课你有哪些收获

(由师生共同完成本节课的小结)本节课主要学习了有理数大小比较的两种方法,一种是按照法则,两两比较,另一种是利用数轴,运用这种方法时,首先必须把要比较的数在数轴上表示出来,然后按照它们在数轴上的位置,从左到右(或从右到左)用"<"(或">")连接,这种方法在比较多个有理数大小时非常简便。

六、布置作业:P19 A组、B组

基础好的A、B两组都做

基础较差的同学选做A组。

初中数学教案经典篇12

教学目标:运用平方差公式和完全平方公式分解因式,能说出平方差公式和完全平方公式的特点,会用提公因式法与公式法分解因式.培养学生的观察、联想能力,进一步了解换元的思想方法.并能说出提公因式在这类因式分解中的作用,能灵活应用提公因式法、公式法分解因式以及因式分解的标准.

教学重点和难点:1.平方差公式;2.完全平方公式;3.灵活运用3种方法.

教学过程:

一、提出问题,得到新知

观察下列多项式:x24和y225

学生思考,教师总结:

(1)它们有两项,且都是两个数的平方差;(2)会联想到平方差公式.

公式逆向:a2b2=(a+b)(ab)

如果多项式是两数差的.形式,并且这两个数又都可以写成平方的形式,那么这个多项式可以运用平方差公式分解因式.

二、运用公式

例1:填空

①4a2=()2②b2=()2③0.16a4=()2

④1.21a2b2=()2⑤2x4=()2⑥5x4y2=()2

解答:①4a2=(2a)2;②b2=(b)2③0.16a4=(0.4a2)2

④1.21a2b2=(1.1ab)2⑤2x4=(x2)2⑥5x4y2=(x2y)2

例2:下列多项式能否用平方差公式进行因式分解

①1.21a2+0.01b2②4a2+625b2③16x549y4④4x236y2

解答:①1.21a2+0.01b2能用

②4a2+625b2不能用

③16x549y4不能用

④4x236y2不能用

初中数学教案经典篇13

教学设计示例一——公式

教学目标

1、了解公式的意义,使学生能用公式解决简单的实际问题;

2、初步培养学生观察、分析及概括的能力;

3、通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。

教学建议

一、教学重点、难点

重点:通过具体例子了解公式、应用公式、

难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。

二、重点、难点分析

人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。

三、知识结构

本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。

四、教法建议

1、对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。

2、在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。

3、在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。

教学设计示例二——公式

一、教学目标

(一)知识教学点

1、使学生能利用公式解决简单的实际问题、

2、使学生理解公式与代数式的关系、

(二)能力训练点

1、利用数学公式解决实际问题的能力、

2、利用已知的公式推导新公式的能力、

(三)德育渗透点

数学来源于生产实践,又反过来服务于生产实践、

(四)美育渗透点

数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美、

二、学法引导

1、数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点

2、学生学法:观察分析推导计算

三、重点、难点、疑点及解决办法

1、重点:利用旧公式推导出新的图形的计算公式、

2、难点:同重点、

3、疑点:把要求的图形如何分解成已经熟悉的图形的和或差、

四、课时安排

1课时

五、教具学具准备

投影仪,自制胶片。

六、师生互动活动设计

教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式、

七、教学步骤

(一)创设情景,复习引入

师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏、在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题、

板书:公式

师:小学里学过哪些面积公式?

板书:S=ah

(出示投影1)。解释三角形,梯形面积公式

【教法说明】让学生感知用割补法求图形的面积。

(二)探索求知,讲授新课

师:下面利用面积公式进行有关计算

(出示投影2)

例1如图是一个梯形,下底(米),上底,高,利用梯形面积公式求这个梯形的面积S。

师生共同分析:

1、根据梯形面积计算公式,要计算梯形面积,必须知道哪些量?这些现在知道吗?

2、题中“M”是什么意思?(师补充说明厘米可写作cm,千米写作km,平方厘米写作等)

学生口述解题过程,教师予以指正并指出,强调解题的规范性。

【教法说明】

1、通过分析,引导学生在一个实际问题中,必须明确哪些量是已知的,哪些量是未知的,要解决这个问题,必须已知哪些量。

2、用公式计算时,要先写出公式,然后代入计算,养成良好的解题习惯。

(出示投影3)

例2如图是一个环形,外圆半径,内圆半径求这个环形的面积

学生讨论:

1、环形是怎样形成的、

2、如何求环形的面积讨论后请学生板演,其他同学做在练习本上,教育巡回指导。

评讲时注意:

1、如果有学生作了简便计算,则给予表扬和鼓励:如果没有学生这样计算,则启发学生这样计算。

2、本题实际上是由圆的面积公式推导出环形面积公式。

3、进一步强调解题的规范性

教法说明,让学生做例题,学生能自己评判对与错,优与劣,是获取知识的一个很好的途径。

测试反馈,巩固练习

(出示投影4)

1、计算底,高的三角形面积

2、已知长方形的长是宽的1。6倍,如果用a表示宽,那么这个长方形的周长是多少?当时,求t

3、已知圆的半径,,求圆的周长C和面积S

4、从A地到B地有20千米上坡路和30千米下坡路,某车上坡时每小时走千米,下坡时每小时走千米。

(1)求A地到B地所用的时间公式。

(2)若千米/时,千米/时,求从A地到B地所用的时间。

学生活动:分两次完成,每次两题,两人板演,其他同学在练习本上完成,做好后同桌交换评判,第一次可请两位基础较差的同学板演,第二次请中等层次的学生板演、

【教法说明】面向全体,分层教学,能照顾两极,使所有的同学有所发展、

师:公式本身是用等号联接起来的代数式,许多公式在实际中都有重要的用处,可以用公式直接计算还可以利用公式推导出新的公式、

八、随堂练习

(一)填空

1、圆的半径为R,它的面积________,周长_____________

2、平行四边形的底边长是,高是,它的面积_____________;如果,,那么_________

3、圆锥的底面半径为,高是,那么它的体积__________如果,,那么_________

(二)一种塑料三角板形状,尺寸如图,它的厚度是,求它的体积V,如果,V是多少?

