数学教案怎么写
教案可以帮助教师了解学生的学习情况和需求,从而更好地指导教师进行教学,提高教学效果和学生的学习效果。下面是一些数学教案怎么写免费阅读下载,希望对大家写数学教案怎么写有用。
数学教案怎么写篇1
[教材简析]
本节课教学求积的近似值。教材通过一个简单的实际问题,引导学生根据两个数量之间的倍数关系列出乘法算式,并要求计算后把得数保留两位小数。因为解决这个问题所涉及的小数乘小数的计算以及用“四舍五入”的方法取小数的近似值,都是学生已经掌握的内容,所以教材让学生根据解决问题的要求直接填出得数,以锻炼学生综合应用知识解决问题的能力。随后的“练一练”让学生在独立计算的基础上,分别要求把乘积保留一位小数和两位小数,巩固例题学习的方法。
[教学目标]
使学生进一步巩固求近似值的方法,学会求积的近似值,并培养学生根据实际情况灵活运用知识的能力。
[教学过程]
一、复习引新。
1、写出下表中各数的近似值。(练习十五第1题)
① 先让学生说说“精确到个位、十分位、百分位、千分位”是什么意思?再让学生按要求取近似值。
② 学生交流并说说方法。师强调1.9736精确到十分位时,不能去掉小数末尾的0。
2、引入新课。
谈话:我们已经掌握了用“四舍五入法”求小数的近似值,在实际应用中,我们也常会遇到求小数近似值的方法。例如小数乘法中,有时积不需要很多的小数位数,这时就可以根据实际需要,求出积的近似值。(板书:积的近似值)这节课,我们就用“四舍五入法”来求积的近似值。
[设计意图:把练习十五的第一题提前处理,目的是沟通新旧知识的联系,为新知的学习作知识上、方法上的铺垫。]
二、教学新知。
1、教学例3。
(1)出示例题,弄清题意。
提问:要求王大伯家去年的收入就是求哪个数的1.6倍?该怎样列式?
教师板书:3.18×1.6
(2)师:想一想,要解决这个问题,要注意些什么?
(给学生一些思考时间,教师有意指一指“得数保留两位小数”)
(3)学生独立计算。一生板演,教师巡视指导。
(4)明晰求积的近似值的方法:
先请板演的学生说说是怎样计算的。
在学生表述的同时教师穿插提问:
① 乘积保留两位小数,你是怎么想的?(明确求积的近似值,看保留小数的后一位“四舍五入”)
② 横式上为什么用约等于号?(明确得数是写积的近似值)
(5)追问:谁能来说说怎样来求积的近似值?
学生交流。
(6)教师结合板书小结:求积的近似值,要先算出相乘的积,然后看要保留的小数的后一位,用“四舍五入法”取近似值。在写横式得数时,注意要用约等于。
[设计意图:在学生原有知识经验的基础上,充分发挥学生的主动性,放手让学生自己探索求积的近似值的方法。在以上环节中,先让学生经历了独立思考、尝试解决的过程,体验到成功解决问题的喜悦。然后,组织学生交流,使学生在师生交流、生生交流中明晰方法,同时也提高了学生的数学交流能力和归纳整理的能力。]
2、实际应用。
谈话:生活中有哪些情况要求积的近似值呢?
学生交流,可能会说到付钱时要保留两位小数,让他说说理由。
教师说明:因为人民币最小是分,所以付现款时,通常要保留到“分”,就要通过“四舍五入法”求积的近似值,保留两位小数。
[设计意图:安排这一环节的目的是让学生感受求积的近似值在生活实践中的用途,从而体验数学的实际价值。]
三、巩固练习。
1、练一练。
求出下面各题积的近似值。
(1)得数保留一位小数:7.2×0.09 0.86×3.2
(2)得数保留两位小数:0.28×0.7 5.89×3.6
先让学生独立计算,然后组织交流,说说怎样求积的近似值?
2、练习十五第4题。
先让学生独立计算,然后组织交流,说说想法。
[设计意图:通过一系列的练习,使学生在交流中进一步掌握求积的近似值的方法。]
四、全课总结。
今天,在同学们的努力下,我们一起学会了求积的近似值,谁来说说求积的近似值的方法?
五、课堂作业。
练习十五第2、3、5题。
数学教案怎么写篇2
教学内容:
义务教育课程标准北师大版试验教材六年级上册第三单元第38页“数学欣赏”。
教学目标:
1、通过选择生活中有趣而美丽的图案,供学生欣赏,培养学生的审美意识、认识数学的美、体会图形世界的神奇。
2、引导学生尝试绘制美丽的图案等操作活动,使学生获得研究图形的经验。体验学习数学的乐趣,激发学生学习数学的兴趣
重点难点:
1、欣赏生活中美丽的图案,培养审美意识;
2、绘制美丽图案的方法。
教学准备:
三角尺、直尺、彩笔、圆规、硬纸板、剪刀、图钉、胶带、
课件1:生活中美丽图案的视频(课前拍摄我们身边的美丽图案)。
课件2:课本上美丽图案制作的动画演示。
教学过程:
一、创设情境
1、欣赏生活中美丽的图案:播放视频或(图案图片)——(包装盒上的图案、门上的图案、建筑物上的造型图案、商标图案、……等)
2、你看到的这些生活中的美丽图案,你想说什么?
3、在你的周围你还见到了哪些有趣的图案?
揭示课题:今天,我们来欣赏和制作美丽的图案。
二、欣赏美丽的图案
1、课件展示教材中的图案(也可以选择一些其他的图案)。让学生观察后说一说这些图案是如何得到的,是由哪个基本图形通过怎样的变换方式得到的?
2、小组内进行交流。
3、小组代表汇报研究结果。(汇报你发现的这些图案分别是由哪个基本图形变换过来的?通过怎样的操作得来的?)
4、多媒体动画演示图案形成的过程。
5、教师小结。其实很多美丽的图案都是由基本的图形通过变换而来的,只要我们细心观察,就可以找到其规律。
三、绘制美丽的图案。
1、小组内讨论下面美丽图案是由哪个基本的图形通过怎样的变换而来的?绘制的步骤应该是什么?
2、组长汇报交流的结果。
3、多媒体再次演示绘制的步骤,并阅读课本上绘制的方法;
4、讨论绘制时应该注意的问题。
5、操作活动:开始绘制图案活动,播放轻松音乐,教师巡回参与指导。
四、作品展示和评价
1、作品展示:把学生画的图案全部张贴在教室的四周,全体学生下座位参观作品。
2、学生评价
①选对你印象最深的作品进行评价(可以是画得好的,也可以是画得不好的)。比一比看谁评价得好。
②教师系统评价
五、课堂小结
同学们,这节课你们互相学习、互相合作,又学到了不少的知识,给大家说一说这节课你又学到了哪些知识?有什么感想?
