小学数学教案设计课件
教案是老师教什么,学生学什么,学生根据老师安排的教学内容进行学习、思考、模仿等过程。接下来给大家分享小学数学教案设计课件,希望对大家写小学数学教案设计课件有所帮助。
小学数学教案设计课件篇1
教学目标:
1.借助情境图引导学生提出问题,引入求几个相同加数和的计算。
2.借助相同加数连加的计算,体会乘法的意义。
教学重点:
让学生经历几个相同的数相加的学习过程,初步理解乘法的意义。
教学难点:根据图意列出相应的加法算式,体会乘法的意义,体现算法多样化。教学方法:谈话法,讲授法。
教学时间:一课时。
教具:课本、电脑,实物投影仪。
教学过程:
一、创设情境。
师:同学们,你们喜欢魔术表演吗?
生:喜欢。
师:今天我们一起去看看精彩的魔术表演吧。
(出示主题图)
二、新授,解决问题。
1、初步感知画面。
师:多神奇的魔术表演啊,你都看到了什么?同学们这里会也藏着很多奇妙的数学知识,不信大家仔细的观察一下。
2、提问题。
师:小朋友观察得很仔细请你们接着看图,你能提出哪些数学问题,和你的小伙伴交流一下。学生可能回答:
一共有多少朵花?一共有多少条鱼?一共有多少个灯笼?
3、解决问题。
师:小朋友们很了不起,提出了这么多有价值的数学问题,谁来解决第一个问题?
生:2+2+2=6(朵)
第二题:4+4+4+4=16(条)
第三题:3+3+3+3+3+3=15(个)
师:同学们说得不错,请同学们观察一下这几个算式,你发现有什么特点?生:都是连加
生1:加数相同。
师:对每一题的加数都相同。2+2+2是几个2相加?
生:3个2相加,(依次说出后几个算式。)
师:请同学说一说20串灯笼的个数,怎么写算式?
生动手写:3+3+3+3??
师:你觉得写起来怎么样?
生:很麻烦。
师:怎么就不麻烦了?
生:用乘法。
师:你真爱学习。这个内容我们在下节课里学。
三、巩固练习
1、出示图:生说,师判断
2、出示图:师说题意,生填写,集体订正。
四、小结。
同学们,这节课你知道了什么?你觉得自己的表现怎么样?
五、布置作业。
提前预习下一课。
板书设计:乘法的初步认识。
教学反思:本节课我把教学重点放在了让学生自主提出问题、寻找解决问题的策略上,引出多种不用的解决方法,然后着重认识几个几连加。引导学生充分经历问题解决的过程,体验解决问题策略的多样性,这样对学生思维的发展和解决问题能力的提高都是非常有益的。
2课题体验相同加数连加
课型:练习课。
小学数学教案设计课件篇2
教学目标:
1.通过教学使学生认识各种计算工具,对算盘和计算器有一定的了解。
2.培养学生学习数学的兴趣。
3.使学生感受生活中处处有数学。
教学重难点:认识算盘、计算器,计算器的使用。
教学关键:能够自学了解算盘与计算器的使用方法。
教具准备:算盘、计算器。
教学过程:
课前参与:查找有关计算工具的资料,准备一下,把你所认识的计算工具用最清楚的方式介绍给大家。
一、计算工具的历史
(一)课前参与反馈(学生介绍计算工具)
前面我们了解了数是怎样产生的,随着数的产生,就会出现数的计算,为了计算方便,人们发明了各种各样的计算工具,课前同学们进行了有关资料的查询,谁来给大家介绍一下你所了解的计算工具?
学生发言。
(二)老师根据学生介绍的情况补充介绍计算工具的发展历史
计算工具的源头可以上溯至2000多年前的春秋战国时代,古代中国人发明的算筹是世界上最早的计算工具。在大约六、七百年前,中国人发明了更为方便的算盘,并一直沿用至今。许多人认为算盘是最早的数字计算机,而珠算口诀则是最早的体系化的算法。
计算尺的出现,开创了模拟计算的先河。从冈特开始,人们发明了多种类型的计算尺。直到20世纪中叶,计算尺才逐渐被袖珍计算器取代。
从17世纪到19世纪长达两百多年的时间里,一批杰出的科学家相继进行了机械式计算机的研制,其中的代表人物有帕斯卡、莱布尼茨和巴贝奇。这一时期的计算机虽然构造和性能还非常简单,但是其中体现的许多原理和思想已经开始接近现代计算机。
最古老的计算工具:算筹
我国春秋时期出现的算筹是世界上最古老的计算工具。计算的时候摆成纵式和横式两种数字,按照纵横相间的原则表示任何自然数,从而进行加、减、乘、除、开方以及其它的代数计算。负数出现后,算筹分红黑两种,红筹表示正数,黑筹表示负数。这种运算工具和运算方法,在当时世界上是独一无二的。
中国人发明算盘
随着计算技术的发展,在求解一些更复杂的数学问题时,算筹显得越来越不方便了。于是在大约六、七百年前,中国人发明了算盘,它结合了十进制计数法和一整套计算口诀并一直沿用至今,被许多人看作是最早的数字计算机。
一般的算盘大都是木制的,算珠也是木制的。后来发展到用铜等金属制作算盘。高档的算盘用玉制作。算珠除了圆柱形的算珠,也有截面为菱形的算珠。的算盘有几米长,最小的只有几厘米。
算盘可以进行加减乘除各种运算。时至今日,用算盘计算加减法的速度毫不逊色于计算器。
算盘上粒粒算珠的上下左右移动,可以使计算者直观的看到加减乘除的运算过程。算珠互相碰撞及算珠与横档的碰撞发出的有节奏的声音,形成一首美妙的“计算进行曲”。计算者从声音中体会到计算的愉快。这些愉快的感觉反映到俗语中,“三下五去二”、“管它三七二十一”,“劈里拍拉的算账”。
利用算盘进行计算时,不仅要用手指不断的拨动算珠,还要用眼睛看数,同时要不停的动脑筋。这是非常典型的手脑并用,对提高智力,开发右脑是一种好方法。有学者指出,学珠算练手指是开发智力的有效途径。
由于用算盘计算有这么多的优点,所以这个在中国已使用了二千多年的计算工具,现在在世界各地仍得到广泛应用。在受中国文化影响比较深的日本、韩国、东南亚,珠算技术的传授及普及教育一直受到重视。日本的小学生把读书、写字、打算盘列为三大基本功,日本的珠算教育在世界上处于地位。日本全国的算盘学校高达35,000所。韩国的珠算教育近年来也取得了长足的发展。
即使远在南美洲的巴西,也成立了珠算联盟,每年进行4次珠算考核和二次珠算大赛。北美洲的墨西哥有全国珠算支部,美国有珠算教育中心,有1,000多所学校接受珠算教育,算盘正成为美国的一种数学教学工具。
计算机
1946年美国宾夕法尼亚大学经过几年的艰苦努力,研制出世界上第一台电子计算机──埃尼阿克(ENIAC)。随着科学技术的进步,计算机不断更新。目前,速度快的计算机1秒钟能计算几十万亿次。计算机的大小也发生了很大的变化,世界上第一台计算机大约有一间房间那么大,现在有台式电脑、笔记本电脑,还有掌上电脑。
计算机发展史:
■1946年发生了人类历一件划时代的大事人类第一台电子计算机诞生了。
■以使用电子管为特点的第一代电子计算机在20世纪40年末和50年代初获得重大发展。
■第二代电计算机于20世纪50年代中期间问世以晶体管代替电子管并增加浮点运算。
■1964年IBM360系统问世它成为使用集成电路的第三代电子计算机的代表。
■使用超大规模集成电路的第四代计算机。
■第五代电子计算机被称为智能计算机。
■模仿人类大脑功能的神经计算机已经开发成功它标志着电子计算机的发展进入第六代。
二、算盘和计算器的认识与使用
1.算盘。
刚才同学们介绍了许多的计算工具,其中算盘是我们中国所特有的,现在在许多地方还能见到。你认识算盘吗?对算盘有哪些了解?
