教案吧 > 学科教案 > 数学教案 >

数学公开课教案通用模板

时间: 新华 数学教案

编写教案可以帮助教师明确教学目标、教学内容和教学步骤,更好地规划教学流程,提高教学效率。那要怎么写数学公开课教案通用模板呢?这里提供一些数学公开课教案通用模板,希望对大家能有所帮助。

数学公开课教案通用模板篇1

设计意图:

进入大班的幼儿,社会交往能力加强,随着幼小衔接工作的开展,幼儿会用已有的知识和能力来进行与同伴教师的互动。由于在生活中已经积累了一些与数学有关的生活知识,他们喜欢用数字相互留下电话号码,喜欢用很多常见的字来相互留下地址,加强相互间的交往。这时,对数字概念的理解都还都处于零碎状态的幼儿,那些知识碎片就会对他们的生活造成一定的干扰和疑问,比如“我家是102,你家也是102,那我们俩不是住在同一个家里了么?”。

为了解决幼儿的实际问题和困难,我们以门牌号码为切入口,将幼儿的知识储备进行挖掘、梳理和提升,结合幼儿的实际生活设计了《楼房与号码》这一数学活动,揭示数字和住址之间的联系,引导幼儿主动将数学知识运用到实际生活中。从生活出发,激发幼儿学习数学的兴趣,让幼儿深刻体会到生活离不开数学,数学是解决生活问题的钥匙,从而增强学习数学的趣味性,正是幼儿园数学教学的价值取向。

教学目标:

1、在探索操作中尝试发现门牌号码的表示方法和排列规律。

2、在主动学习中提高解决问题的能力,积累相关的生活经验。

3、能主动发现生活中的数学,体验在生活中学习数学的乐趣。

教学准备:

材料:纸盒做的楼房材料人手一份,门牌插卡(用不同颜色区别层与间的数字)人手一份,多媒体课件,写有具体地址的信封若干,人物图像若干,彩色胶带卷(用于标示楼房位置)。

环境:多媒体、幼儿操作学习的场地、桌椅、地垫人手一块。

幼儿:一定的生活经验,了解自己的家庭住址。

教学过程:

一、情境引入

激发幼儿对门牌的已有经验

1、(师幼交流)徐老师第一次来东阳,发现我们东阳真是个美丽的地方,马路又宽又干净,不仅大街上都是高楼大厦,而且住宅小区建设得特别漂亮。请你告诉我你家住在什么地方吗?(幼儿介绍自己的家庭住址)

2、这是__住宅小区,我们一起去参观。(播放多媒体,直观感受小区一栋一栋的住宅)

3、这栋楼我们来数数有几层?(镜头到一个单元)让我们来看看这第一单元。这是一楼,(镜头到一个门牌)这是什么?(101)你知道它的对面一间门牌号是多少吗?(在幼儿有答案后出现对面的门牌号)它楼上呢?(同法)

4、(镜头到小区人来人往的大门口)看来这个小区里住着很多的人哦。人越住越多,所以还需要很多的楼房才够呢。今天我们也来学一学工人叔叔造楼房好吗?

二、尝试操作

梳理幼儿对门牌知识

1、造楼房

我们造楼房用的材料是椅子和纸板,(幼儿人手一份材料)这里有造3、4、5层楼房的材料,喜欢造4层楼的小朋友可以选择这些,喜欢3层或者5层的可以选另外的一些。方法是:每个人拿一份材料,把材料折成楼房后套在你现在坐的椅子背后,把楼房正面展示给大家。

2、编门牌

楼房都有门牌。请你把造好的楼房按照一定的规律编上门牌。

1)幼儿尝试自主编号。

2)请你说说是怎么编号的。

3)讨论:门牌号上各个数字代表的意义。

教师小结:我们把最底下的层叫做第一层,把最左边的间叫做第一间,所以一般来说我们编门牌的方法是:从下往上,从左往右,第一个数字表示层,最后一个数字表示间,中间用0隔开,楼房的门牌号就是101、102、201、202等,4)、请小朋友检查一下自己的门牌编对了吗?没有编对的调整过来。

三、探究学习

认识住宅地址

(幸福小区)小区落成了,大家为小区的落成放个三响炮表示庆祝吧。“啪!”(集体击掌三下)

1、探究楼号。__小区里有几栋楼房?请小朋友来编号。

2、探究单元号。观察第一栋楼房和第二栋楼房有什么不一样?(第一栋短,第二栋长……)第一栋楼房有三个单元,第二栋楼房有1、2、3,4、5五个单元。让我们从左往右数一数。教师逐一指各栋楼房,说说各栋楼房都有几个单元。

3、探究栋、单元、层、间的关系。红红要住进这个幸福小区了,她拿到了她家的钥匙,钥匙上有她家的地址(出示及钥匙地址卡片2—3—301),你看得懂吗?你知道他家的地址是__小区第几栋楼?第几单元?哪一间吗?

4、巩固认知。如果请你也来这个新小区住,你希望住在那里,请在新家的阳台上插一枝花,并告诉大家你的新家住在第几栋第几单元几零几?(请幼儿指出具体住处并完整表述地址,并说“我的新家在__小区x栋x单元x室,欢迎大家到我的新家来玩”。)教师根据幼儿的选择分别板书。

这个小区太漂亮了,徐老师也想把家搬到__小区来,我喜欢这套房子,你能说说徐老师新家的详细地址吗?(__小区第4栋第二单元501。)

四、巩固迁移

尝试生活中的运用

搬新家:小区建好了,很多住户要搬进来了。请你帮助大家一起搬家好吗?请你根据他给的地址帮助他们搬进新家。

请一幼儿讲解他准备把新住户搬进哪里?为什么是那一家?最前面的x表示第x栋,中间的x表示x单元,后面的x表示x房间。(同伴间可相互交流)

延伸活动:

小朋友互相交换家庭住址。

数学公开课教案通用模板篇2

活动目标

1、尝试运用不同组合形式的方块拼出九方格图案。

2、学习多角度思考问题,进行多种组合,寻求多种答案。

3、能在记录单上记录并拼出多种组合方法。

活动准备

1、教学挂图(三)九方格图案1张,各种颜色,不同组合形式的方块拼图板若干,图板上有不同的数字。

2、幼儿用书第13、15页的操作材料。与幼儿人数相等的九方格图案若干,记录单若干。

活动过程

一、观察、比较各种方块拼图板。

1、教师出示各种方块拼图板,引导幼儿观察每块拼图板上的正方形是否相同?哪些地方相同?哪些地方不同?

2、教师出示九方格图底板。

3、请个别幼儿运用图形重叠的方法,证明就放个图上的每个正方形与拼图板上的每个正方形大小相同。

4、引导幼儿讨论:你能用这些方块拼图板拼出九方格图案吗?