数学教案怎么写篇3
教学目标:
1、了解相遇问题的特点,并学会解答求路程的相遇问题。
2、通过操作、观察、比较、分析,提高学生灵活解答的能力。
3、培养学生学习数学的兴及趣创新意识。
教学重点:
掌握求路程的相遇问题的解题方法。
教学难点:
理解相遇时,两人所走路程的和正好是两地的距离,相遇时间为两人共同所走的同一时间。
教学时间:一课时
教具准备:实物投影仪、多媒体cai、小黑板
教学过程:
一、复习
1、列式计算
(1)李诚从家到学校,每分钟走70米,4分钟抵达,他家离学校有多远?
(2)张华从家到学校,每分钟走60米,4分钟抵达,他家离学校有多远?
2、板出联系式:速度×时间=路程
二、引入
过去,我们研究的是一个物体运动时速度、时间与路程之间的联系,今天我们就来研究两个物体运动时速度、时间与路程之间的联系。
三、新授
1、教学准备题
(1)点击课件中准备题出示题目
(2)学生理解题意。
(3)找出出发时间、地点、运动方向。
相向而行
时 间间
(4)点击热键 和 强调出发时间和运动方向。
(5)用课件演示两人同时从两地向对方走去,引导学生思考会出什
么情况。利用课件继续演示会出现的三种情况(相距、相遇、交叉而过)。
(6)利用课件出示准备题的表格,指导学生填表格的一、二行并课
件演示填空内容。
(7)请一学生上来利用交流性课间完成表格第三行的填写。
(8)引导学生讨论:出发三分钟后,两人之间的距离变成了多少?这时,张华走了几分钟?李诚呢?他们俩人共走了几分钟?两人所走路程的和与两家有什么联系?
(9)小结:出发一段时间后两人之间的距离变成了零,这时两人就相遇了,这就是我们这节课要研究的——相遇问题。(板书课题:相遇问题)
2、教学例5。
(1)点击新课出示例5。
(2)理解题意。
(3)四人小组讨论:
a、 两人是怎样走向学校的?
b、 4分钟后两人怎样?
c、 两人所行的路程与全路程有什么联系?
(4)学生试做。
(5)用电脑课件演示解题思路并讲评。
(6)学生看书、质疑。
(7)小结:我们解例5时用了哪两种方法?
三、巩固练习
1、学生做课本第59页的第1题和第2题。
2、利用课件出示选择题:
两人同时从两地走来,甲每分走52米,乙每分走48米,走了10分钟,两地相距多少米?
(1)米 (2)1000米 (3)无法确定。
四、全课总结
1、今天学了什么内容?
2、解决这样的问题,我们用了哪几种方法?
3、质疑。
五、聪明题。
小华和小明相向而行,小华以每分钟20米的速度走了3分钟后,小明才开始出发,他每分钟走25米,5分钟后两人相遇,两地相距多少米?
数学教案怎么写篇4
一、说活动教材
区分左右是大班这学期所开展的有关空间方位感认知方面的内容。其重点在于引导幼儿能以自身为中心来辨别左右关系。《纲要》中所说:“幼儿园数学应以游戏为主要向导,孩子在游戏中得以不同的发展和提高。”于是我在活动中设计了多个小游戏,让小朋友在游戏中轻松的掌握左右概念。以自身为中心正确的判断左右,发展幼儿的空间知觉能力。
二、说活动目标
活动目标的制定应体现它的教育性、价值性和实际性,活动目标既是整个教育活动的起点和归宿,同时对活动也起着导向作用,因此,从满足幼儿认知、情感、能力的发展需要,我拟订了以下目标:
1、感知“左”“右”的空间方位,发展空间方位的知觉和判断力;
2、激发幼儿与同伴交流的兴趣,能比较准确地说出物体所在的“左”“右”方位;
三、说活动的重难点:发展幼儿空间方位的知觉和判断力;
四、说活动准备:1、场地布置:在活动室的左右挂上一些东西;
2、蓝绿带子40条,课前绑在幼儿手上;
3、幼儿用书《数学》第十二页、剪刀、胶水;
五、说活动过程:
环节一:区分左右手
我开始以导入,今天老师给大家带来了一个谜语,想来考考你:“一棵小树五个杈,不长树叶不开花,能算会写还会画,天天干活不说话。幼儿回答后引出答案:手。师:每个人都有两只手,一只是左手,一只是右手,那么你们能分清自己的左手和右手吗?幼儿交流。
(现在你知道哪只左手哪只右手了吗?我来考考你吧,看你能不能照我说的做)
1、教师发出指令,幼儿按指令举起相应方位的手并做出动作。
如:请举起右手并招招手、竖起大拇指、做把剪刀;请举起左手握个拳头、眨眨眼;(教师看幼儿是否举对,纠正个别不对的)
2那我们的两只手是左手帮我们事情做得多,还是右手做得多,请幼儿说说你的右手都会做什么事情,你能表演一下是怎么做的吗?
3、游戏:你说我做
-----游戏前,请幼儿将蓝绿两种不同颜色的带子绑在手上。
-----教师发出指令,幼儿听指令举起左手或右手(如:请右手是蓝带子的小朋友举手,请左手是绿带子的小朋友举手)
环节一的设计意图:大班幼儿对左右有一定了解,但确了解不多,所以环节一中我从左右手入手,因为孩子知道右手会帮我们做很多事,如:写字、画画、拿筷子、提东西等,对左右手的掌握概念会比较好,为下一环节认识身体上的左右部位做好铺垫。
环节二、区别左右脚
1、刚才我们知道了左手和右手,那么老师还想考考你,你的身体上,除了左手和右手之外,还有什么部位也可以分左右呢?(耳朵、眼睛、脚、腿、肩、)
2、教师发出指令,幼儿听指令完成相应动作。
如:请你抬起左脚,请你抬起右脚;(教师看幼儿是否举队,纠正个别不对的)进行数次后可提高难度,要求幼儿做出与指令相反的动作;(我说左脚,你抬有右脚)
设计意图:通过游戏激发幼儿学习的兴趣并在游戏中感知左右的空间方位;
环节三感知左边、右边
1、幼儿交流自己的左边有什么,右边有什么?
2、幼儿改变方位后再说说自己的两边各有什么?
3、游戏:小熊搬家:完成幼儿用书12页,请小朋友帮小熊把一些家具贴在相应的位置上!
设计意图:激发幼儿与同伴交流的兴趣,能比较准确地说出物体所在的“左右“方位,从而更好的掌握所学的知识。
数学教案怎么写篇5
教学目标
1.使学生初步理解“方程”“方程的解”和“解方程”的含义.
2.初步掌握解简易方程的方法并会检验.
教学重点
使学生初步掌握解方程的方法和书写格式.
教学难点
帮助学生建立“方程”的概念,并会应用.
一、复习准备
(一)口算下面各题.