(1)算盘各部分名称
算盘的长方形的框内装有一根横梁,梁上钻孔镶上小棍数根,称为档。每根上穿一串珠子,叫算盘子儿或算珠。
常见的算盘是两颗算珠在横梁上,每颗代表五;五颗在横梁下,每颗代表一。计算时按规定的方法拨动算盘子儿而得出计算结果。
在拨数时要先定好数位,规定哪档是个位,然后再拨数。(规定从右往左数第三档为个位)
拨出一个数,说一说这表示多少?
(2)两种不同的算盘:
出示两种不同的算盘(书23页图):
观察有什么不同。
左边的算盘是中国算盘,上面有两颗珠子,每颗代表5。
后来算盘发展到日本,逐渐演变成右边这样,上面变成了一颗珠子。
原因是:原来是中国采用的是16进制,满15进1,所以算盘每档上是15;进入日本后,采用的是十进制,所以算盘的上面剩下1颗珠子。
(3)算盘的两种功能:计算和计数
2.计算器。
(1)计算器的使用非常的广泛,你认识计算器吗?
出示一个计算器,你能说说每个键的功能吗?
显示屏、时间键、日期键、清除键、开关及清除屏键、存储运算键、括号键、数字键、运算符号键、等号键等。
(2)让学生看课本自学,边看自己的计算器边看书,然后小组交流。
(3)计算器的使用与算盘相比有什么优势?
(4)全班看计算器,师生对口令。
三、总结
计算器的使用为我们带来了许多的方便,通过使用计算器,你觉得计算器如果具备哪些功能就更好了?不妨我们去找一找是否有具备这种功能的计算器,该如何使用,更希望同学们能利用自己的聪明才智发明出更好的计算工具。
四、作业:
1.继续查找有关计算工具的资料。(有兴趣的同学,如果能根据计算工具的发展史将其罗列就更好了。)
2.了解计算器的其他功能。
小学数学教案设计课件篇3
教学目标:
1.结合具体情境,认识比例尺;能根据图上距离、实际距离、比例尺中的两个量求第三个量。
2.运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些问题。
3.进一步体会数学与日常生活的密切联系。
教学重点:目标1、2。
教学难点:目标2。
教学过程:
活动一、创设情境,引入新知
笑笑家新买了一套房子,爸爸拿回了新房子的平面图,现在让我们也一起看看吧。
1.出示平面图。
2.观察图,说说从图中知道了什么?
3.思考:比例尺1:100是什么意思?
(1)独立思考。
(2)同伴交流。
(3)汇报。
得出:比例尺表示图上距离与实际距离的比。1:100的含义是图上1厘米的线段表示实际100厘米。
4.量一量平面图中笑笑卧室的长是()厘米,宽是()厘米。笑笑卧室实际的长是()米,宽是()米,面积是()平方米。直接提出“笑笑卧室实际的面积是多少平方米?
(1)学生四人小组合作完成。
(2)汇报交流。
强调:必须先求出实际的长和宽,然后再算出实际的面积。
5.笑笑家的总面积是多少平方米?
(1)学生独立完成。
(2)集体订正。
6.在父母卧室南墙正中有一扇宽为2米的窗户,在平面图标出来。
(1)理解题意。
(2)独立思考、交流方法,即要根据比例尺和实际距离先求出平面距离,然后再在图中标出。
(3)进行计算。
7.笑笑在本子上画自己卧室的平面图,她用8厘米表示自己卧室的长。
(1)图上1厘米表示的实际距离是多少厘米?
(2)她画的平面图的比例尺是多少?
活动二、试一试
1.小明家在北京,他和妈妈要到上海去旅游。算一算两地之间的实际距离大约是()千米。
(1)理解题意,独立思考。
(2)交流自己的想法。
(3)进行计算。
活动三、练一练
1.完成32页第2题。
(1)独立完成。
(2)汇报交流。
(3)提出问题。
2.一张地图上,用3厘米表示实际距离600米,求这张地图的比例尺。
(1)独立计算。
(2)汇报,全班交流。
(3)说说自己的想法。
活动四、实践活动
1.找一张中国地图,量一量,算一算。
(1)量出北京和台北之间的距离是()厘米,它们之间的实际距离大约是()千米。
(2)量出乌鲁木齐和上海之间的距离是()厘米,它们之间的实际距离是()千米。
2.找一张中国地图,用▲表出你家乡的大致位置。
(1)估一估在地图上你的家乡与北京的距离大约是()厘米,实际距离大约是()千米。
(2)放暑假时,你打算从()到()去旅游,两地之间的实际距离大约是()千米。
3.量一量你的卧室的长和宽,以及一些家具的长和宽,然后以1:100的比例尺画出你卧室的平面图。
学生可以在家长的帮助下,在家里完成。
课后小结:说说你今天的收获和问题。
小学数学教案设计课件篇4
十几加几和相应的减法
教学内容:教科书第88页,例六、练习十五
教学目标:1、使学生能够熟练地口算十几加几和相应的减法。
3、培养学生的估算意识和能力以及数感。
教学重点:使学生能够熟练地口算10加几、十几加几和相应的减法。
课时安排:1课时
教学过程:
准备:
1、教师读数,学生写数,请一板演:
2、计数器的认识:
十位上拨下1颗,表示多少?再在个位上拨下3表示多少,这个数是多少?13十位上是2颗珠子,这个数是多少?