二、幼儿操作活动,尝试拼出九方格图案。

1、与同伴相互交流自己的拼法。

请一名幼儿运用方块拼图板,在大家面前尝试拼出九方格图案。

2、教师引导幼儿思考并讨论。

3、请全体幼儿在小组操作活动中尝试不同组合,寻求多种答案。

三、尝试运用自己的方法记录每种拼法。

1、教师出示记录单,引导幼儿讨论:怎样记录自己用那几块图板拼成九方格图案的。

2、请幼儿操作后在记录单上记录自己想出的每种拼法。

四、交流、分享各自的拼图方法。

1、展示个别幼儿的拼图及记录单,集体进行验证。

2、请幼儿将自己的所有拼法和相应的记录单展示在桌子上,引导同伴间相互欣赏学习。

数学公开课教案通用模板篇3

教学内容:

第87页例1、例2,88页课堂活动第1、2题,练习二十二第1~4题。

教学目标:

1.在现实情境中初步认识负数和理解负数的意义,了解负数的产生与作用,感受负数使用带来的方便。

2.会正确地读、写正、负数,知道0既不是正数,也不是负数。

3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的意识。

教学重点:

负数的意义和负数的读法与写法。

教学难点:

理解0既不是正数,也不是负数。

教具准备:

多媒体课件

教学方法:

教师讲授、合作交流

教学过程:

一、复习导入

提出问题:举例说明我们学过了哪些数?

教师小结:为了实际生活的需要,在数物体个数时,1、2、3……出现了自然数,物体一个也没有时用自然数0表示,当测量或计算有时不能得出整数,我们用分数或小数表示。

提出问题:我们学过的数中最小的数是谁?有没有比零还小的数呢?

二、创设情境、学习新知

1.教学例1。

(1)出示:中央电视台天气预报的一个场面,主持人说:“哈尔滨零下6至3摄氏度,重庆6至8摄氏度……”

同学们,你们对情境中的内容一定相当熟悉吧?你能给大家讲讲“哈尔滨零下6至3度”这句话是什么意思吗?

为什么阿姨说的零下6摄氏度,屏幕上打出的字幕就变成了-6℃呢?

这里有零下6℃、零上6℃,都记作6℃行吗?

你有什么简洁的方法来表示他们的不同呢?

教师小结:同学们的想法都很好。现在,国际数学界都是采用符号来区分,我们把比0摄氏度低的温度用带有“-”号的数来表示,例如把零下6℃记作-6℃,读作负6摄氏度;零上6℃记作+6℃,读作正6摄氏度或6摄氏度。

(2)巩固练习。

同学们,你能用刚才我们学过的知识,用恰当的数来表示温度吗?试试看。

学生独立完成第87页下图的练习。

教师巡视,个别辅导,集体订正写得是否正确,并让学生齐读。

2.自主学习例2。(进一步认识正数和负数)

教师:同学们,你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。

今天,老师还带来一张珠穆朗玛峰的海拔图,请看。(珠穆朗玛峰的海拔图,教科书第87页的左部分,数字前没有符号)从图上你看懂了些什么?

引导学生交流:珠穆朗玛峰比海平面高8844.43米。

我们再来看x疆的吐鲁番盆地的海拔图。(吐鲁番盆地的海拔情况,教科书第87页的右部分,数字前没有符号)你又能从图上看懂些什么呢?

引导学生交流:吐鲁番盆地比海平面低155米。

教师小结:珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔高度吗?

学生交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。吐鲁番盆地的海拔可以记作:-155米。(板书)

教师追问:你是怎么想到用这种方法来记录的呢?

最后教师将数字改动成:海拔+8844.43米或8844.43米;海拔-155米。

教师小结:以海平面为界线,+8844.43米或8844.43米这样的数表示比海平面高8844.43米;-155米这样的数表示比海平低155米。

(2)巩固练习:教科书第88页试一试。

3.小组讨论,归纳正数和负数。

教师:通过刚才的学习,我们收集到了一些数据,(显示)我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么,你们观察一下这些数,它们一样吗?它们可以怎样分类呢?

提出疑问:0到底归于哪一类?(如有学生提出更好)引导学生争论,各自发表意见。

小结:(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0就像一条分界线,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把像+6、3、+8844.43等这样的数叫做正数;像-6、-155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)

通常正号可以省略不写。负号可以省略不写吗?为什么?

最后,让学生看书勾划,并思考两个“……”还代表那些数?(让学生对正负数的理解更全面和深刻)

三、运用新知,课堂作业

1.课堂活动第1题。让学生先自己读读,并举例说说是什么意思?全班订正后,同桌间自选5个互相说说。

2.课堂活动第2题。同桌先讨论,然后反馈。

四、小结

同学们,今天我们认识了负数。你有什么收获?

五、课堂作业

练习二十二第1、4题。

家庭作业:练习二十二第2、3题。

板书设计:

负数的初步认识

正数:20、22、14、 +8844.43…

0:既不是正数也不是负数

负数:-2、-30、-10、-15、-155…

数学公开课教案通用模板篇4

【设计意图】

本教学从绘本故事入手,为孩子创设了一个游戏情境,让幼儿在游戏中开展分类教学中,激发幼儿主动参与教学。在教具设计方面,教师采取了现代与传统相结合的方式,一方面利用PPT,发挥绘本中动物形象的优点,营造良好的游戏情境;另一方面利用传统教具,从集体操作到分组操作再到集体操作,给予幼儿更多实践操作的机会。

【教学目标】

1、能正确说出物体的颜色、形状,能按物体的一个特征分类。

2、对操作教学感兴趣,初步学习按照规则操作。

3、喜欢数学教学,乐意参与各种操作游戏,培养思维的逆反性。

4、有兴趣参加数学教学。

【教学准备】

1、“爱吃糖的大狮子”课件。

2、教具:红、蓝、黄、绿颜色标记,大盘子三个,大糖果若干。

3、幼儿操作材料:有形状标记盘子的操作板、“糖果”若干。

【教学过程】

一、故事导入

森林里住着一只大狮子,它肚子饿了,想要吃小动物。聪明的小狐狸想了个好主意,看一看,谁能看懂小狐狸的主意?

二、集体教学

1、第二天小猴子送来好多糖,大狮子说“我想要吃红色的糖!”,将红色糖果找出来。

2、大狮子又说“我还要吃蓝色的糖!”小猴子很害怕,谁来帮帮它?

3、还剩下一些糖果,谁能把它们分到一样颜色的盘子里?

三、小组操作

1、这次换小乌龟来送糖果了,大狮子说“我要吃圆形的糖!”小乌龟太害怕了,谁来帮助它把糖果按照形状分一分呢?

2、每个小朋友都有一份糖果,每人都有三个盘子,盘子上有标记,请你们帮助小乌龟把糖果放到一样形状标记的盘子里,好吗?

3、幼儿操作,教师指导。

4、集体讲评:看看有没有都分对呢?逐一检查。

四、故事收尾

大狮子吃了很多糖果,牙齿真的疼起来了,小狐狸的主意成功啦,我们一起去庆祝下吧!