30+( )=50 ( )×2=10
(二)列式.
1.一支钢笔元,2支钢笔多少元?
2.与4的和.
二、新授教学
(一)方程的意义
1.介绍天平
这是一架天平、可以用来称物品的重量.当天平的指针指在标尺中间时,表示天平平衡,即天平两端的重量相等.
2.引出方程
(1)出示图片:天平1
教师提问:这个天平平衡吗?说明了什么?谁会用等式表示?
(2)出示图片:天平2
教师提问:请同学们观察,天平平衡说明了什么?怎样用式子表示?
教师板书:20+?=100
教师说明:这个未知数“?”,如果用来表示就可以写成20+=100.
(3)出示图片:篮球
教师提问:这幅图是什么意思?怎样用含有未知数的等式表示?
教师板书:
3.方程的意义.
教师提问:观察上面三个等式回答问题.这三个等式有什么相同点和不同点?
相同点:都是相等的式子.
不同点:第一个等式不含有未知数,第二个和第三个等式含有未知数.
教师板书:象这种含有未知数的等式,叫方程.
教师强调:含有未知数、等式
4.思考:方程和等式之间到底是什么关系呢?
(1)出示图片:等式与方程
(2)小结:所有的方程都是等式,但是等式不一定都是方程.
(二)教学例1
1.方程的解
教师提问:在中,等于多少时方程左边和右边相等?
在中,等于多少时方程的左边和右边相等?
教师说明:使方程左右两边相等的未知数的值,叫做方程的解.
如:是方程的解
是方程的解
2.解方程
教师板书:求方程的解的过程叫做解方程.
3.教学例1
例1.解方程-8=16
(1)教师提问:解方程先写什么?根据什么计算?
(2)教师板书:
解:根据被减数等于减数加差
(3)怎样检查解方程是否正确?
检验:把代入原方程,
左边,右边
左边=右边
所以是原方程的解.
4.讨论:“方程的解”和“解方程”有什么区别?
三、课堂小结
今天你学到了哪些知识?什么叫方程?方程的解和解方程有什么区别?
四、巩固练习
(一)填空
1.含有未知数的( )叫做方程.
2.使方程左右两边相等的( ),叫做方程的解.
3.求方程的解的( )叫解方程.
4.下面的式了中是等式的有( );
是方程的有( ).
(二)判断,对的在括号里打√,错的打×.
1.等式都是方程.( )
2.方程都是等式.( )
3.是方程的解.( )
4.也是方程.( )
(三)选择正确答案填在括号内.
1.的解是( )
① ②
2.的解是( )
① ②
3.这个式子是( )
①是方程 ②是等式 ③既是方程又是等式
4.是方程( )的解
① ②
五、课后作业
(一)解下列方程.(第一行两小题要写出检验过程.)
(二)用方程表示下面的等量关系,并求出方程的解.
1.加上35等于91.
2.的3倍等于57.
3.减3的差是6.
4.7.8除以等于1.3.
六、板书设计
解简易方程
含有未知数的等式叫做方程.使方程左右两边相等的未知数的值,叫做方程的解.
求方程的解的过程叫做解方程.
例1 解方程
解:根据被减数等于减数加差
检验:把代入原方程,
左边,
右边,
所以是原方程的解.
教案点评:
该教学设计既重视过程,又重视结论;既重视知识的教学,又重视能力的培养。教师采取边讲边练、讲练结合的形式,为学生提供了更多的参与学习的机会。
探究活动
不说也知道
活动目的
1.通过游戏,激发学生学习数学的兴趣.
2.培养学生用数学知识解决实际问题的能力.
活动过程
1.教师表演数学魔术.
数学魔术:学生任意想好一个数,然后按照教师的要求进行运算:把想好的数加上2,乘上3,减去6,再减去原来所想的数.把最后的结果告诉教师,教师可以马上知道学生原来所想的数.
2.学生分小组探讨其中的秘密.
魔术揭密:可以假设学生所想的数为,按照教师的要求就是加上2(+2),乘上3
(3+6),减去6(3),再减去原来所想的数(2).也就是说最后的计算结果是原来所想数的2倍.
3.学生自己设计数学魔术.
4.分小组进行表演.
数学教案怎么写篇6
《正弦定理》
大家好,今天我向大家说课的题目是《正弦定理》。下面我将从以下几个方面介绍我这堂课的教学设计。
一教材分析
本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理和余弦定理的知识非常重要。
根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:
认知目标:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理与三角形的内角和定理解斜三角形的两类问题。
能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。
情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,激发学生学习的兴趣。
教学重点:正弦定理的内容,正弦定理的证明及基本应用。
教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。
二教法
根据教材的内容和编排的特点,为是更有效地突出重点,空破难点,以学业生的发展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想,采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。突破重点的手段:抓住学生情感的兴奋点,激发他们的兴趣,鼓励学生大胆猜想,积极探索,以及及时地鼓励,使他们知难而进。另外,抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给以适当的提示和指导。突破难点的方法:抓住学生的能力线联系方法与技能使学生较易证明正弦定理,另外通过例题和练习来突破难点
三学法:
指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。
四教学过程
第一:创设情景,大概用2分钟
第二:实践探究,形成概念,大约用25分钟
第三:应用概念,拓展反思,大约用13分钟
(一)创设情境,布疑激趣
“兴趣是的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。
(二)探寻特例,提出猜想
1.激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。
2.那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。
3.让学生总结实验结果,得出猜想:
在三角形中,角与所对的边满足关系
这为下一步证明树立信心,不断的使学生对结论的认识从感性逐步上升到理性。
(三)逻辑推理,证明猜想
1.强调将猜想转化为定理,需要严格的理论证明。
2.鼓励学生通过作高转化为熟悉的直角三角形进行证明。
3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。
4.思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明
(四)归纳总结,简单应用
1.让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。
2.正弦定理的内容,讨论可以解决哪几类有关三角形的问题。
3.运用正弦定理求解本节课引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。
(五)讲解例题,巩固定理
1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.
例1简单,结果为解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。
2.例2.在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.
例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟悉掌握已知两边和其中一边的对角时解三角形的各种情形。完了把时间交给学生。
(六)课堂练习,提高巩固
1.在△ABC中,已知下列条件,解三角形.
(1)A=45°,C=30°,c=10cm
(2)A=60°,B=45°,c=20cm
2.在△ABC中,已知下列条件,解三角形.
(1)a=20cm,b=11cm,B=30°
(2)c=54cm,b=39cm,C=115°
学生板演,老师巡视,及时发现问题,并解答。
(七)小结反思,提高认识
通过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会?