教师拨数学生读数。14、17、19、18、20
一、复习引入:
1、读数、写数:估算:您能看出图中大约有几个吗?练习十五第3、4题。
2、板书13、15、19、20学生读,选择13说说这个数3、1各在什么位上?小结:从右边起,地一位是个位,第二位是十位。板书:个位、十位
3、复习一图四式及给部分名称:
根据第4题中的图1,看图写出4个算式:板书10+3=1313-10=3
3+10=1313-3=10
加数加数和被减数减数差
从这四个算式中你发现了什么?加减法之间的关系。
4、口算:10+4=14-4=14-10=6+10=16-6=
二、尝试迁移:
1、尝试计算:11+2=你是怎么想的?
数的方法,利用计数器计算:个位上加2是3,十位还是1,一共是13。
出示:13-2=你是怎么想的?
2、练习第5题:11+4=
3、试一试:13+4=6+12=16-5=11+7=18-6=
三、综合练习:
1、比较大小:第2题
2、送信:动物园召开联欢会,聪明的小狗表演节目,你能知道小狗要把卡投到哪个信箱里吗?
3、连线:接下来,很动物也想来试试,小朋友一起和他们想一想,哪两只动物的信是送给同一个信箱的。第1题。
4、我们也来做游戏:这次活动是谁组织的?涂色。书P90
四、练习小结:
小学数学教案设计课件篇5
教学课题:
十几减8。
教学内容:
教材第13页例2、做一做及练习三1、2题。
教学目标:
1、学生初步学会计算十几减8。
2、使学生通过练习,进一步理解计算退位减法的思考方法。
重点难点:
掌握计算20以内退位减法常用的“破十法”和“想加算减法”
教学准备:
多媒体课件。
教学过程:
一、复习铺垫
1、口算
8+3= 9+5= 7+6= 8+5= 7+4= 9+2= 9+8= 8+7=
2、看卡片,说出( )里应填多少。
9+( )=16 8+( )=13 9+( )=15 8+( )=17
3、12-9=3,说一说想的过程。
二、探究新知,展示交流
1、出示例2。
(1)观察画面,理解图意,复述画面内容。
一共有12个风车,我们要买8个,还剩几个?
(2)怎么解决这个问题?
(3)学生分组讨论,说一说自己的想法。
(4)学生汇报讨论结果,列出算式。
12-8=4
[谈一谈你是怎样想的?]
10 - 8 =2 8 + 4 = 12 2 + 2 = 4 12 – 8 = 4
(5)小结:刚才大家动脑筋想出了几种不同的思考方法,这几种方法都很好。其中第一种方法比较快,它采用的是“想加算减”的思考方法。在今后的学习中我们也可以采用这种思考方法。
2、补充练习:摆一摆,算一算。
让学生在书桌上摆出8个红圆片,再摆出5个黄圆片,然后再摆上大圆圈。提问
(1)这种摆法表示什么意思?(8个红圆片,5个黄圆片,一共有13个圆片。)
(2)再用虚线套住7个红圆片,这种摆法又表示什么意思?该怎样列式?(13—8=5或13—5=8)计算时你是怎样想的?(让学生说一说思考过程。)
三、检测与反馈
1、完成P13页的“做一做”第1题。
[让学生口算,全班集体订正,个别题目让学生说说思考过程。(巩固破十法)]
2、完成P15页“做一做”的第二题。计算并说出上下两行之间的关系?(巩固“想加法算减法”)
3、布置作业。
板书设计:
十几减8
12-8 =
10-8 = 2 8 + 4 = 12
2 + 2 = 4 12–8 = 4
教学反思:
本节课有了十几减9一课作基础,学习十几减8就减低了难度。孩子们在探究算法的过程中,圈一圈,摆一摆,从而使学生建立了减法的模型。为今后学习解决问题打下了基础。个别同学计算的速度和准确率有待提高,平时要加强口算训练。
小学数学教案设计课件篇6
教学内容:教科书第90页例2及练习二十一第1~4题。
教学目标:
1.掌握稍复杂的求一个数比另一个数多(或少)百分之几的问题的解答方法。
2.提高学生迁移类推和分析、解决问题的能力。
教学过程:
一、复习准备
1.把下面各数化成百分数。
0.631.0870.0441/43/57/205/8
2.说说下面每个百分数的具体含义,是怎么求出来的?(哪两个数相比,把谁看作单位“1”。)
某种花生的出油率是36%。
实际用电量占计划用电量的80%。
李家今年荔枝产量是去年的120%。
二、学习新课
1.根据数学信息提问题。
出示例2的情境图,让学生根据图中提供的条件提出用百分数解决的问题。
学生可能提出以下问题:
①计划造林是实际造林百分之几?
②实际造林是计划造林百分之几?
③实际造林比计划造林增加百分之几?
④计划造林比实际造林少百分之几?
2.让学生先解决前两个问题。
通过这两个问题的解决,提醒学生注意:解决这类问题一定先弄清楚哪两个数相比,哪个数是单位“1”,哪一个数与单位“1”相比。为学生学习新课解决数量关系稍复杂的求一个数比另一个数多(或少)百分之几的问题做好知识迁移的准备。
3.让学生自主解决“实际造林比计划增加了百分之几”的问题。
(1)分析数量关系。
让学生自己尝试把数量关系用线段图表示出来。
让学生说说是怎样理解“实际造林比原计划增加百分之几”的。
通过讨论,让学生明确求实际造林比原计划增加百分之几,就是求实际造林比原计划增加的公顷数与原计划造林的公顷数相比的百分率,原计划造林的公顷数是单位“1”。
(2)确定解决问题的方法。
①让学生根据分析确定解决问题的方法,并列式计算出结果。
②让学生交流自己的方法,教师作适当的板书。
方法一:(14-12)÷12=2÷12≈0.167=16.7%
方法二:14÷12≈1.167=116.7%
116.7%-100%=16.7%
问:还有其他方法吗?
③让学生总结,像这样的百分数问题有什么特点?解决它时要注意什么?