九、布置作业

(一)必做题课本第__页x、x、x第__页x组x

(二)选做题课本第__页__组x

初中数学教案经典篇14

学习目标:

1、能借助数轴初步理解绝对值的概念,会求一个数的绝对值。

2、正确理解绝对值的代数意义和几何意义,渗透数形结合与分类讨论思想。重点和难点:理解绝对值的概念,能求一个数的绝对值。

学习过程:

任务一、复习旧知:

1、什么叫互为相反数?在数轴上表示互为相反数的两点和原点的位置关系怎样?

2、数轴上与原点的距离是2的点表示的数有_____个,他们表示的数是_____;与原点的距离是5的点有____个、任务二、新知理解:

1、自读课本p11-p12,体会绝对值的意义。

绝对值的几何意义:____________________________________、

a的绝对值记作_______,如5的绝对值记作______,结果是_____、

试一试:(1)+6=______,0、2=________,+8、2=_______

(2)0=_______;

(3)-3=_____,-0、2=_____,-8、2=________、

绝对值的代数意义:(1)一个正数的绝对值是__________;

(2)一个负数的绝对值是___________(3)0的绝对值是___________。

上述可以用式子表示为:(1)当a是正数时,a=_______,

(2)当a是负数时,a=_______,(2)当a=0时,a=________,

任务三:巩固练习

1、求下列各数的绝对值:?7

12,?

110

,?4、75,10、5

2.计算-2++834??815

-20??45

3、绝对值是3的数是_______,有____个绝对值是1、5的数?4、判断:(1)有理数的绝对值一定是正数;

(2)如果一个数是正数,那么这个数的绝对值是它本身;(3)如果一个数的绝对值是它本身,那么这个数是正数(4)一个数的绝对值越大,表示它的点在数轴上越靠右。归纳:(1)不论有理数a取何值,它的绝对值总是______。

(2)两个互为相反数的绝对值____。能力提升:

(1)-35、6=________;a=_____(a<0);若x=5,则x=______(2)绝对值小于4的整数有________;绝对值大于2小于5的整数有________;

(3)绝对值等于本身的数是_______,绝对值等于它的相反数的数是_________,绝对值最小的有理数是_______、(

4)若a-2=3,则a=______

归纳总结:

初中数学教案经典篇15

案例主题:学生参与教学,体现了现代教学理念:活动、合作、自由、民主、创新。

背景:我在进行数学七年级上册图形的认识的应用教学时,处理定理时,随着教学过程的深入,很有感想:??

例题:课本p123证明两个角之间的关系,

请同学们总结一下他们可能出现的情况。

活动过程:师:谁能总结一下判定两个角比较大小的方法?(学生都在紧张的思考中)(突然间,我发现一名平时学习较困难的学生闫家衔这次第一个举起了手,很惊奇,便马上让他发言了。也有了我思想上的一次飞跃。)

生:我认为前面,度量,而刚才第一条,第二条的叠合法。(这时,教室里鸦雀无声,个别同学在讥笑,这位学生顿时有些难堪,想坐下去,我赶紧制止。)

师:很好!那你准备应该怎么做呢?生:嗯,(一下子来劲了):接着这位同学上黑板画了图,写出自己度量的方法和自己的想法。

师:刚才闫家衔同学真的不错,不但提出了新的方法,而且还给出了说理,我和全班同学都为你今天的表现感到非常高兴(教室里响起一片掌声)。要有勇气展示自己,你今天的表现就非常非常地出色,你今后的表现一定会更出色。好,下面我就让我们一同来总结一下菱形的证明方法。

在师生的共同研讨下得出了这些方法。

师:今天的课程内容还有一项,那就是请闫家衔同学谈谈这堂课的感想。

生:以前我不敢发言,我怕说的不对会被同学们笑话,而今天的他的方法恰好是我前几天才预习过的,所以一下子??我今天才发现不是这样??我今后还会努力发言的??

理念反思:从这一个学生的举手发言到说得头头是道的“意外”中,我明白了:学生需要一个能充分展示自我的自由空间,作为老师,我们需要给学生一个自由的民主的氛围,能充分培养学生的自信,使“学困生”也能产生发言的欲望,也能对问题畅所欲言,教师还应能及时捕捉到这一闪光点,给每一位学生都有展示的机会。也就是说要使学生全部积极参与教学,因为它集中体现了现代课程理念:活动、合作、自由、民主、创新。

1、活动、合作是现代课程中的新的理念,只有参与,才能合作创新。

2、民主是现代课程中的重要理念。民主最直接的体现是在课程实施中学生能够平等地参与。没有主动参与,只有被动接受,就没有民主可言。相反,如果没有民主,学生的`参与

就不是主动性参与,而是被动的、消极的参与。

3、在提问时,应设计开放性的问题,如:“请你帮助设计一下,有几种方案等问题?这样才没有限制学生的思维,给学生创设一个自由的空间,学生在这个空间中可以按自己的方式展开想象,才能畅所欲言。

4、在课堂上,老师应不只关注“优等生”,而应平等地对待每一个学生,让学困生”和“学优生”同时享有尊严和拥有一份自信。特别是发现到一个学困生在举了手时,应及时给“学困生”展示的机会,让他们发言,学生在发言中,虽然有时不能把问题完全解决,老师也要充分的肯定这个学生的成绩和能够大胆发言的勇气。

45954