1.用向量证明了正弦定理,体现了数形结合的数学思想。
2.它表述了三角形的边与对角的正弦值的关系。
3.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。
(从实际问题出发,通过猜想、实验、归纳等思维方法,最后得到了推导出正弦定理。我们研究问题的突出特点是从特殊到一般,我们不仅收获着结论,而且整个探索过程我们也掌握了研究问题的一般方法。在强调研究性学习方法,注重学生的主体地位,调动学生积极性,使数学教学成为数学活动的教学。)
(八)任务后延,自主探究
如果已知一个三角形的两边及其夹角,要求第三边,怎么办?发现正弦定理不适用了,那么自然过渡到下一节内容,余弦定理。布置作业,预习下一节内容。
数学教案怎么写篇7
二次根式
一般地,式子√a,(a≥0)叫做二次根式。
注意:(1)若a<0这个条件不成立,则a不是二次根式;(2)a是一个重要的非负数,即a≥0。
1、二次根式的乘法法则:√aX√b=√ab
2、二次根式比较大小的方法
(1)利用近似值比大小;
(2)把二次根式的系数移入二次根号内,然后比大小;
(3)分别平方,然后比大小。
3、二次根式的除法法则:
(1)商的算术平方根等于被除式的算术平方根除以除式的算术。
(2)分母有理化:化去分母中的根号叫做分母有理化;具体方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式。
4、最简二次根式
(1)满足下列两个条件的二次根式,叫做最简二次根式。
①被开方数的因数是整数,因式是整式;②被开方数中不含能开的尽的因数或因式。
(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母。
(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式。
(4)二次根式计算的最后结果必须化为最简二次根式。
数学教案怎么写篇8
教学目标
1、结合欣赏与绘制图案的过程,让学生体会平移、旋转和对称在图案中的应用。
2、通过参与收集、设计图案的活动,使学生感受图案的美,从而培养健康的审美情趣。
教学重点
让学生体会平移、旋转和对称在图案中的应用。
教学难点
通过参与收集、设计图案的活动,使学生感受图案的美,从而培养健康的审美情趣。
教具准备
直尺、彩笔、课文放大图等。
教学过程
一、导入新课
在我们的生活中,时常会看到一些美丽的图案,不知道同学们有没有注意观察图案的特征?
如:某商品的商标图案,三星级酒店的标志等。
通过学生观察发现:
(1)图案的特征:每个图案都是由几个相同的图形组合成的。
(2)图案的制作:只有画图案中的一个图形,然后把这个图形进行复制(或重复印制)。
这时,学生的回答可能不会说出图案经过平移或旋转得出,但是只要说的有道理,教师都应该给以鼓励。
二、揭示课题
1、这些美丽的图案看起来很复杂,其实是由很简单的图形构成的。那么,这些图案是怎么制作成的呢?今天,我们一起来学习一个新的知识。
2、板书课题:欣赏与设计。
三、讲授新课
1、出示课文的第一个紫荆花图案。
(1)欣赏:这个图案漂亮吗?它有什么特征?(漂亮,它是有5片相同的“花瓣”图案构成的。
想知道它是如何得到的吗?
(2)制作过程:先出示1个“花瓣”;然后加一个“花瓣”在第1个的位置,通过旋转到第2个位置上;依次类推得到第3、4、5个“花瓣”。
(3)提出问题:观察整个图案,想一想,它是怎样得到的?(引导学生结合刚才的演示过程进行分析。)
学生不难得出是由其中的一个图形经过旋转得到的。
2、出示“奥运标志”的五环图。
(1)观察图案,找出图案的特征。
(2)想一想:是哪个图形经过怎样运动得到的?
3、出示课本上下面的两幅图案。
提出问题:观察这两幅图案,想一想每幅图的图案是哪个图形平移或旋转得到的?
学生:第一幅图案是由其中的一个风筝平移得到的,第二幅图案是由其中的一枝花经过旋转得到的。
4、找出对称图形。
(1)打开课本,观察4幅图案;
(2)说一说每幅图案是由哪个图形平移或旋转得到的?并把这个图形涂上颜色。(学生动手涂颜色)
(3)展示学生作品。
(4)提出问题:上面哪幅图案是对称的?(第2、3、4幅图案都是对称的)
四、课堂活动
1、画一画。
(1)课本第24页的“画出下面图形的对称图形”。
(2)第24页的“继续画下去”。
2、展示作品。
选取由代表性的作品进行展示,教师并加以评点。
五、巩固练习
1、课本第25页“练一练”中的第1、2题。
2、实践活动。
3、课本第26页“做一做”。
六、作业设计
1、画出下图的对称图形。
2、在方格纸上画一个自己喜欢的图形,然后通过平移、旋转或对称绘制一幅图案。
七、板书设计
欣赏与设计
1、出示课文的第一个紫荆花图案。
2、出示“奥运标志”的五环图。
教学后记
数学教案怎么写篇9
教学目标:1、使学生会借助直观图,利用集合的思想方法解决简单的实际问题。2、使学生在解决实际问题的过程中体会集合的思想。3、培养学生善于观察、善于思考,养成良好的学习习惯。教学重点:使学生会借助直观图,利用集合的思想方法解决简单的实际问题。教学难点:使学生在解决实际问题的过程中体会集合的思想。
教学准备:多媒体课件
教学过程:
一、引入新课
1、出示图片
师:同学们,今天沈老师给大家带来了两个朋友,你们看他们是谁?(出示图片)
师:这两个你们喜欢吗?那你们喜欢谁呢?(先让学生说一说)
师:这样吧,我们调查一下,如果你喜欢松鼠的就用水彩笔把你的姓名写在红色纸片上,如果你喜欢熊的,就把你的姓名写在绿色纸片上,如果你两个都喜欢,你可以在两张上都写上你的姓名。
师:写好了吗?
师:为了方便,我们调查一个组好不好,请第二组的同学把你写的贴到黑板上相应的位置。如果你两个都喜欢的话,可以把你的两个姓名分别贴到他们的下面。
2、学生上来贴图
3、观察黑板上贴的情况,问:你发现了什么呢?
师:请同学们观察黑板,你发现了什么呢?
让学生说说
师:那么,喜欢ZIP和ZOOM的一共有多少人呢?
学生说(可能有人说12人也可能有人说其他的数)
二、探究:
1、四人小组合作,让学生用自己喜欢的方式表示喜欢ZIP和喜欢ZOOM的人数。
师:那么,到底有多少人呢?(如果还有意见,就让一个学生站起来,给全班同学数数,看看到底有多少人?确定12人。)
师:那么,实际是12人,可是计算出来是其他的呢?原因在哪里?
生回答
师:哪些同学重复计算了,谁上来给大家找一找?
请学生上来找出重复的人数,(师:贴哪里?)学生贴
师:重复的有6人,算了两次,而实际应该算一次,所以我把他重叠起来。(教师说着把这6人的纸片重叠起来)
师:刚刚,我们把他分成两类这样贴,很容易出错,那同学们想一想我们能不能用一些图、表或者自己喜欢的其他方式,把这份名单再整理一下,使我们清楚地看出喜欢ZIP的有哪些人?喜欢ZOOM的有哪些人?两样都喜欢的有哪些人?能不能?