使学生明确:这是求一个数比另一个数增加百分之几的问题,它的解题思路和刚才同学们提出的第①、②个问题的分析思路基本相同,都要分清哪两个量在比较,谁是单位“1”,但这里比较的两个量中有一个条件没有直接告诉,必须先求出。
4.改变问题。
师:如果问题是:计划造林比实际造林少百分之几?又怎么解决呢?
让学生列出算式,教师板书:
(14-12)÷14
5.观察比较。
将例2的第一种算式与改变后的问题的解答算式相比较:
(14-12)÷12(14-12)÷14
师:不同点是什么?为什么除数不一样?
通过学生的讨论,再次强调两个问题中谁和谁比,谁是单位“1”。使学生体会到,用百分数解决问题和用分数解决问题一样要注意找准单位“1”。
6.概括应用。
让学生读一读课本例2后面一段话,结合生活实际举例说一说“增加百分之几”、“减少百分之几”“节约百分之几”……等话的含义。
三、巩固练习
1.提问:解决求一个数比另一个数多(或少)百分之几的问题,应注意什么?
2.独立完成课本90页“做一做”的题目。
四、布置作业
课堂作业:练习二十二第1、第2题。
课外作业:练习二十二的第3、4题。
五、课堂总结反思
1.学了这节课你还有什么疑问吗?
2.能谈谈你的收获吗?
小学数学教案设计课件篇7
一、说教材
1、教学内容:六年制小学数学第八册P100例1、2。
小数的性质是一节概念教学课,是在学习了“小数的意义”的基础上深入学习小数有关知识的开始。掌握小数的性质,不但可以加深对小数意义的理解,而且它是小数四则计算的基础。根据小数的性质可以把末尾有零的小数化简,也可以不改变小数的大小,把一个数改写成指定位数的小数。
2、教材的重点和难点:
掌握小数性质的含义是教学的重点,理解小数性质归纳的过程是教学的难点。
3、教学目标:
(1)利用知识的迁移规律,让学生在自主探究、合作交流中理解和掌握小数的性质,提高学生运用知识进行判断、推理的能力。
(2)让学生进一步体验教学与日常生活的密切联系,体验数学问题的探究性和挑战性,从而激发学习数学的兴趣,以主动参与数学活动。
(3)在教学中渗透事物是普遍联系和相互转化的辩证唯物主义观点。
二、说教法
1、通过直观、图示,让学生充分感知,经过比较归纳,最后概括出小数的性质;从而使学生的思维从形象思维过渡到抽象思维。
2、采用引探教学法,依据学生认知规律对例题进行加工调整,在探求知识规律处适当给予启发、引导,以调动学生学习的自觉性、积极性,从而达到感知新知,概括新知,应用新知,巩固和深化新知的目的。
三、说学法
通过本节教学,要使学生掌握一些基本的学习方法:
1、学会通过比较、归纳,最后概括出一类事物的本质属性。
2、引导学生自主探究,培养他们用已有知识解决新问题的能力。
3、通过指导独立看书,汇报交流活动,培养学生的自学能力和合作交流的好习惯。
四、说教学程序
(一)情景导入激趣揭题
(课件出示)唐僧师徒一起去西天取经,有一天,他们口渴了,唐僧要把三根甘蔗分给三个徒弟吃,事先他把甘蔗分别装进三个袋子里,上面标注着长度:0.l米、0.10米、0.100米,馋嘴的八戒抢先一步说:“我的肚子大,我吃长的。”说着拿回了注有“0.100米”的袋子。沙和尚好不服气,上前对师傅说:“八戒好吃懒做,长的应该让给大师兄悟空吃。”悟空笑了笑说:“两位徒弟别吵了,无论哪个袋子都一样呀!”唐僧听了悟空的话,微笑着点了点头。
同学们,你们知道为什么师傅对悟空的话点头微笑呢?这是因为大师兄悟空掌握了小数很重要的性质,学习了这节课,我们就知道其中的奥秘了”。(板书:小数的性质)
这样的设汁,旨在把枯燥的数学知识贯穿在小学生喜闻乐道的故事中,引发起学主的学习兴趣,点燃他们求知欲望的火花,从而进入的学习状态,为主动探究新知识聚集动力。
(二)调整例题探索新知
1.教学例1
(1)出示米尺投影图
(2)引导学生观察米尺图,提问:
A、0.1米是几分之几米(1/10米)?用整数表示就是多少分米?(l分米)
B、0.10O米是几个几分之1米?(10个1/100米)1/100米用整数表示是几厘米(1厘米)?10个1/100米就是多少毫米?(10厘米)
C、0.100米就是几个几分之1米(100个1/1000米)?1/1000米用整数表示是几毫米(1毫米)?那么100个1/1000米就是多少毫米?(100毫米)
结合学生回答,例1图上的标注应改为:
0.1米是1/10米,就是1分米
0.10米是10个1/100米,就是10厘米
0.100米就是10个1/1000米,就是100毫米
因为1分米=10厘米=100毫米
所以0.l米=0.10米=0.100米
这样,学生根据小数的意义,主动从“0.l米、0.10米、0.100米”出发研究问题。在问题得以解决的.过程中,学生锻炼了运用已有知识解答新问题的能力,培养了运用数学知识的意识。《数学课程标准》强调:数学活动必须建立在学生的认知发展水平和已有的知识经验基础上,这样教学,也正是使本节课牢牢地扎根于小数意义的基础上,是小数意义的运用,而不是简单的重复,因而是有意义学习。
接着教师指着“0.l米=0.10米=0.100米"这个等式,并标上思考符号“→”,先让学生从左往右观察、比较,提问三个小数0.1、0.10、0.100有什么不同?(小数的位数不同,但在0.l米的末尾添上一个“0”或两个“0”,表示的实际长度不变,板书在小数的末尾添上0,小数的大小不变)。再标出思考箭头“→”,让学生从右往左观察,发现什么规律,补充板书小数的末尾去掉“0”。
这样教学,把静态的知识结论转化动态的求知过程,让学生真正成为学习的主人,对所学的内容理解深刻,记忆牢固,不但知其然,而且知其所以然。同时,还培养了学生归纳概括事物本质属性的能力。
2.教学例2
在例1的学习过程中,学生已经初步掌握了探求新知的方法。所以例2的教学,教师出示自学提纲,提倡学生先独立看书,然后小组讨论,汇报交流:
(1)左图把1个正方形平均分成几份?阴影分用分数怎样表示?用小数怎样表示?