教学反思:

幼儿园的数学教学相对于其他教学枯燥、单调,容易使幼儿失去学习兴趣。因为这个时期的幼儿年龄小,逻辑思维尚未发展,所以本次教学中我为幼儿创设了一个可操作的丰富材料的环境,为幼儿创设了一个可选择性、可操作性的空间。使幼儿能独立的操作材料,并大胆的表达自己的想法。幼儿的自主性,选择性,独立性得到了充分的体现。通过一系列的游戏教学,达到了主题总目标预设的要求。

数学公开课教案通用模板篇5

一、目标:

1、快速找出同种蔬菜的不同特征,尝试运用该特征自编加减法式题。

2、在游戏中进一步了解10以内三个数字之间的关系。

3、让幼儿体验数学活动的乐趣。

4、了解数字在日常生活中的应用,初步理解数字与人们生活的关系。

准备:

萝卜10根(白萝卜1根、胡萝卜9根),茄子10根(2根粗茄子,8根细茄子),黄瓜10根(表皮光滑的短黄瓜3根,表皮有刺的长黄瓜7根),番茄10个(大番茄4个,圣女果6个),辣椒10个(黄、绿灯笼辣椒各5个);5个分类筐,记录纸,记号笔,计时器,青菜奖励。

过程:

1、蔬菜分类导语:我这有一些蔬菜,请你们把它送回家。(分类框放在地上,蔬菜放两边的矮桌子上)

2、观察不同特征,用不同的数字表示。

提问:你们把那么多的蔬菜分成了几家?哪几家?(开始认读竖形表上的字,翻出数字)萝卜有几个?茄子有几个?

小结:原来按照蔬菜种类的不同分成了萝卜、茄子、黄瓜、番茄和辣椒5种,每种蔬菜的总数都是10个。

提问:再来看看每种蔬菜中有什么不一样的地方?(幼儿任意挑选一种蔬菜进行表述)(C:我发现__不一样。T:怎么不一样?C:有的x,有的x)小结:原来的大小/颜色/粗细/长短/表皮不一样。

小结:同样数量的蔬菜能根据颜色、大小、粗细、长短这些不同的特征来分家,用不同的数字表示。

同样是10的蔬菜能分成两个不同的数字,10可以分成__和__一起来说说看。

二、编题

1、示范编题导语:今天我们就用每一组的3个数字来做编题游戏。先用萝卜家族的三个数字1,9,10来编道题,谁来试试看?

提问:他编的你们看得懂吗?"屈,老师,什么意思?

小结:原来3个数字可以编出4道不同的算式题。

2、结伴分组编算式题

导语:接下来我们来比赛。赢的那个队会获得一棵青菜奖励。我们先来进行第一个比赛——分组选菜。

导语:我们来玩第二个游戏——编题。等会我说开始的时候,请你们用认领的这种蔬菜里的三个数字来编题,看哪一组编题编的又快又准又全,一个都不能少。限时2分钟。

小结:原来3个不同的数字可以编出4道算式题,2道加法,2道减法。三个数字中有两个一样的数字,就只能编出2道算式题,1道加法,1道减法。

比赛结束了,我们来看看比赛结果。看看在编题游戏中谁获胜了?获胜的那一队有几棵青菜?

哦,落后的几队也别气馁,相信在以后类似的比赛中会再接再励,继续加油的。

活动反思:

让幼儿的学习回归幼儿的生活,关注幼儿的生活情境和生活经验,创设一个有趣生动的情境,让幼儿在快乐中学习,这是我们每位教师都想努力做到的。我认为在一定的情境下,丰富幼儿的相关经验,学习一定的知识技能,能使幼儿的学习变得更有目的性,更能调动幼儿学习的主动性和积极性。在活动中要关注幼儿学习方式,使学习成为幼儿真正的自主活动,使幼儿在学习过程中获得游戏性的体验,提高对数学的敏感性,了解实际生活中数学的作用,将数学融入情境化、生活化,让幼儿学习得十分轻松,也越来越爱数学。在今后的教学中还需要不断地探索,提高教学的有效性。

数学公开课教案通用模板篇6

一、活动目标

1、幼儿通过自主探索动手操作,感知6的分解组成,掌握6的5种分法。

2、在感知数的分解组成的基础上,掌握数组成的递增、递减规律、互相交换的规律。

3、发展幼儿观察力、分析力,记录能力培养幼儿对数学的兴趣。

二、活动重点

感知整体与部分的关系,学习并记录6的5种分法。

三、活动难点

总结归纳6以内数的分解和组成规律。

四、活动准备

PPT课件、学具操作材料(打印)、数字卡片(打印)。

配套课件:大班数学公开课课件《6的分解组成》PPT课件

五、活动过程

复习5的分解组合、

对对碰

教师:我说五、

幼儿:我对五、

教师:5可以分成1和几?

幼儿:5可以分成1和4。

教师:5可以分成4和几?

幼儿:5可以分成4和1。

(一)开始部分

(二)基本部分

1、请幼儿帮助小熊猫来分房子。

(1)幼儿观察小熊猫,将6只小熊猫分在两座房子里,请幼儿说一说自己分的结果,教师将每分一次的结果记录下来。

2、教师归纳幼儿的分法,总结出“6”的5种分法。

3、观察幼儿无序的分法,引导学习有序进行“6”的分解组成。

(1)教师分别演示点击给6只熊猫分房子,一边分一边和幼儿点数两座房子里小动物的数量,并记录下分的结果,“6”可以分成1和5、2和4、3和3、4和2、5和1。

(2)幼儿观察“6”的分解式,初步掌握有序的进行“6”的分解组成,了解数组成的递增、递减规律、互相交换的规律。

(3)请幼儿读屏幕上的分解式:如:6可以分成2和4,2和4组成6,2加4等于6。

(三)巩固练习(操作学具)

找钥匙开锁(开锁:一把钥匙开一把锁,请小朋友仔细看看钥匙和锁上的数字,哪两个数字合起来是6,就用线连起来)。

(四)游戏活动

1、“找朋友”。

游戏规则:请前面手里拿卡片的小朋友找座位上的小朋友做“好朋友”,要求两数和起来是6。

2、火车开了。

游戏规则:幼儿每人一张数字卡片,找和自己卡片上数字合起来是6的小朋友手拉手一起上火车,边唱《火车开了》歌曲边出活动室。

数学公开课教案通用模板篇7

教学目标

1.理解有理数加法的意义,掌握有理数加法法则中的符号法则和绝对值运算法则;

2.能根据有理数加法法则熟练地进行有理数加法运算,弄清有理数加法与非负数加法的区别;

3.三个或三个以上有理数相加时,能正确应用加法交换律和结合律简化运算过程;

4.通过有理数加法法则及运算律在加法运算中的运用,培养学生的运算能力;