生能
师:那这样吧,我们四人小组合作,合作之前给大家几点合作建议:
出示合作建议:
(1)四人小组讨论:说说打算用怎样的图或表来表示?
(2)四人小组动手在纸上画出方案。
2、展示并介绍方案
师:通过小组同学的努力,我发现我们的同学都已经有了方案,那哪个小组的同学来展示一下你们的成果呢?注意,展示的时候说说你是怎样设计的?
(1)请学生上来展示成果,并介绍方案。
(2)重点介绍集合圈图
3、看着集合圈计算总人数。
师:那么,现在你知道喜欢ZIP和ZOOM的同学一共有多少人吗?生报一遍
三、巩固练习:
1、把下面的动物的序号填在合适的位置。
师:同学们,你们喜欢动物吗?喜欢什么动物呢?(让学生说几个)那他是怎样行动的呢?那么,这些动物是怎样行动的呢?(课件出示)请你按照他们的行动方式把他们的序号填在相应的集合圈里。
师:先请同学们说说怎样填,既快又不会错?
让学生发表一下自己的观点。
师:那你是怎样填的呢?问:这部分表示什么?这部分表示什么?这个大圈表示什么?这个大圈表示什么?
2、计算三(1)班加语文和数学课外兴趣小组的人数。
师:刚刚我们了解了同学们喜欢动物的情况,下面,我们走进三一班去了解以下他们参加兴趣小组的情况,请看这里。
(1)出示名单
(2)根据表格画出集合图
师:先请你根据这表格,画出集合图。
先让学生画出集合图。
教师边巡视边说:怎样画既快又对?
(3)展示集合图:
(4)放手让学生计算人数
(5)汇报,说说为什么这样计算。
3、让学生举一些生活中这样的例子。
师:其实在我们平常生活中像这样的例子还有很多,你们可以举例说一说吗?
4、我家招待客人,这些客人喜欢吃糖果的有4人,喜欢吃花生的有6人,喜欢吃花生又喜欢吃糖果的有2人,那么我应该准备花生多一点还是准备糖果多一点?
(1)说说应该准备什么多一点。
(2)提高:计算我家到底来了几个客人。
四、总结:
师:今天这节课我们一起研究了什么?你觉得自己学得怎样?
反思:
《数学广角》是我们新教材中新增设的一个内容,在老教材中没有出现过,它主要是介绍和渗透一些数学思想方法,那么如何使小学生,尤其是低年级的学生能够接受、理解和掌握这些看似高深莫测的“数学思想方法”,是很值得探讨的问题,所以在本节课中,我在以下几个方面做了尝试:
一、精心安排学生活动,激发学习兴趣。
本课时是学习集合思想方法,通过学习集合图的画法去接触、了解集合的意义,并用多种方法来解决有关的实际问题。如果给学生讲解集合的意义、集合的表示法、什么叫交集、并集、集合的元素等抽象的概念,学生真是雾里看书“朦朦胧胧”。数学的教学是数学活动的教学,我精心设计了几个数学活动,让学生在活动中感受、体验集合的意义、集合的图示法,并用到实际问题的解决中。例如:上课开始时,我精心设计了一个关于对松鼠和熊喜欢的调查活动,接着用这个话题组织了一次分类图示法探讨活动。然后进行了对动物活动方式和三(1)班参加语文和数学兴趣活动的调查活动,最后安排了帮老师解决应该准备什么多一点的实际问题。在一节课里组织三次活动,每次活动目的明确,层层深入,解决方法得当。第一次活动目的是创设情境,引入课题;第二次活动目的是认识集合,正确画图;第三次活动目的是运用知识,解决问题。活动完了,学生学意未尽,还提出了一些问题要求研究解决。学生兴趣来了,一切问题就好解决。
二、创设问题辨析机会,培养探究能力。
精心安排活动,让学生在活动中自主探究,合作交流、积极思考、提问争论,为学生创造问题辨析的机会,在辨析中思维碰撞、产生矛盾、发现问题、探讨问题、解决问题,促进提高。在教学开始,联系学生的生活实际,在新旧知识的连接点上设计问题情境,形成学生的认知冲突,内心处于一种“平衡——不平衡——探究发现——解决问题——新的平衡”的学习过程。本节课以“喜欢熊和喜欢松鼠的同学一共有多少人”这一问题,让学生自己提问,解答,当学生解答这一问题出现分歧时,再引导学生,借助一种图、表来帮助解决这一问题。生设计各种图表示喜欢动物的集中情况时,每一个图学生都想到一些新问题,都会去评价别人的成果,提高大家的欣赏力、辨析力。尤其是对知识的重难点,在辨析中很好地解决了。活动就让学生动手做、开口讲,学生经历知识发生、形成的全过程,自主学习、自悟领会对知识的掌握不再是死记硬背,从个方面来看,这样做能真正地提高学生探究问题的水平和能力。
三、密切结合生活实际,增强解题意识。
数学来自生活,数学思想方法是在爱解决实际问题中抽象出来的,真正高明的大师,就是把高深的理论和知识,用最通俗的方法和语言告诉别人,使别人很容易接受。对于小学三年级学生讲集合论,的办法就是利用学生熟悉的生活、已有的经验来学习、解决。本课题创设了很多生活情境,让学生在模拟的生活中悟出道理,总结方法。例如:一上课老师就让学生从喜欢熊和松鼠谈论起,激发学生的兴趣,调动了学生的积极性,不知不觉地研究了很多问题,总结出集合图的正确画法和使用方法,学生很快地联想到周围生活中很多事情与今天学生内容之间的关系,学生体会到数学并不枯燥无味、远离生活。培养学生善于把数学与生活关连起来,善于用数学的眼光观察事物,增强解决实际问题的意识。
本节课在练习安排上,我选择了有关动物——这一学生喜欢的题材。通过看动物电影时出现的重叠数学问题的解答,动物园入住动物的总数的解答,让学生通过多层次联系,进一步学会用集合的数学思想,解答这异类数学问题。在本节课最后,我还安排了让同学们举一举生活中这样的例子,然后引出一个“我家请客应该准备糖果多一点还是准备花生多一点”这样的问题,让学生从中发现问题,并用本节课的知识解决这个问题。顺便让学生计算我家一共请多少人,作为本节课的提高题。
总之,数学源于生活,又反过来服务于生活,培养学生解决实际问题的应用能力,是数学学科的根本目标。
数学教案怎么写篇10
二次函数所描述的关系
教学目标:
1.理解二次函数的概念;
2.能够表示简单变量之间的二次函数的关系。
知识回顾:
1、正比例函数的表达式为 一次函数
反比例函数表达式为 。
2、某果园有100棵橙子树,每一棵树平均结600个橙子。现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少。根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子。请问种多少棵树才能达到30000个的总产量?你能解决这个问题吗?