(2)右图把同样的正方形平均分成几份?阴影部分用分数怎样表示?用小数怎样表示?分页标题e
(3)从左图到右图有什么变了,什么没变?(份数变了,正方形的大小和阴影面积的大小没变)
(4)怎样比较0.30和0.3的大小?(0.30是30个1/100,0.3是3个1/10,因为10个1/100是1个1/10,30个1/100也就是31/10,所以两个小数的大小相等)。
这样使学生的思维从形象思维逐步过渡到抽象思维,达到突破难点的目的,同时,通过看书交流,培养了学生的自学能力和合作意识。通过两道例题,让学生进一步掌握规律,全面概括出小数的性质。
3.呼应课始,揭示奥秘:由于悟空掌握了小数的性质,所以他面对两位师弟的争执说:“无论哪一袋都一样”。
4.联系生活,再现新知:还有同学们在商场看到货物的标价为2.50元、3.00元,这样写,不但没有改变小数的大小,而且让顾客很清楚地知道是几元几角几分。
(三)巩固深化拓展思维
这是教学中不可缺少的环节,这一阶段是学生巩固知识,形成技能,技巧,发展智力的重要过程。在这一阶段,特别是抓住学生的求胜心理进行了练习、要进一步激发学生的学习兴趣,确保学习任务的圆满完成。
1.判断下面小数哪些0去掉是对的,哪些0去掉是错的?
8.0808.0880.0080.80800
2.判断下面各组两个数是否相等?为什么?
0.25和0.25000.25和0.2050.7和0.073和3003和3.00
3.闭眼听判:
“小数点的末尾添上‘0’或去掉“0’,小数大小不变”这种说法对吗?为什么?这样设计、让学生对新知识的各种误解进行辨析、判断,使得所学知识真正转化为能力。
(四)全课小结(完)
小学数学教案设计课件篇8
【教学内容】
北师大版小学数学六年级(上册)第四单元第51~53页化简比。
【教学目标】
1)在实际情境中,体会化简比的必要性,进一步体会比的意义。
2)会运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。
【教学重点】
会运用商不变的性质或分数的基本性质化简比。
【教学难点】
能解决一些简单的实际问题。
【教具准备】
蜂蜜、水、量筒、水杯和自制课件
【教学设计】
教学过程教学过程说明
一。制蜂蜜水的活动:哪一杯更甜?
同学们分成小组进行实验活动:各小组拿出课前准备好的蜂蜜、水、量筒、水杯等实验物品,动手调制蜂蜜水。
各小组选出代表在全班进行汇报、交流。议一议哪个小组调制蜂蜜水更甜。
[课件出示]课本P51图片,同时配上画外音:
一个男同学说:我调制的一杯蜂蜜水用了40毫升蜂蜜、360毫升水。
一个女同学说:我调制的一杯蜂蜜水用了10毫升蜂蜜、90毫升水。
师:他们俩调制的蜂蜜水哪一杯更甜?请估一估,再试一试。
我们先分别写出它们的比。
40:360
10:90
就这样直接比较他们俩谁调制的蜂蜜水更甜还是有困难,用什么办法来解决呢?请分组讨论一下。
40:360===1:9
10:90===1:9
得出结论:两杯水一样甜。
二。化简比。
分数可以约分,比也可以化简。
0.7:0.8:
师:刚才我们根据比与除法、分数之间的关系,利用商不变的性质或分数的基本性质来化简整数与整数的比。现在请同学们先自己尝试一下化简小数与小数的比和分数与分数的比,然后请同学说一说是根据什么来化简的。
0.7:0.8:
=0.70.8=
=78=4
=7:8=
=8:5
完成书上试一试化简下面各比。
15:210.12:0.4:1:
请学生独立完成后,说说化简比的方法,全班集体订正。
三。课堂练习。
[课件出示]课本P52第1题:连一连
在学生中开展比赛,鼓励学生独立完成。
[课件出示]课本P52第2题:写出各杯子中糖与水的质量比。
1)写出四个杯子中糖和水的质量比。
2)这几杯糖水有一样甜的吗?
3)还能写出糖与糖水的质量比吗?
[课件出示]课本P52第3题:
(1)(2)题自己独立完成;
(3)题投球命中率同学讨论完成。
四、总结
师:同学们一起来总结本节课学习的内容:
阅读数学课本P51比的化简。
我们是根据什么来化简比的呢?
是根据比与除法、分数之间的关系,利用商不变的性质或分数的基本性质来化简的。
我们在实际生活中什么时候需要化简比?或者说我们用化简比可以解决实际生活中的哪些问题
五、独立完成课本P53第4题和第5题。
让学生进行实际操作,动手调制蜂蜜水。通过调制蜂蜜水的活动,让学生在解决哪一杯更甜这个问题的过程中,加深对比的意义的理解,进一步感受比、除法、分数之间的关系。
体会化简比的必要性,学会化简比的方法。根据比与除法、分数之间的关系,利用商不变的性质或分数的基本性质来化简整数与整数的比。
这是小数与小数的比和分数与分数的比,还是根据比与除法、分数之间的关系,利用商不变的性质或分数的基本性质来化简,目的是让学生在不同题目中巩固化简比的方法。
进一步巩固化简比的方法。
巩固化简比。
这几杯糖水有一样甜的吗?这个问题需要化简比或求出比值后才能确定投球命中率的高低,其实就是比值大小的比较。因此,教师可以引导学生在完成(1),(2)两题的基础上,在小组内讨论完成(3)题,然后在班级交流每组的情况,从而让学生明白判断投球命中率的高低要看比值的大小。
小学数学教案设计课件篇9
一、教学目标:
1、结合具体情境,类比等式变形的过程抽象出等式的性质,了解等式性质是解方程的依据。
2、会用等式性质解形如x+5=12的简单方程。
3、培养观察、分析概括的能力。
二、课时安排:
1课时
三、教学重点:
能用等式的性质解简单的方程。
四、教学难点:
了解等式的性质。
五、教学过程
(一)导入新课
故事引入:在古代三国的时候,有人送给曹操一头大象,曹操要知道大象的重量,大臣们都不知道怎么办。这时小儿子曹冲却称出了船上石头的重量。你是怎样理解曹冲的方法的?
(板书:大象的体重=石头的重量)
师:曹冲之所以聪明,就在于他“运用了数量之间的等量关系来解决问题”的策略。今天我们也要用他这个策略解决以下问题。
检查预习。
(二)讲授新课
探究一:学习等式性质
1、师操作:在天平两侧各放一个5克砝码。
提问:你能用一个等式表示天两边关系吗?