5.本节课通过行程问题说明法则的合理性,然后又通过实例说明如何运用法则和运算律,让学生感知到数学知识来源于生活,并应用于生活。

教学建议

(一)重点、难点分析

本节教学的重点是依据法则熟练进行运算。难点是法则的理解。

(1)加法法则本身是一种规定,教材通过行程问题让学生了解法则的合理性。

(2)具体运算时,应先判别题目属于运算法则中的哪个类型,是同号相加、异号相加、还是与0相加。

(3)如果是同号相加,取相同的符号,并把绝对值相加。如果是异号两数相加,应先判别绝对值的大小关系,如果绝对值相等,则和为0;如果绝对值不相等,则和的符号取绝对值较大的加数的符号,和的绝对值就是较大的绝对值与较小的绝对值的差。一个数与0相加,仍得这个数。

(二)知识结构

(三)教法建议

1.对于基础比较差的同学,在学习新课以前可以适当复习小学中算术运算以及正负数、相反数、绝对值等知识。

2.法则是规定的,而教材开始部分的行程问题是为了说明加法法则的合理性。

3.应强调加法交换律“a+b=b+a”中字母a、b的任意性。

4.计算三个或三个以上的加法算式,应建议学生养成良好的运算习惯。不要盲目动手,应该先仔细观察式子的特点,深刻认识加数间的相互关系,找到合理的运算步骤,再适当运用加法交换律和结合律可以使加法运算更为简化。

5.可以给出一些类似“两数之和必大于任何一个加数”的判断题,以明确由于负数参与加法运算,一些算术加法中的正确结论在有理数加法运算中未必也成立。

6.在探讨导出法则的行程问题时,可以尝试发挥多媒体教学的作用。用动画演示人或物体在同一直线上两次运动的过程,让学生更好的理解有理数运算法则。

教学设计示例

(第一课时)

教学目的

1.使学生理解有理数加法的意义,初步掌握有理数加法法则,并能准确地进行运算.

2.通过运算,培养学生的运算能力.

教学重点与难点

重点:熟练应用法则进行加法运算.

难点:法则的理解.

教学过程

(一)复习提问

1.有理数是怎么分类的?

2.有理数的绝对值是怎么定义的?一个有理数的绝对值的几何意义是什么?

3.有理数大小比较是怎么规定的?下列各组数中,哪一个较大?利用数轴说明?

-3与-2;|3|与|-3|;|-3|与0;

-2与|+1|;-|+4|与|-3|.

(二)引入新课

在小学算术中学过了加、减、乘、除四则运算,这些运算是在正有理数和零的范围内的运算.引入负数之后,这些运算法则将是怎样的呢?我们先来学运算.

(三)进行新课 (板书课题)

例1 如图所示,某人从原点0出发,如果第一次走了5米,第二次接着又走了3米,求两次行走后某人在什么地方?

两次行走后距原点0为8米,应该用加法.

为区别向东还是向西走,这里规定向东走为正,向西走为负.这两数相加有以下三种情况:

1.同号两数相加

(1)某人向东走5米,再向东走3米,两次一共走了多少米?

这是求两次行走的路程的和.

5+3=8

用数轴表示如图

从数轴上表明,两次行走后在原点0的东边.离开原点的距离是8米.因此两次一共向东走了8米.

可见,正数加正数,其和仍是正数,和的绝对值等于这两个加数的绝对值的和.

(2)某人向西走5米,再向西走3米,两次一共向东走了多少米?

显然,两次一共向西走了8米

(-5)+(-3)=-8

用数轴表示如图

从数轴上表明,两次行走后在原点0的西边,离开原点的距离是8米.因此两次一共向东走了-8米.

可见,负数加负数,其和仍是负数,和的绝对值也是等于两个加数的绝对值的和.

总之,同号两数相加,取相同的符号,并把绝对值相加.

例如,(-4)+(-5),……同号两数相加

(-4)+(-5)=-( ),…取相同的符号

4+5=9……把绝对值相加

∴ (-4)+(-5)=-9.

口答练习:

(1)举例说明算式7+9的实际意义?

(2)(-20)+(-13)=?

(3)

2.异号两数相加

(1)某人向东走5米,再向西走5米,两次一共向东走了多少米?

由数轴上表明,两次行走后,又回到了原点,两次一共向东走了0米.

5+(-5)=0

可知,互为相反数的两个数相加,和为零.

(2)某人向东走5米,再向西走3米,两次一共向东走了多少米?

由数轴上表明,两次行走后在原点o的东边,离开原点的距离是2米.因此,两次一共向东走了2米.

就是 5+(-3)=2.

(3)某人向东走3米,再向西走5米,两次一共向东走了多少米?

由数轴上表明,两次行走后在原点o的西边,离开原点的距离是2米.因此,两次一共向东走了-2米.

就是 3+(-5)=-2.

请同学们想一想,异号两数相加的法则是怎么规定的?强调和的符号是如何确定的?和的绝对值如何确定?

最后归纳

绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.

例如(-8)+5……绝对值不相等的异号两数相加

8>5

(-8)+5=-( )……取绝对值较大的加数符号

8-5=3 ……用较大的绝对值减去较小的绝对值

∴(-8)+5=-3.

口答练习

用算式表示:温度由-4℃上升7℃,达到什么温度.

(-4)+7=3(℃)

3.一个数和零相加

(1)某人向东走5米,再向东走0米,两次一共向东走了多少米?

显然,5+0=5.结果向东走了5米.

(2)某人向西走5米,再向东走0米,两次一共向东走了多少米?

容易得出:(-5)+0=-5.结果向东走了-5米,即向西走了5米.

请同学们把(1)、(2)画出图来

由(1),(2)得出:一个数同0相加,仍得这个数.

总结有理数加法的三个法则.学生看书,引导他们看有理数加法运算的三种情况.

有理数加法运算的三种情况:

特例:两个互为相反数相加;

(3)一个数和零相加.

每种运算的法则强调:(1)确定和的符号;(2)确定和的绝对值的方法.

(四)例题分析

例1 计算(-3)+(-9).

分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征).

解:(-3)+(-9)=-12.

例2

分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对值..(强调“两个较大”“一个较小”)

解:

解题时,先确定和的符号,后计算和的绝对值.

(五)巩固练习

1.计算(口答)

(1)4+9; (2) 4+(-9); (3)-4+9; (4)(-4)+(-9);

(5)4+(-4); (6)9+(-2); (7)(-9)+2; (8)-9+0;

2.计算

(1)5+(-22); (2)(-1.3)+(-8)

(3)(-0.9)+1.5; (4)2.7+(-3.5)

探究活动

题目 (1)在1,2,3,4四个数的前面添加正号或负号,使它们的和为0;

(2)在1,2,3,…,11,12十二个数的前面添加正号或负号,使它们的和为零;

(3)在1,2,3,4,…,99,100一百个数的前面添加正号或负号,使它们的和为0;

(4) 在解决这个问题的过程中,你能总结出一些什么数学规律?

参考答案 我们不妨不妨以第二问为例探讨,比如,在12,11,10,5这四个数的前面添加负号,则这12个数的和是:-12-11-10+9+8+7+6-5+4+3+2+1=2.