(请列出方程,不用计算)
新知探究:
3.某果园有100棵橙子树,每一棵树平均结600个橙子。现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少。根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子。
(1)问题中有哪些变量?其中哪些是自变量?哪些是因变量?
(2)假设果园增种x棵橙子树,那么果园共有多少棵橙子树?这时平均每棵树结多少个橙子?
(3)如果果园橙子的总产量为y个,那么请你写出y与x之间的关系式。
知识运用:
4.做一做
银行的储蓄利率是随时间的变化而变化的。也就是说,利率是一个变量.在我国利率的调整是由中国人民银行根据国民经济发展的情况而决定的.
设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存.如果存款额是100元,那么请你写出两年后的本息和y(元)的表达式(不考虑利息税).
Y=________________________________
5、总结归纳
(1)从以上两个例子中,你发现这函数关系式有什么共同特征?
(2)仿照以前所学知识,你能给它起个合适的名字吗?
(3)你能用一个通用的表达式表示它们的共性吗?试试看。
【归纳总结】一般地,形如 (其中 均为常数 ≠0)的函数叫做 。
你能举出类似的例子吗?
巩固练习
P30页随堂练习 1 2
布置作业 习题2.1
数学教案怎么写篇11
教学内容:教科书第8183页,练习十八的第24题。
教学目的:
1.使学生能比较熟练地读、写数。
2.使学生能比较熟练地进行数的改写。
3.使学生能比较熟练地进行数的大小比较。
教学过程:
一、数的读写
1.整数的读法和写法。
(1)指名说整数的读法。对说得不完整的,让其他同学补充。学生说时,不必要求与书上的叙述完全一致,只要意思正确就可以了。
出示:52000803100
先让两名学生试读,然后问他们是怎么读的。如这个数有几级?哪些0是在数级末尾不必读出来,哪些0要读出来?8前面为什么只读一个零?教师根据学生的回答,对数进行分级,并用彩色粉笔把不同0区分开。
(2)指名说整数的写法。要求与整数读法一样。
出示:四十亿六干零六十万零五十
全班学生在练习本上写数。集体订正时,指名说一说是怎样写的。
2.小数和分数的读写法。
指名分别说一说小数、分数的读法和写法。并让学生比较小数、分数的读法和写法与整数的读法和写法有什么联系和区别。
3.课堂练习。
完成教科书第82页中间做一做的第1、2题。
第1题,指名读数。可以有意识地让学习有困难的学生说一说。
第2题,学生独立写数,集体订正。
二、数的改写
1.较大的多位数改写成用万、亿作单位的数。
教师:我们已经学过,一个较大的多位数,为了读写方便,常常把它进行改写。
想想,有几种改写的方法?指名回答,使学生明确一般有两种方法:(1)改写成用万或亿作单位的数;(2)省略这个数某一位后面的尾数,写成近似数。然后,教师用书上的例子进行说明。如果班里学生掌握的比较好,也可以让学生自己举例说明。
在说明第(2)种情况时,要使学生明确是用什么方法省略的。还可以进一步提问:如果根据需要省略干位后面的尾数,求得的近似数的单位应该是多少?
接着让学生独立完成教科书第82页下面做一做的练习题。
2.求小数的近似数。
出示例题,让学生独立解答。集体订正时,让学生说一说是怎么求一个小数的近似数的。对于4.629754.630,要特别提问:4.630末尾的0为什么不能去掉?
3.假分数与带分数或整数相互改写(互化)。
教师:我们在进行分数四则运算时,经常要根据需要把假分数与带分数或整数相互改写。大家还记得改的方法吗?指名说一说。如果学生说得不清楚,教师可以适当提示:
什么样的假分数可以改写成带分数?
什么样的假分数可以改写成整数?
带分数怎样改写成假分数?
整数怎样改写成假分数?要使学生明确,整数可以根据需要化成不同分母的假分数。
出示教科书中例题,让学生独立改写,集体订正。
4.分数、小数与百分数的互化。
(1)分数和小数的互化。
教师:根据小数和分数的关系.怎样把小数化成分数:(小数化成分数,原来有见位小数.就在1后面写几个0作分母.把原来的小数去掉小数点作分子;化成分数后,能约分的要约分。)学生回答进时。只要把意思说正确就可以了。关键是使学生明。确,小数化成分数,要先把小数改写成分母是10、100、1000的分数,再约分。教师按教科上的图解分步画图。
改写成分母是10、100、1000的分数,再约分:
教师可以根据分数化成小数的两种情况,先引导学生分别回忆,再概括总结。
分母是10、100、1000的分数怎样化成小数?(可以直接去掉分母,看分母中有见个0.就从分子的最后一位起向左数出几位。点上小数点。)这实际上是应用了什么知识?(分数与除法的关系。)
分母不是10、100、1000朗分数怎样化成小数?(要用分母去除分子:除不尽时,可以根据需要按四舍五入法。保留几位小数。)
通过分析上面两种情况.谁能概括出分数化成小数的一般方法?(用分母去除分子。)教师板书。
改写成分母是10、100、1000的分数。再约分。
用分母去除分子
什么样的分数可以化成有限小数,什么样的分数不能化成有限小数?
把下面的分数化成小数,并且记住这些结果。
1 1 3 1 2 3 4 1 1 1
2 4 4 5 5 5 5 8 20 25
(2)小数和百分数的互化。
指名说一说小数和百分数互化的方法。教师根据学生的回答,按照教科书的图解进行板书。
(3)分数和百分数的互化。
指名说一说分数和百分数互化的方法。教师板书完成图解。
(4)课堂练习。
完成练习十八的第3题的第(2)、(3)小题,学生独立计算,教师巡视,对学习有困难的学生进行个别辅导,集体订正。可以让做得比较快的学生说一说是怎样做的,有没有比较简便的方法。
三、数的大小比较
先让学生独立做教科书第83页做一做的第l、2题。然后,教师引导学生归纳数的大小比较的方法。
教师:怎样比较整数、小数的大小?
比较分数的大小有几种情况?(三种:分子相同,分母相同,分子和分母都不相同。)
分母相同的分数,怎样比较它们的大小?
分子相同的分数,怎样比较它们的大小?
分母、分子都不相同的分数,怎样比较它们的大小?