提问:如果在天平一边加上一个砝码,天平会怎样?要是天平不平衡,怎么办?
提问:你还能用一个等式表示吗?
教师呈现其他天平直观图,鼓励学生观察并写出等式。
全班交流,教师总结概括出等式性质。
等式两边都加上同一个数,等式仍然成立。
师操作在刚才的基础上一个一个减砝码。
提问:你能用等式来表示吗?
提问:如果在天平一边去掉一个砝码,天平会怎样?要是天平不平衡,怎么办?
提问:你还能用一个等式表示吗?
教师呈现其他天平直观图,鼓励学生观察并写出等式。
全班交流,教师总结概括出等式性质。
等式两边都减去同一个数,等式仍然成立。
3、教师小结:我们刚才用天平演示的等式两边同时加上或者减去同一个数,等式仍然成立,这是等式的性质。这也是我们今天解方程的依据。
(三)重点精讲。
探究二:学习解方程
师板书x+2=10问:用天平如何表示?
问:如何用刚才的知识解方程?(两边都减去2)
1、师根据学生回答板书并画出天平图。
2、师在解题示范时要注重“解”和“等于号”的书写要求。
3、交代检验方法。
4、学生试着解方程。
y-7=1223+x=45
组内交流收获和疑惑。
小组汇报。
教师总结板书:根据等式的性质解方程。
(五)随堂检测
1、请你画图或举例说说下面这句话的意思:等式两边都加上(或减去)同一个数,等式仍然成立。
2、看图列方程,并解方程。
3、解方程。
(1)x–19=2
(2)x-12.3=3.8
4、看图列方程,并解方程。
5、看图列方程,并解方程。
6、看图列方程,并解方程。
小学数学教案设计课件篇10
《面积的含义》:
一、创设情境,激趣引入
教师事先在黑板上画两个长方形,一个长4dm,宽3dm;另一个长10dm,宽1dm。
谈话:这是两块菜地,狮子大王要把这两块菜地分给山羊和狐狸,忠厚的山羊让狐狸先挑选,狐狸急急忙忙挑了这一块(后一块长方形),狐狸这次占到便宜了没有呢?(学生发表意见)
二、主动参与,探索新知
1、教学例1
(1)看一看,感知面的大小
①出示情境图,问:这是什么地方的情境?从这幅图中你看到了什么?
②观察黑板的表面和课本的封面,说说哪个面比较大,哪个面比较小。
观察课桌的表面和课本的封面,说说哪个面比较大,哪个面比较小。
③指出:通过观察发现了物体的表面是有大有小的,我们把物体表面的大小叫做它们呢的面积。
(2)说一说,表述面的大小。
①谈话:现在谁来说一说黑板表面的大小是黑板的什么?课本的封面呢?
②你们会比一比黑板面的面积和课本封面的面积的大小吗?(在小组里先说一说再集体交流)
(3)摸一摸,比较面的大小。
请同学们用手摸一摸桌面和椅子面,比一比哪个面的面积比较大,哪个面的面积比较小。
摸一摸练习本的封面,学具盒盖的面和三角尺的面,摸了以后你认为哪个面的面积,哪个面的面积最小。
(4)找一找,生活中的其他物体你能比较它们表面的面积大小吗?
(5)讲述:通过观察和摸物体的面等活动,我们知道了物体表面的大小就是物体表面的面积。
2、教学例2
(1)出示一个正方形和一个长方形。
问:这是两个什么图形?请你们拿出两张这样的纸片,有什么办法能比较这两个图形面积的大小呢?
(2)分小组讨论。
(3)集体交流。
(4)讲述:你们用重叠和测量的方法比出这两个图形面积的大小,这是两种很好的比较方法。从比较结果我们看出,在这两个图形中,长方形的面积比正方形的面积大,这也说明了平面图形的面积也有大有小。
3、教学“试一试”
(1)出示两个平面图形。
问:你们能想办法比出书中这两个平面图形面积的大小吗?
(2)分组讨论,集体交流。
(3)谈话:请每个同学用自己喜欢的方法比一比这两个平面图形面积的大小。
三、巩固深化,拓展应用
1、想想做做2
出示题目,指名读题。
问:你能看出哪个省的面积比较大,哪个省的面积比较小吗?
谈话:如果同学们有兴趣的话,课后可以从中国地图上再找出一些省份来比一比。
2、想想做做3
出示书中的图,学生读题,明确要求。
问:你用什么办法比较四个图形的面积?
学生尝试在书上数方格,并比较出哪个图形的面积大一些。
指名说出比较结果,问:你是怎样知道图4有8个方格的?
3、想想做做4
默读题目,明确要求。
学生在书中描一描、涂一涂。
问:你们描出的蓝线的'长度是这个图形的什么?用红色涂出的部分的大小又是这个图形的什么?
4、想想做做5
出示题中的学校平面图。
谈话:这是美丽的校园的平面图,从图中看到了什么?你能比较平面图中各个区域的面积的大小吗?
小组讨论后集体交流。
5、解决课始提出的问题。
谈话:刚开始上课时,大家讨论了狐狸抢先挑选菜地占没占到便宜的问题,当时大家的看法不一致,现在能解决这个问题了吗?
提供1平方分米的纸片2张,让两个学生分别到黑板上量一量,比出结果。
四、全课总结
问:今天这节课我们一起学习了什么知识?你掌握了哪些方法?你还有哪些收获和疑问?
五、作业:布置学生课后做思考题。
小学数学教案设计课件篇11
教学目标
1、使学生体验统计的过程,掌握统计的方法,会根据统计图回答问题。
2、培养学生的统计意识。
教学重点
进一步使学生掌握统计的方法,体验和感受整理数据的过程。
教学难点
观察统计图,回答提出的问题。
教具准备
投影片、图片
教学过程:
一、 谈话。
(1) 同学们,新年快到了,我们布置教室需要一些气球,你们说是哪种颜色的气球可以多买一些?
红色 黄色 绿色 蓝色
(2)学生自由发言
问:多买的依据是什么?
学生讨论、汇报讨论结果
(3)让我们来统计一下吧
二、制成条形统计图。
(1) 你想用什么方法记录?
红色 黄色 绿色 蓝色
(2)统计,制成统计图
(3)回答问题
1、统计图中可以看出,调查了( )名同学。
2、喜欢( )颜色的人最多?喜欢( )颜色的人最少?
3、如果你们班有一名同学没来,他最有可能喜欢( )颜色?