现在我们将各数的符号加以调整,考虑到将一个正数变号,其和就要减少这个正数的两倍,因此可得到两个(明显的)解答:

(1)得+1变为-1,有-12-11-10+9+8+7+6-5+4+3+2-1=0; ①

(2)将(+6-5)变为-(6-5),有-12-11-10+9+8+7-6+5+4+3+2+1=0.②

又如,在11,10,8,7,5这五个数的前面添加负号,得

12-11-10-9-8-7+6-5+4+3+2+1=-4,

我们就有多种调整的方法,如将-8与+6变号,有

12-11-10+9+8-7-6-5+4+3+2+1=0. ③

经过几次试验,我们发现了规律:欲使十二个数的和为零,其中正数的和的绝对值与负数的和的绝对值必须相等.但

1+2+3+4+5+6+7+8+9+10+11+12=78

因此我们应该使各正数的和的绝对值与各负数的和的绝对值均为

为了简便起见,我们把①式所表示的一个解答记为(12,11,10,5,1),那么②,③两式所表示的解答就分别记为(12,11,10,6)与(11,10,7,6,5).

同时我们还发现:如果(12,11,10,5,1)是一个解答,那么(9,8,7,6,4,3,2)也必定是一个解答.同样,对应于②,③两式,还分别有另两个解答:(9,8,7,5,4,3,2,1)与(12,9,8,4,3,2,1).这个规律我们不妨叫做对偶律.

此外我们还可发现,由于的三个数12,11,10其和33<39,因此必须再增加一个数6,才有解答(12,11,10,6),也就是说:添加负号的数至少要有四个;反过来,根据对偶律得:添加负号的数最多不超过八个.

掌握了上述几条规律,我们就能够在很短的时间内得到许多解答.最后让我们告诉你,第(2)问的解答个数并非无数多,其总数是124个.

数学公开课教案通用模板篇8

教学目标:

1、 知道有理数加法的意义和法则

2、 会用有理数加法法则正确地进行有理数的加法运算

3、 经历有理数加法法则的探究过程,体会分类和归纳的数学思想方法

教学重点: 有理数加法则的探索及运用

教学难点: 异号两数相加的法则的理解及运用

教学过程:

一、 创设情境

展示足球赛图片,你知道足球赛中“净胜球”是怎么回事吗?

(学生口答,教师介绍净胜球的算法:只要把各场比赛的结果相加就可以得到,由此揭示课题。)

二、 探求新知

1、甲、乙两队进行足球比赛,

(1)、如果上半场赢了3球,下半场又赢了2球,那么全场累计净胜几球?

(2)、如果上半场赢了3球,下半场输了2球,那么全场累计净胜几球?

足球比赛中赢球个数与输球个数是一对相反意义的量.若规定赢球为正,输球为负,例如赢3球记为“+3”,输2球记为“-2”,你能把上述结果用加法算式表示出来吗?

(学生根据生活经验得到两种情况下的净胜球数,从而列出算式:(+3)+(+2)= +5;(+3)+(-2)= +1,教师板书。)

(3)、除了上面所说的“赢了再赢”,“先赢后输”,你还能说出其它可能的几种情况并用加算式表示吗?

(引导学生联系生活实际思考输赢球其它可能的情况,尽可能完整地说出所有的可能,由此感受两个有理数相加的各种情况,让学生自由发言,相互补充,教师板书算式:(-3)+(+2)= -1,(-3)+(-2)= -5,(-3)+0= -3,0+(+2)=+2,教师还可根据学生回答情况补充:上半场赢了3球,下半场输了3球;上半场打平,下半场也打平,最后的净胜球情况,由学生说出结果并列出算式:(+3)+(-3)= 0,0+0=0 )

2、你能举出一些运用有理数加法的实际例子吗?

(学生列举实例并根据具体意义写出算式)

3、学生活动:

(1)、把笔尖放在数轴原点处,先向正方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示什么数?你能用数轴和加法算式表示以上过程及结果吗?

(2)、把笔尖放在数轴原点个单位长度,再向负方向移动2个单位长度,这时笔尖的位置表示什么数?你能用数轴和加法算式表示以上过程及结果吗?

(3)、你还能再做一些类似的活动,并写出相应的算式吗?

(教师示范活动(1)的操作过程,学生列出算式并完成(2)(3),得到一组算式,教师板书。这一活动目的是让学生从“形”的角度,直观感受有理数的加法法则。)

4、 归纳法则:

观察上述算式,和小学学过的加法运算有什么区别?你能归纳出有理数的加法法则吗?

(由前面所学的内容学生已经知道:有理数由符号和绝对值两部分组成,所以两个有理数的相加时,确定和时也需要分别确定和的符号和绝对值,教师可引导学生对照情境中输赢球的情况分别探索和的符号和绝对值如何确定,学生相互交流,自由发言,不断完善。通过探索有理数加法法则的过程,学生体会分类和归纳的数学思想方法。)

5、 例题精讲:

例1 、计算

(1)、 (-5)+(-3) (2)、(-8)+(+2);; (3)、(+6)+(-4)

(4)、 5+(-5); (5)、 0+(-2); (学生口答计算结果,并对照法则说说是如何确定和的符号和绝对值的,教师板书解题过程,让学生体会“运算有据”。)

解:(1)、(-5)+(-3)

= -(5+3) (同号两数相加,取相同的符号,并把绝对值相减)

= -8

(2)、(-8)+(+2)

= -(8-2) (异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。)

= -6

(4)、5+(-5);

=0 (互为相反的两数之和为0)

6、 训练巩固:

1、 p33练一练2

(学生利用扑克完成本题,通过游戏进一步巩固有理数加法法则,体现“做中学”的新课程理念。)

7、 延伸拓展:

(1)、一个数是2的相反数,另一个数的绝对值是5,求这两个数的和

(2)、在小学里,计算两个数相加时,它们的和总是小于任何一个加数,学了有理数的加法法则后,你认为这个结论还成立吗?请你举例说明

(这两题都具有一定的挑战性,第(1)题可让学生进一步体会分类的数学思想方法。第(2)题具有开放性,可让学生在探索的过程中进一步理解法则。)

三、课堂小结:

学生回顾本节课所学内容,谈谈自己对有理数加法法则的理解及如何进行有理数加法运算。

四、布置作业:

1、 课本p41 第1题

2、 列举一些生活中运用有理数加法的实际例子,并相互交流。

数学公开课教案通用模板篇9

一、教学目标设计

通过实例理解充分条件、必要条件的意义。

能够在简单的问题情境中判断条件的充分性、必要性。

二、教学重点及难点

充分条件、必要条件的判断;

充分条件、必要条件的判断方法。

三、教学流程设计

四、教学过程设计

一、概念引入

早在战国时期,《墨经》中就有这样一段话有之则必然,无之则未必不然,是为大故无之则必不然,有之则未必然,是为小故。

今天,在日常生活中,常听人说:这充分说明,没有这个必要等,在数学中,也讲充分和必要,这节课,我们就来学习教材第一章第五节充分条件与必要条件。

二、概念形成

1、 首先请同学们判断下列命题的真假

(1)若两三角形全等,则两三角形的面积相等。

(2)若三角形有两个内角相等,则这个三角形是等腰三角形。

(3)若某个整数能够被4整除,则这个整数必是偶数。

(4) 若ab=0,则a=0。

解答:命题(2)、(3)、(4)为真。命题(4)为假;