四、小结(略)
五、作业
练习十八的第2题,第3题的第(1)小题,第4题。
对学有余力的学生可以让他们思考练习十八的第5题和第6题。
数学教案怎么写篇12
[教学目标]
1、知道图形旋转的概念,能找出旋转图形中的旋转中心、旋转角度和对应关系。
2、通过观察、操作、交流、归纳等过程,培养学生探究问题的能力、观察能力,以及与人合作交流的能力。
3、经历对生活中旋转图形的观察、讨论、实践操作,使学生充分感知数学美,培养学生学习数学的兴趣和热爱生活的情感。
[教学重点]
掌握旋转的有关概念,探索和发现旋转后图形的形状和大小都没有发生变化;会准确找出对应点、对应线段、对应角,旋转中心、旋转角。
[教学难点]
对图形旋转过程中旋转角相等的理解,会准确找出旋转角。
旋转中心不在三角形顶点时旋转角的确定。
[教学过程]
一、引入图形的旋转
1、复习图形的两种运动
在以前的学习中我们已经知道图形的两种运动:平移和翻折(展示运动让学生回答)。
在这两种运动中图形的形状、大小等并没有发生变化,只是位置变化。
2、引入图形的旋转(从生活中抽象到图形)
生活中我们还会见到许多其他的运动。
用课件显示日常生活中部分物体的旋转现象。
引出课题:今天我们就要学习§16.1图形的旋转
二、讲授新课
(一)图形的旋转,旋转中心,旋转角
1、[演示]:演示单摆和风车的转动,观察转动时各点的运动情况得到图形在转动时,位置始终不变的那一点叫做旋转中心。图形转动的角度叫做旋转角。
归纳图形旋转特征(1)旋转前、后的图形形状和大小不变,只改变图形的位置。
2、由单摆抽象到几何图形线段的旋转,得到线段转动的旋转角,
再由线段的旋转引申到三角形的旋转,进一步得到(2)图形转动时各点的旋转角相等以及旋转角的判定(图形上的任意一对对应点与旋转中心连线所成的夹角)。
由学生归纳得到(3)点到旋转中心的距离不变。当旋转角小于3600时,点旋转形成曲线是弧。当旋转角等于3600时,点旋转形成的曲线是圆。
3、[试一试]
如果旋转中心在三角形外,你会找旋转角吗?课件演示。
如果旋转中心在三角形内,你会找旋转角吗?课后作出△abc绕点o逆时针旋转600的图形。
三、例题讲解
例如图,△abc是等边三角形,△abp旋转后能与△p'bc重合,那么
a
(1)旋转中心是哪一点?
(2)旋转角是几度?
(3)连结pp'后,△bpp'是什么三角形?
解:(1)旋转中心是点b
(2)旋转角∠abc是600
(3)∵bp=bp',∠pbp'=∠abc=600
∴△bpp'是等边三角形(有一个角是600的等腰三角形
是等边三角形)
四、巩固练习:
1、完成下面的填空
1)一个图形绕着一个点转动一个角度后,从一个位置转到另一个位置,图形的这种运动叫做。图形在转动时,位置始终保持不变的那一点叫做旋转。
图形转动的叫做旋转角。
2)旋转不改变图形的和,只改变图形的。
2、完成书上练习2
3、探究活动
如图,如果正方形cdef旋转后能与正方形abcd重合,那么图形所在的平面上可以作为旋转中心的点共有几个?请分别说出它们是如何旋转得到的。
(二)在日常生活中,我们可以看到,一些图形绕着某一个点旋转一定角度时,能与自身重合。
你能举出这样的例子吗?
电风扇:120度,螺旋桨:180度,五角星:72度,正三角形:120度。
五、小结
今天我们学习了图形的一种运动----旋转。通过学习你有什么收获?
六、拓展练习(机动)
七、布置作业:
1、《b册》第45页习题16.1
2、《一课一练》第60页第一、二题
3、动手操作:请设计一个绕一点旋转一定角度后能与自身重合的图形。(b册p51)
六、
本节的整个教学设计突出以下几个特点:
1、设置问题,引导思维
一个好的数学问题,既能揭示课堂的教学内容,又能充分调动学生的积极性。本节设置了一个个的问题,把知识点串联起来,以引导学生的思维,学生在思考这些问题的过程中,掌握了图形的旋转的定义、性质及其应用,从而完成了本节的知识目标。
2、自主探究,训练思维
新的课程标准强调教学不能把知识的结果强加给学生,不能单纯地只让学生掌握知识的结果,而应重视获取知识的过程。因此,在本节的教学设计中,突出了学生自主探究的特点,尤其在难点的突破过程中,更是充分展示了学生个性化的思维过程,学生选择不同的基本图案,就会得到不同的旋转方式,这种自主探究的方式,极大地调动了学生的学习积极性,训练了学生思维的多样性。
3、动态演示,激活思维
数学教案怎么写篇13
教学目标:
1、通过小组合作、自主探究建构,使学生能结合方格纸用数对来确定位置,能依据给定的数对在方格纸上确定位置。
2、通过课堂的学习活动,增强学生运用所学知识解决实际问题的能力,提高应用意识。
3、让每一个学生在通过合作学习、汇报展示、课堂互动交流中,都体验到学习带来的喜悦,培养学生的学科兴趣和学习能力。
教学重点:在方格纸用数对确定位置。
教学难点:利用方格纸正确表示列与行。
教学用具:动物园示意图的方格纸图。
教学过程
一、复习导入,提出学习目标。
1、复习:先用数对表示班级某一位同学的位置,再说说数对的第1个数字表示什么?第2个数字表示什么?
2、揭题,提出学习目标。
让学生先说说,再出示学习目标:
(1)方格纸上什么线表示列,什么线表示行。
(2)利用方格纸确定物体位置的方法。
二、展示学习成果
1、认识方格纸的列与行。
竖线是列,横线是行。
2、自主学习,小组内展示。
(1)独立学习课本3页例2,并完成问题1和问题2。小组之间互相交流、探讨。(教师相机进行指导,收集学生的学习信息,重在让学生展示不同的思维方法和错例,特别是引导小组内学生之间的交流与探讨。)
(2)指名学生板演。
3、全班展示。
(1)问题1:熊猫馆在第3列第5行,用(3,5)表示;海洋馆在6列第4行,用(6,4)表示;猴山在第2列第2行,用(2,2)表示;大象馆在第1列第4行,用(1,4)表示。
(2)问题2:让板演的学生说说是怎样标出各个场馆的位置。如:飞禽馆(1,1)在第1列第1行交__点上……
三、拓展知识外延。
1、完成练习一第3、4题。
2、完成练习一第6题。
(1)独立写出图上各顶点的位置。
(2)顶点A向右平移5个单位,位置在哪里?数对的哪个数字发生了改变?点A再向上平移5个单位,位置在哪里?数对的哪个数字也发生了改变?
(3)照点A的方法平移点B和点C,得出平移后完整的三角形。(小组内互相交流、探讨。)
(4)观察平移前后的图形,说说你发现了什么?
(5)汇报:图形不变,右移时,列变了,数对的第一个数字改变了,上移时,行变了,数对的第二个数字改变了。
(6)学生质疑问难,激发知识冲突。
a、针对同学的汇报,学生自由质疑问难。
b、教师引导学困生提出问题:同学们,你在学习中碰到困难了吗?能把你遇到的困难说给大家听吗?那你对同学的展示有什么想法与建议吗?