4、布置会场,多买些什么颜色的气球比较好呢?
三、实践活动:
每一位同学调查本组同学最喜欢的电视节目是什么?
动画片体育比赛 电影 新闻
做一次统计
四、总结:你今天有什么收获?
小学数学教案设计课件篇12
1、在具体情境中,回顾和整理小学阶段的数,理顺各种数之间的关系,构建数的认识的知识网络。
2、在解决实际问题的过程中体会数的扩充过程,会用负数表示一些日常生活中的问题。
3、能认、读、写亿以内的数,会表示较大的数。
4、结合现实素材感受大数的意义,能进行估算并能比较万以上的大数。
重点难点 重点:建立知识网络,掌握复习数学的方法,数学思想。
难点:逐步形成知识网络。
主 要 导 学 过 程 教 学
环 节 时间分配 活动内容 导学策略与方法 备注
一、导入新课
师:数在数学界里有举足轻重的地位,在小学阶段,你们都学过哪些数?
师:能用自己的方式把他们表示出来吗? 回顾旧知,为新知的构建打下基础
二、探究新知:
1、出示教材网格图。
师:你能根据网格图,说说你对数的理解吗?
2、出示数轴
师:请在数轴上将学过的数找出来,说一说你的发现。
3、呈现课本情景
第一幅图:
师:第一幅图表示了什么?你发现了那些生活中的数?
第二幅图:
师:在第二幅图中是怎样表示“没有”的?
第三幅图:
师:怎样表示不能平均分的量?
第四幅图:
师:如何表示零下二摄氏度?
4、整数的意义、读写方法。
5、自然数。
6、计数单位与数位。
7、数的整除。
师:你还记得五年级时学过的倍数与因数吗? 学生先独立看网格图,在与同桌交流。
小组合作,找出学过的数,交流发现。
理解正整数的产生背景
四人小组,合作探究,集体订正。
三,当堂检测
按照要求完成活动单问题检测部分
15分 1、教材第43页习题。
2、教材第44页第2、3、4题。
3、小组合作出题,组与组之间交换所出习题,交流完成。
四.小结与评价
师:通过这节课的学习,你有什么收获?
五.布置作业
板书设 计
板书设计
数的认识(一)整数
1、 整数的意义、读写、改写。
2、自然数:0、1、2、3…
3、计数单位
4、数位
5、数的整除
小学数学教案设计课件篇13
一、学习内容分析
方程的意义选自人教版五年级上册,主要内容是方程的定义,属于数与代数领域。方程的意义是算术思维的一种提升,是数的认识上的一个飞跃,在用字母表示未知数的基础上,使学生解决实际问题的数学工具,从列出算式解发展到列出方程解,从未知数只是所求结果到未知数参与运算,思维空间增大,这又是数学思想方法上的一次飞跃,它将使学生运用数学知识解决实际问题能力提高到一个新的水平。教学这一部分内容有助于培养学生抽象思维能力,也是培养学生抽象概括能力的过程,为以后学习解方程和列方程解答应用题打下良好的基础。
教材的编写意图是从等式引入,首先通过天平演示,说明天平平衡的条件是左右两边所放物体质量相等。同时得出一只空杯正好100克,然后在杯中倒入水,并设水重x克。通过逐步尝试,得出杯子和水共重250克。从而由不等到相等,引出含有未知数的等式称为方程。
二、学习者分析
五年级的学生已经掌握了整数、小数、分数的认识,能够熟练计算整数、小数四则运算。学生对数与代数的知识和经验已经积累到相当的程度,需要对初一年级的数学知识和数学思想进行学习。但是方程作为数学领域的重要知识和重要思想,也是学生在中学学习数理化的重要思想和方法。作为数学上具有特殊意义的方程,对小学生来说基本上是陌生的。
三、教学过程
一、创设情境,引入课题
1.课件呈现,认识天平:
【出示天平】同学们,见过它吗?你们知道怎么用吗?
【情境】
【师生活动】学生回答,教师总结
【归纳】左右平衡,也就说明左右相等了
【追问】用一个什么式子表示
2.体验感受,观察积累:【问题】这里有一个梨和一个苹果,如果把他们分别放在天平两边的托盘里,猜想一下会有几种情况发生?
【师生活动】学生个别回答,教师根据学生的回答板书:
(1)梨的质量大于一个苹果的质量天平向左倾斜;
(2)梨的质量等于一个苹果的质量天平保持平衡;
(3)梨的质量小于一个苹果的质量天平向右倾斜【追问】因为不知道不确定质量所以结果就会出现不同的结果。现在我告诉你它们的质量:梨60克,苹果110克,此时天平会是什么状态?能用一个式子表示出这一状态吗?
【师生活动】点名让学生个别回答,教师及时板书:60<110
【教师评价】真好!数学语言表达就是简练。
【追问】师:如果在天平左边梨质量是a
克,用数学语言把你们认为天平的状态表达出来,写在本上。
【师生活动】学生独立完成,教师巡视。
【板书】60+a<110、60+a=110、60+a>110
【追问】这几个式子各表示什么情况?
【归纳】你看,简单的几个数学算式就表达了三种不同的情况,这就是数学语言的简约美。
3.观察算式,揭示课题
【追问】看看哪个式子表示相等?一起读出式子
【追问】仔细观察这个算式,你发现这个算式和我们以前学过的有什么不一样的地方吗?
【评价】真善于观察,今天我们就一起来学习这类问题板书:简易方程
二、自主探究,形成概念
1.再举实例,铺垫孕伏
【问题】还是这架天平,刚才你们发现了平衡,现在教师这里有一杯500克的果汁,和一罐125克的牛奶,如果把它们分别放在天平两边会出现什么情况?
【师生活动】学生回答,教师补充。
【追问】那么你能让这架天平平衡吗?也可以用数学算式表达。
【学请预设】
方案1:在右边再放3罐。
【追问】可以吗?谁能说清楚?
【板书】500=125×4或500=125+125+125+125
【归纳】这是一种策略,改变右边的质量。受他的启发还有别的办法的吗?方案2:刚才我还听有的同学说喝375克就行。大家说行吗?不过还真的有人喝了一口,不过这一口到底是多少我们不知道,怎么办?【师生活动】教师引导学生用字母表示,用数学算式表示说明,写在本子上。
【师生活动】教师巡视,抽有代表性的同学上来板书
【板书】500-x<125,500-x="">125
【追问】哪个式子表示了天平左右两边平衡了?