2、请同学用推断符号写出上述命题。

解答:(1)两三角形全等 两三角形的面积相等。

(2) 三角形有两个内角相等 三角形是等腰三角形。

(3) 某个整数能够被4整除则这个整数必是偶数;

(4)ab=0 a=0。

3、充分条件与必要条件

继续结合上述实例说明什么是充分条件、什么是必要条件。

若某个整数能够被4整除则这个整数必是偶数中,我们称某个整数能够被4整除是这个整数必是偶数的充分条件,可以解释为:只要某个整数能够被4整除成立,这个整数必是偶数就一定成立;而称这个整数必是偶数是某个整数能够被4整除的必要条件,可以解释成如果某个整数能够被4整除 成立,就必须要这个整数必是偶数成立

充分条件:一般地,用、分别表示两件事,如果这件事成立,可以推出这件事也成立,即,那么叫做的充分条件。[说明]:①可以解释为:为了使成立,具备条件就足够了。②可进一步解释为:有它即行,无它也未必不行。③结合实例解释为: x = 0 是 xy = 0 的充分条件,xy = 0不一定要 x = 0。)

必要条件:如果,那么叫做的必要条件。

[说明]:①可以解释为若,则叫做的必要条件,是的充分条件。②无它不行,有它也不一定行③结合实例解释为:如 xy = 0是 x = 0的必要条件,若xy0,则一定有 x若xy = 0也不一定有 x = 0。

回答上述问题(1)、(2)中的条件关系。

(1)中:两三角形全等是两三角形的面积相等的充分条件;两三角形的面积相等是两三角形全等的必要条件。

(2)中:三角形有两个内角相等是三角形是等腰三角形的充分条件;三角形是等腰三角形是三角形有两个内角相等的必要条件。

4、拓广引申

把命题:若某个整数能够被4整除,则这个整数必是偶数中的条件与结论分别记作与,那么,原命题与逆命题的真假同与之间有什么关系呢?

关系可分为四类:

(1)充分不必要条件,即,而

(2)必要不充分条件,即,而

(3)既充分又必要条件,即,又有

(4)既不充分也不必要条件,即,又有。

三、典型例题(概念运用)

例1:(1)已知四边形ABCD是凸四边形,那么AC=BD是四边形ABCD是矩形的什么条件?为什么?(课本例题p22例4)

(2) 是 的什么条件。

(3)a+b是1,b什么条件。

解:(1)AC=BD是四边形ABCD是矩形的必要不充分条件。

(2)充分不必要条件。

(3)必要不充分条件。

[说明]①如果把命题条件与结论分别记作与,则既要对进行判断,又要对进行判断。②要否定条件的充分性、必要性,则只需举一反例即可。

例2:判断下列电路图中p与q的充要关系。其中p:开关闭合;q:

灯亮。(补充例题)

[说明]①图中含有两个开关时,p表示其中一个闭合,另一个情况不确定。②加强学科之间的横向沟通,通过图示,深化概念认识。

例3、探讨下列生活中名言名句的充要关系。(补充例题)

(1)头发长,见识短。 (2)骄兵必败。

(3)有志者事竟成。 (4)春回大地,万物复苏。

(5)不入虎穴、焉得虎子 (6)四肢发达,头脑简单

[说明]通过本例,充分调动学生生活经验,使得抽象概念形象化。从而激发学生学习热情。

四、巩固练习

1、课本P/22练习1。5(1)

2:填表(补充)

p q p是q的

什么条件 q是p的

什么条件

两个角相等 两个角是对顶角

内错角相等 两直线平行

四边形对角线相等 四边形是平行边形

a=b ac=bc

[说明]通过练习,及时巩固所学新知,反馈教学效果。

五、课堂小结

1、本节课主要研究的内容:

推断符号,

充分条件的意义 命题充分性、必要性的判断。

必要条件的意义

2、 充分条件、必要条件判别步骤:

① 认清条件和结论。

② 考察p q和q p的真假。

3、充分条件、必要条件判别技巧:

① 可先简化命题。

② 否定一个命题只要举出一个反例即可。

③ 将命题转化为等价的逆否命题后再判断。

六、课后作业

书面作业:课本P/24习题1。51,2,3。

五、教学设计说明

1、充分条件、必要条件以及下节课中充要条件与集合的概念一样涉及到数学的各个分支,用推出关系的形式给出它的定义,对高一学生只要求知道它的意义,并能判断简单的充分条件与必要条件。

2、由于充要条件与命题的真假、命题的条件与结论的相互关系紧密相关,为此,教学时可以从判断命题的真假入手,来分析命题的条件对于结论来说,是否充分,从而引入充分条件的概念,进而引入必要条件的概念。

3、教材中对充分条件、必要条件的定义没有作过多的解释说明,为了让学生能理解定义的合理性,在教学过程中,教师可以从一些熟悉的命题的条件与结论之间的关系来认识充分条件的概念,从互为逆否命题的等价性来引出必要条件的概念。

4、由于这节课概念性、理论性较强,一般的教学使学生感到枯燥乏味,为此,激发学生的学习兴趣是关键。教学中始终要注意以学生为主,结合相关学科及学生生活经验让学生在自我思考、相互交流中去给概念下定义,去体会概念的本质属性。

数学公开课教案通用模板篇10

学习目标

1.通过动手观察、操作、推断、交流等数学活动,进一步发展空间观念毛

2.在具体情境中了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角

重点、难点

重点:邻补角、对顶角的概念,对顶角性质与应用.

难点:理解对顶角相等的性质的探索.

教学过程

一、复习导入

教师在轻松欢快的音乐中演示第五章章首图片为主体的课件.

学生欣赏图片,阅读其中的文字.

师生共同总结:我们生活的世界中,蕴涵着大量的相交线和平行线. 本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质, 研究平行线的性质和平行的判定以及图形的平移问题.

二、自学指导

观察剪刀剪布的过程,引入两条相交直线所成的角

握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小. 如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大.

三、 问题导学

认识邻补角和对顶角,探索对顶角性质

(1).学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类?

学生思考并在小组内交流,全班交流.

∠AOC和∠BOC有一条公共边OC,它们的另一边互为反向延长线.

∠AOC和∠BOD有公共的顶点O,而是∠AOC的两边分别是∠BOD两边的反向延长线.

( 2).学生用量角器分别量一量各个角的度数,以发现各类角的度数有什么关系,学生得出有"相邻"关系的两角互补,"对顶"关系的两角相等.

(3).概括形成邻补角、对顶角概念.

有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.

如果两个角有一个公共顶点, 而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角.

四、典题训练

1.例:如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数.

2.:判断下列图中是否存在对顶角.