四、归纳总结
我们今天学了哪些内容?你觉得自己掌握的情况如何?
五、作业:练习一第5、7题。
六、教后记:
让每一个学生在通过合作学习、汇报展示、课堂互动交流中,都体验到学习带来的喜悦,培养学生的学科兴趣和学习能力。
数学教案怎么写篇14
教学目标:
1.让学生经历用6-9的乘法口诀求商的过程,掌握用乘法口诀求商的一般方法,形成用乘法口诀求商的计算技能。
2.学生会用迁移的方法学习新知。
3.在解决问题的过程中,使学生初步尝试运用分析、推理的方法。教学重点:使学生熟练应用乘法口诀求商教学难点:熟练应用乘法口诀求商(根据除法算式想出合适的.口诀)
教学准备:
课件
教学过程:
一、复习、引入新课
1、背69的乘法口诀。
2、师:今天我们学什么?(师边板课题边问)请大家齐读课题!
二、出示学习目标,学生齐读
三、新授
1、出示信息窗2情境图。
师:请看这幅图,你看到了哪些信息?
师:谁来说图上的这些同学再干什么?
生1:图上的这些同学正在做标本。
师:他们是怎样做保本的?(生说师板)
生2:①有56片黄叶子,每8片做一个标本。
生3:②有72片绿叶子,每9片做一个标本。
生4:③有42多花,每6朵做一个标本。
师:根据这些信息,你能提出哪些问题?(生说师板)
生5:①能做几个标本?
生6:②能做几个标本?
生7:③能做几个标本?
2、出示自学指导,学生先学自学指导
(一):认真看课本83页,试着把第1题列出算式,并说说你是用什么方法求出商的?①、有42朵花,做一件标本需要6朵,能做几件花的标本生:426=7(件)师:为什么这样列式?(求42里面有几个6?)师:你是怎么算的?生8:我是用口诀算的,六七四十二,所以,426=7(件)
3、后教:教师出示PPT课件总结列式过程和计算方法,求42朵花能做几件标本,就是求42里有几个6。计算时想:6和几相乘得42?六七四十二,口诀中差几商就是几同学们说得很好,再来试一试吧,PPT出示四道除法算式,学生口算并说出所用口诀。
4、出示自学指导
(二):认真看课本83页情境图,完成下面两个问题②、有72片柳叶,做一件标本需要9片,能做几件柳叶标本?③、有56片杨树叶,做一件标本需要8片,能做几件杨树叶标本?
(两位学生板演,其他学生写在练习本上,师巡查,发现问题算式,利用展台展示,让学生评价指正)。
四、自主练习
1、口算乘除法算式,并说出所用口诀,找出算式间的规律。
2、智砸鸡蛋。(口算)
3、有45辆玩具车,每9辆装一箱,可以装几箱?
4、小猴分水果
如果平均分,每只小猴分得几个桃子?你还能提出什么问题?
五、全课总结
师:这节课你学到了什么?做题时要想做的又对又快,你认为必须怎么样?(必须把口诀背熟)
六、课堂评价
让学生评价自己或同学的学习情况。
板书设计:
用69的乘法口诀求商
①有42朵花,每6朵做一件标本。能做几件标本?
426=7(件)
②有56片黄叶子,每8片做一件标本。能做几件标本?
568=7(个)
③有72片绿叶子,每9片做一件标本。能做几件标本?
729=8(个)
数学教案怎么写篇15
教学目标:
1.掌握数轴三要素,能正确画出数轴.
2.能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.
教学重点:数轴的概念.
教学难点:从直观认识到理性认识,从而建立数轴概念.
教与学互动设计:
(一)创设情境,导入新课
课件展示课本P7的“问题”(学生画图)
(二)合作交流,解读探究
师:对照大家画的图,为了使表达更清楚,我们把0左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来,也就是本节要学的内容——数轴.
【点拨】(1)引导学生学会画数轴.
第一步:画直线,定原点.
第二步:规定从原点向右的方向为正(左边为负方向).
第三步:选择适当的长度为单位长度(据情况而定).
第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处.
对比思考原点相当于什么;正方向与什么一致;单位长度又是什么?
(2)有了以上基础,我们可以来试着定义数轴:
规定了原点、正方向和单位长度的直线叫数轴.
做一做学生自己练习画出数轴.
试一试你能利用你自己画的数轴上的点来表示数4,1.5,-3,-2,0吗?
讨论若a是一个正数,则数轴上表示数a的点在原点的什么位置上?与原点相距多少个单位长度?表示-a的点在原点的什么位置上?与原点又相距多少个单位长度?
小结整数在数轴上都能找到点表示吗?分数呢?
可见,所有的都可以用数轴上的点表示;都在原点的左边,都在原点的右边.
(三)应用迁移,巩固提高
【例1】 下列所画数轴对不对?如果不对,指出错在哪里?
【例2】试一试:用你画的数轴上的点表示4,1.5,-3,-,0.
【例3】下列语句:
①数轴上的点只能表示整数;②数轴是一条直线;③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有()
A.1个B.2个C.3个D.4个
【例4】在数轴上表示-2和1,并根据数轴指出所有大于-2而小于1的整数.
【例5】数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若在这个数轴上随意画出一条长为2000cm的线段AB,则线段AB盖住的整点有()
A.1998个或1999个B.1999个或2000个
C.2000个或20__个D.20__个或20__个
(四)总结反思,拓展升华
数轴是非常重要的工具,它使数和直线上的点建立了一一对应的关系.它揭示了数和形的内在联系,为我们今后进一步研究问题提供了新方法和新思想.大家要掌握数轴的三要素,正确画出数轴.提醒大家,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数.
(五)课堂跟踪反馈
夯实基础
1.规定了、、的直线叫做数轴,所有的有理数都可从用上的点来表示.
2.P从数轴上原点开始,向右移动2个单位长度,再向左移5个单位长度,此时P点所表示的数是.
3.把数轴上表示2的点移动5个单位长度后,所得的对应点表示的数是()
A.7 B.-3
C.7或-3D.不能确定
4.在数轴上,原点及原点左边的点所表示的数是()
A.正数B.负数
C.不是负数D.不是正数
5.数轴上表示5和-5的点离开原点的距离是,但它们分别表示.
提升能力
6.与原点距离为3.5个单位长度的点有2个,它们分别是和.
7.画出一条数轴,并把下列数表示在数轴上:
+2,-3,0.5,0,-4.5,4,3.
开放探究
8.在数轴上与-1相距3个单位长度的点有个,为;长为3个单位长度的木条放在数轴上,最多能覆盖个整数点.
9.下列四个数中,在-2到0之间的数是()
A.-1B.1 C.-3D.3