500-x=125
2.观察式子,归纳定义
【问题】仔细观察下列式子,你发现了什么?
(1)500=125×4或500=125+125+125+125
(2)500-x=125
(3)60+a=110
【师生活动】学生回答,教师补充
【归纳】含有未知数的等式叫做方程。【板书】
3.分析定义,理解概念
【问题】你认为判断方程需要几个条件?
【师生活动】教师从方程的定义,引导学生回答:
(1)表示相等的式子。
(2)必须含有字母(未知数)。
三、牛刀小试,巩固概念
1.试一试,观察天平判断是否可以写出方程,说明理由。
2.做一做:下面哪些是式子是方程?
3.举一举:你会自己举出一些是方程的式子活例子
(1)小红的年龄是x岁,老师比小明大30岁,今年老师的年龄是38岁。
(2)逐个呈现3个足球,每个a元,共花180元。你能用方程表示吗?
(1)小芳一个星期共跑了2.8km,每天跑s米。
(2)一盒水果糖共a颗,平均分给25个小朋友,每人得3颗,正好分完。
(3)小芳集邮共60张,小明集邮共48张。小芳给了小明x张后两人的集邮张数一样多。
四、总结提升
数学史:三千六百多年前,埃及人就会用方程解决数学问题了。在我国古代,大约两千年前成书的《九章算术》中记载了用一组方程解决实际问题的史料。直到三百年前,法国的数学家笛卡尔第一个提倡用x、y、z等字母代表未知数,才形成了现在的方程。
师:同学们,今天这节课上大家都积极的进行了思考,从中你学到了什么?还想知道些有关方程的哪些知识?
小学数学教案设计课件篇14
时间:5分钟
方法:边看书边完成下面要求:
1、“鸡兔同笼”这四个字是什么意思?
2、书上用了()种方法来解决这个问题。
3、我们一起来看看被关在同一个笼子里的鸡和兔给我们带来了哪些信息?
生理解:
(1)鸡和兔共8只;
(2)鸡和兔共有26只脚;
(3)鸡有2只脚;
(4)兔有4只脚;
(5)兔比鸡多2只脚。(课件演示)
师:那问题是什么?
生:鸡和兔各有多少只?
3、猜一猜:
师:请同学们猜一猜鸡和兔可能各有多少只?(学生猜测)还有其它的猜测吗?
4、介绍列表法:
师:你们猜出的结果鸡和兔的总只数都是8只,但是你们猜想的结果都正确吗?到底哪个是正确的&39;呢?下面请同学们把你们的猜想整理到这张表格中,并进行调整,看看哪个结果才是共有26只脚。(学生活动)
5、观察发现,列式计算
三、合作交流:5分钟
假设全是兔,怎样解决?试一试。
四、质疑探究:5分钟
解决鸡兔同笼这类问题,有几种假设的方法?
五、小结检测:20分钟
1、小结方法:
同学们真了不起,刚才我们在解决鸡兔同笼的问题时,用到了多种方法:列表法,假设法。
2、检测:
a、问答:
(1)如果老师让你们解决《孙子算经》中的原题,你会选哪种方法解决呢?
为什么不选择列表法?难?为什么难?(要列举的情况很多)有没有好的办法?(有没有不用列举那么多就能找到答案呢)
(2)如果一定要你用列表法解答你有什么办法?学生讨论。(教师引导列表折半调整。)
(注:如果前面出现了折半列表,就把这个环节提前讲。)
(3)其实在我们生活当中类似于鸡兔同笼的问题有很多的,这些问题都可以用不同的方法去解决,下面请同学们用自己喜欢的方法做一些题目?
b、解决问题
(1)有龟和鹤共40只,龟的腿和鹤的腿共112条,龟和鹤各有多少只?
(2)全班一共有38人,共租了8条船,每条大船乘6人,每条小船乘4人,每条船都坐满了。问大船和小船各多少条?
(3)新星小学”环保卫士”小分队12人参加植树活动。男同学每人栽了3棵树,女同学每人栽了2棵树,一共栽了32棵树。男女同学各几人?
作业:p106;1、2、3。
板书:
鸡兔同笼
假设全是鸡,就有脚8×2=16(只)
比实际少26—16=10(只)
一只鸡比一只兔少4—2=2(只)
兔子:10÷2=5(只)
鸡:8—5=3(只)
小学数学教案设计课件篇15
教学目标:
1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。
2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。
3、引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。
教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
教学难点:引导学生总结分数乘整数的计算法则
教具准备:多媒体课件、
教学过程:
一、复习引入
1.课件出示复习题。
(1)列式并说出算式中的被乘数、乘数各表示什么?
5个12是多少?9个11是多少?8个6是多少?
(2)计算:
++=++=
2.引出课题。
++这题我们还可以怎么计算?今天我们就来学习分数乘法。
二:新知探究
1.出示课题明确学习目标。
2.课件出示自学题纲,让学生自学课本。
(1)分数乘以整数的意义是什么?与整数乘法的意义相同吗?
(2)分数乘以整数的计算方法是怎样的?它是怎样推导出来的?
(3)分数乘以整数的意义。
3、课件出示例1
教师引导学生画出线段图。
学生根据线段图列出不同的算式,并解答。
(1)引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的
”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。
(2)引导学生根据线段图理解,人跑一步是袋鼠跳一下的,那么“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个是多少?
2/11+2/11+2/11=
2/11×3=
(3).分数乘以整数的法则。
A.导出计算方法。
你会计算吗?看哪些同学不用老师讲解就能依据转化思想把分数乘以整数这个新知识转为已经学过的旧知识来进行计算。(可以互相说互相看。)
B.归纳法则。
通过以上计算,想一想分数乘以整数怎样计算呢?
师:比一比,看哪个组的同学总结的语言准确又简练。
小组讨论,总结出法则:分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。(板书)
C.应用法则计算。
讨论,这两种方法哪种简单?为什么?
强调:能约分,要先约分;结果是假分数一定要化成整数或带分数。
4、教学例2
(1)出示×6,学生独立计算。
(2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办?
(3)学生通过自己的想法的来约分:A、先约分再计算;B、先计算得出乘积后约分。
(4)对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。
三、当堂测评(课件出示)
1.看图写算式
2.先说算式意义,再填空。
3.看算式,约分计算。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)
四、学生课堂自评
1、这节课你有什么收获?
2、每个学生给自己在课堂上的表现进行评价。
板书设计
分数乘以整数
意义:求几个相同加数和的简便运算。
法则:分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。
2/11×3
=2×3/11