小结

自我检测

一、判断题:

1.如果两个角有公共顶点和一条公共边,而且这两角互为补角, 那么它们互为邻补角. ( )

2.两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补. ( )

二、填空题:

1.如图1,直线AB、CD、EF相交于点O,∠BOE的对顶角是_______,∠COF 的邻补角是________.若∠AOC:∠AOE=2:3,∠EOD=130°,则∠BOC=_________.

(1) (2)

2.如图2,直线AB、CD相交于点O,∠COE=90°,∠AOC=30°,∠FOB=90°, 则∠EOF=________.

三、解答题:

1.如图,直线AB、CD相交于点O.

(1)若∠AOC+∠BOD=100°,求各角的度数.

(2)若∠BOC比∠AOC的2倍多33°,求各角的度数.毛

2.两条直线相交,如果它们所成的一对对顶角互补, 那么它的所成的各角的度数是多少?

数学公开课教案通用模板篇11

活动目标:

1、根据不同的画面进行讲述,并列出相应的分解式,从而感知加法算式所表达的数量关系。

2、引导小朋友积极探索数学活动。

3、喜欢数学活动,乐意参与各种操作游戏,培养思维的逆反性。

4、有兴趣参加数学活动。

活动准备:

1、教具:课件、1———10的数字卡。

2、学具:儿童用书,幼儿自带10根小棒。

活动过程:

一、复习数字10

1、教师:伸出小手,数数自己有几个手指头?(10个)

2、教师:数字10怎么写?

3、请孩子说一说,写一写。

二、学习10的组成(标题)

1、出示10张苹果图让学生数一数(课件演示)。

2、教师:请你尝试着把10根小棒分成两组,有几种分法呢?引导学生自己动手操作。

3、请孩子想一想,说一说自己的分法。

4、(演示课件)教师根据交换规律和左边多1,右边少1的规律在黑板上写出10的分解式。(教师板书)

5、教师总结,请学生分组读一读10的组成。

三、情境感知——看图学习加法应用题

1、出示苹果图。

看看这幅图,根据这幅图编出一道加法应用题出来?

2、引导小朋友用三句话表达图片的意思。(图上有4个红苹果,6个绿苹果,问:图上共有几个苹果?)

3、小朋友口述图意并说出算式,老师记录。

4+6=10(个)

四、做游戏"找朋友"

1、教师提供每个孩子一张数字卡,组织孩子围成一个圆圈。

2、教师:音乐开始,当唱到"找到一个好朋友"时,请你找到和你的数字卡合起来是10的同伴做好朋友。

3、游戏开始,可以让孩子互换数字卡反复游戏。

五、请孩子结合儿童用书练习。

教学反思:

在执教的过程中缺少激情,数学本身就是枯燥的,那在教孩子新知识的时候,就需要老师以自己的激情带动孩子的学习,在今后的教学中这方面也要注意。

数学公开课教案通用模板篇12

活动目标:

1、通过剪"春"活动,引导幼儿自主表现春天美丽的事物。

2、激发幼儿大胆的想象,自由剪出不同变化的"春"字。

3、通过幼儿自主的操作,初步理解"减法"的含义。

4、让孩子们能正确判断数量。

5、了解数字在日常生活中的应用,初步理解数字与人们生活的关系。

活动重点难点:

1、重点:能大胆想象剪出不同变化的"春"字

2、难点:初步理解减法的含义

材料与环境创设:

1、幼儿已经学会剪"春"字

2、工具:剪刀、固体胶、手工纸(每人数量不同)方形铅画纸

3、5以内的减法题(人手一份)

活动过程:

一、活动导入:

1、今天,春姑娘给我们带来了许多的纸,看看春姑娘都带来是什么颜色的纸?那绿色代表什么?

2、今天春姑娘又要请你们剪"春",上次你剪"春"字的时候,"春风"遇到了谁?

二、幼儿剪"春"要求:

1、在剪之前先数数春姑娘给你带来了几张纸?

2、每个"春"字都要不一样。

3、将剪好的"春"字贴在铅画纸上。

(在幼儿剪几张纸后老师示意停下。老师给的纸不一定剪完)

三、比较"春"字

1、请幼儿介绍一下,你的几个"春"字有什么地方不一样?

2、教师总结幼儿变化的地方,及时肯定幼儿的`大胆想象。

四、找题目:

1、师:今天春姑娘一共给你们几张纸?现在还剩下几张纸?是多了还是少了?我们可以用哪种计算方法来表示?为什么用减法?

师概括:当剩下的东西比原来的总数少了时,我们就用减法来表示。

2、请幼儿根据自己剪"春"字的用纸情况找相应的题目表示,并在等号后写上答案。

3、提问:你为什么选这道题?(师生共同总结题目中每个数字的含义)

五、延伸:

引导幼儿向同伴、客人老师介绍自己剪的"春"字和相应的减法题。

数学公开课教案通用模板篇13

【教学目标】

1. 知识与技能

(1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列:

(2)账务等差数列的通项公式及其推导过程:

(3)会应用等差数列通项公式解决简单问题。

2.过程与方法

在定义的理解和通项公式的推导、应用过程中,培养学生的观察、分析、归纳能力和严密的逻辑思维的能力,体验从特殊到一般,一般到特殊的认知规律,提高熟悉猜想和归纳的能力,渗透函数与方程的思想。

3.情感、态度与价值观

通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、用于发现的求知精神,激发学生的学习兴趣,让学生感受到成功的喜悦。在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的良好习惯。

【教学重点】

①等差数列的概念;②等差数列的通项公式

【教学难点】

①理解等差数列“等差”的特点及通项公式的含义;②等差数列的通项公式的推导过程.

【学情分析】

我所教学的学生是我校高一(7)班的学生(平行班学生),经过一年的高中数学学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展.

【设计思路】

1.教法

①启发引导法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性.

②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性.

③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点.

2.学法

引导学生首先从三个现实问题(数数问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法.

【教学过程】

一:创设情境,引入新课

1.从0开始,将5的倍数按从小到大的顺序排列,得到的数列是什么?

2.水库管理人员为了保证优质鱼类有良好的生活环境,用定期放水清库的办法清理水库中的杂鱼.如果一个水库的水位为18m,自然放水每天水位降低2.5m,最低降至5m.那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位(单位:m)组成一个什么数列?

3.我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本息计算下一期的利息.按照单利计算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10 000元钱,年利率是0.72%,那么按照单利,5年内各年末的本利和(单位:元)组成一个什么数列?

教师:以上三个问题中的数蕴涵着三列数.

学生:

1:0,5,10,15,20,25,….

2:18,15.5,13,10.5,8,5.5.

3:10072,10144,10216,10288,10360.

(设置意图:从实例引入,实质是给出了等差数列的现实背景,目的是让学生感受到等差数列是现实生活中大量存在的数学模型.通过分析,由特殊到一般,激发学生学习探究知识的自主性,培养学生的归纳能力.

二:观察归纳,形成定义

①0,5,10,15,20,25,….

②18,15.5,13,10.5,8,5.5.

③10072,10144,10216,10288,10360.

思考1上述数列有什么共同特点?

思考2根据上数列的共同特点,你能给出等差数列的一般定义吗?

思考3你能将上述的文字语言转换成数学符号语言吗?

教师:引导学生思考这三列数具有的共同特征,然后让学生抓住数列的特征,归纳得出等差数列概念.

学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些数都是按照一定顺序排列的…只要合理教师就要给予肯定.

教师引导归纳出:等差数列的定义;另外,教师引导学生从数学符号角度理解等差数列的定义.

(设计意图:通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性;使学生体会到等差数列的规律和共同特点;一开始抓住:“从第二项起,每一项与它的前一项的差为同一常数”,落实对等差数列概念的准确表达.)

三:举一反三,巩固定义

1.判定下列数列是否为等差数列?若是,指出公差d.

(1)1,1,1,1,1;

(2)1,0,1,0,1;

(3)2,1,0,-1,-2;

(4)4,7,10,13,16.

教师出示题目,学生思考回答.教师订正并强调求公差应注意的问题.

注意:公差d是每一项(第2项起)与它的前一项的差,防止把被减数与减数弄颠倒,而且公差可以是正数,负数,也可以为0 .

(设计意图:强化学生对等差数列“等差”特征的理解和应用).

2思考4:设数列{an}的通项公式为an=3n+1,该数列是等差数列吗?为什么?

(设计意图:强化等差数列的证明定义法)

四:利用定义,导出通项

1.已知等差数列:8,5,2,…,求第200项?

2.已知一个等差数列{an}的首项是a1,公差是d,如何求出它的任意项an呢?

教师出示问题,放手让学生探究,然后选择列式具有代表性的上去板演或投影展示.根据学生在课堂上的具体情况进行具体评价、引导,总结推导方法,体会归纳思想以及累加求通项的方法;让学生初步尝试处理数列问题的常用方法.

(设计意图:引导学生观察、归纳、猜想,培养学生合理的推理能力.学生在分组合作探究过程中,可能会找到多种不同的解决办法,教师要逐一点评,并及时肯定、赞扬学生善于动脑、勇于创新的品质,激发学生的创造意识.鼓励学生自主解答,培养学生运算能力)

五:应用通项,解决问题

1判断100是不是等差数列2, 9,16,…的项?如果是,是第几项?

2在等差数列{an}中,已知a5=10,a12=31,求a1,d和an.

3求等差数列 3,7,11,…的第4项和第10项

教师:给出问题,让学生自己操练,教师巡视学生答题情况.

学生:教师叫学生代表总结此类题型的解题思路,教师补充:已知等差数列的首项和公差就可以求出其通项公式

(设计意图:主要是熟悉公式,使学生从中体会公式与方程之间的联系.初步认识“基本量法”求解等差数列问题.)

六:反馈练习:教材13页练习1

七:归纳总结:

1.一个定义:

等差数列的定义及定义表达式

2.一个公式:

等差数列的通项公式

3.二个应用:

定义和通项公式的应用

教师:让学生思考整理,找几个代表发言,最后教师给出补充

(设计意图:引导学生去联想本节课所涉及到的各个方面,沟通它们之间的联系,使学生能在新的高度上去重新认识和掌握基本概念,并灵活运用基本概念.)

【设计反思】

本设计从生活中的数列模型导入,有助于发挥学生学习的主动性,增强学生学习数列的兴趣.在探索的过程中,学生通过分析、观察,归纳出等差数列定义,然后由定义导出通项公式,强化了由具体到抽象,由特殊到一般的思维过程,有助于提高学生分析问题和解决问题的能力.本节课教学采用启发方法,以教师提出问题、学生探讨解决问题为途径,以相互补充展开教学,总结科学合理的知识体系,形成师生之间的良性互动,提高课堂教学效率.

数学公开课教案通用模板篇14

一、教学目标:

1、加深对加权平均数的理解

2、会根据频数分布表求加权平均数,从而解决一些实际问题

3、会用计算器求加权平均数的值

二、重点、难点和难点的突破方法:

1、重点:根据频数分布表求加权平均数

2、难点:根据频数分布表求加权平均数

3、难点的突破方法:

首先应先复习组中值的定义,在七年级下教材P72中已经介绍过组中值定义。因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义。

应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中如果数据分布较为均匀时,比如教材P140探究问题的表格中的第三组数据,它的范围是41≤X≤61,共有20个数据,若分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=1010。而用组中值51去乘以频数20恰好为1020≈1010,即当数据分布较为平均时组中值恰好近似等于它的平均数。所以利用组中值X频数去代替这组数据的和还是比较合理的,而且这样做的好处是简化了计算量。

为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义。

三、例习题的意图分析

1、教材P140探究栏目的意图。

(1)、主要是想引出根据频数分布表求加权平均数近似值的计算方法。

(2)、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权。

这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义。

2、教材P140的思考的意图。

(1)、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题

(2)、帮助学生理解表中所表达出来的信息,培养学生分析数据的能力。

3、P141利用计算器计算平均值

这部分篇幅较小,与传统教材那种详细介绍计算器使用方法产生明显对比。一则由于学校中学生使用计算器不同,其操作过程有差别亦不同,再者,各种计算器的使用说明书都有详尽介绍,同时也说明在今后中考趋势仍是不允许使用计算器。所以本节课的重点内容不是利用计算器求加权平均数,但是掌握其使用方法确实可以运算变得简单。统计中一些数据较大、较多的计算也变得容易些了。

数学公开课教案通用模板篇15

活动目标:

1、能手口一致地点数6个或7个物品,说出总数。

2、感知数字6、7的形成和所表示的实际意义,会认读数字6、7。

3、提高幼儿思维的敏捷性,对数字有好奇心。

活动准备:

1、教具准备:“数字卡片”,“黑白灰串珠”。

2、学具准备:“数字卡片”。

3、《操作册》第3册第9—10页。

活动过程:

1、预备活动。

师幼互相问候。

走线,线上游戏:开火车。随音乐节奏开火车,节奏快,火车就开得快,节奏慢,火车就开得慢。游戏结束时,让幼儿猜谜:说它是花没人栽,六个花瓣空中开。北风送它下地来,地上、树上一片白。(雪花)

2、集体活动。

(1)学习6的形成。

教师请幼儿拿出“黑白灰串珠”,先拿出黑色串珠,请幼儿点数,一共有5颗。再拿出6的串珠,让幼儿换茬这串串珠与5的串珠有什么不同。(多了一颗白色粒珠。)数一数,这一串串珠有几颗。

小结:5添上1就是6,6比5多1,5比6少1。

(2)幼儿自己操作探索7的形成。

幼儿拿出7的黑白灰串珠,数一数有多少粒,再与6的串珠比一比,得出6添上1就是7,7比6多1,了解7的形成。

(3)认读数字6、7。

教师:6个猴子,6个桃子可以用数字王国的数字宝宝“6”来表示,6像哨子,有一个大大的肚皮,长长的脖子;7只小兔、7个胡萝卜可以用数字宝宝“7”来表示,7像爷爷的拐杖。

3、操作活动

完成《操作册》第3册第9—10的活动。

46101