数学高考教案
教案可以帮助教师根据学生的实际情况,面向大多数学生,并调动学生学习的积极性。如何写出优秀的数学高考教案?下面给大家分享一些数学高考教案,希望对大家有所帮助。
数学高考教案篇1
一、教学内容分析
1、教学主要内容
(1)平面向量数量积及其几何意义
(2)用平面向量处理有关长度、角度、直垂问题
2、教材编写特点
本节是必修4第二章第3节的内容,在教材中起到层上启下的作用。
3、教学内容的核心教学思想
用数量积求夹角,距离及平面向量数量积的坐标运算,渗透化归思想以及数形结合思想。
4、我的思考
本节数学的目标为让学生掌握平面向量数量积的定义,及应用平面向量数量积的定义处理相关夹角距离及垂直的问题。因此,让学生们学会把数学问题转化到图形中,及能在图形中把图形转化成相关的数学问题尤其重要。
二、学生分析
1、在学平面向量的数量积之前,学习已经认识并会找向量的夹角,及用坐标表示向量的知识。因此,对于a·b=∣b∣︳a︴cosθ(θ=),容易进行相应的简单计算,但对于理解这个式子上存在一定的问题,因此,需把a·b=∣a∣∣b∣cosθ转化到图形
a·b=∣OM∣·∣OB∣=∣b∣cosθ∣a∣
即a·b=∣a∣∣b∣cosθ理解并记忆。
对于cosθ=,等的变形应用,同学们甚感兴趣。
2、我的思考
对于基础薄弱的学生而言,学习本节知识,在处理例题成练习上,计算量不易过大。
三、学习目标
1、知识与技能
(1)掌握平面向量数量积及其几何意义。
(2)平面向量数量积的应用。
2、过程与方法
通过学生小组探究学习,讨论并得出结论。
3、情感态度与价值观
培养学生运算推理的能力。
四、教学活动
内容师生互动设计意图时间1、课题引入师:请同学请回忆我们所学过的相关同里的运算。
生:加法、减法,数乘
师:这些运算所得的结果是数还是向量。
生:向量。
师:今天我们来学习一种有关向量的新的运输,数里积(板书课题)由旧知引出新知,让学生知道我们学习是层层深入,知识永不止境,从而把学生引入到新的课程学习中来。3min2、平面向里的数量积定义师:平面向星数量积(内积或点积)的定义:
已知两个非零向星a·b,它们的夹角是θ,则数量∣a∣·∣b∣cosθ叫a与b的数量积,记作a·b,即a·b=∣a∣∣b∣cosθ,注:①a·b≠a×b≠ab
②O与任何向量的数里积为O。直接给出定义,可以让学习对新知识的求知数得到满足,并对新知识的探究有一个方向性。5min3、几何意义师:同学们猜想
a·b=∣a∣∣b∣cosQ
用图怎么表示
生:a·b=∣a∣·∣b∣cosθ
=∣OM∣·∣OB∣
师:数里积a·b等于a的长度与b在a方向上的投影∣b∣cosθ的面积。
师:请同学们讨论数量积且有哪些性质
通过自己画图培养学生把问题转化到图形上,到图形上解决问题的能力。
5min性质师:同学们a·b为非零向果,a·b=∣a∣·∣b∣cosθ。当θ=0°,90°,180°时,a·b有什么性质呢。
生:①当θ=90°时
a·b=a·b=∣a∣·∣b∣cosθ
②当a与b同向时
即θ=0°,则a·b=∣a∣·∣b∣
当a与b反向时,
即θ=180°,则a·b=∣a∣·∣b∣
特别a·a=∣a∣2成∣a∣=a·a
③∣a∣·∣b∣≤∣a∣∣b∣
学生自己的探究性质,体会并深入理解向里数量的运算性质。8min生:①a·b=b·a(交换)
②(λa)·b=λ(a·b)
数学高考教案篇2
教学目标
1.掌握等比数列前项和公式,并能运用公式解决简单的问题.
(1)理解公式的推导过程,体会转化的思想;
(2)用方程的思想认识等比数列前项和公式,利用公式知三求一;与通项公式结合知三求二;
2.通过公式的灵活运用,进一步渗透方程的思想、分类讨论的思想、等价转化的思想.
3.通过公式推导的教学,对学生进行思维的严谨性的训练,培养他们实事求是的科学态度.
教学建议
教材分析
(1)知识结构
先用错位相减法推出等比数列前项和公式,而后运用公式解决一些问题,并将通项公式与前项和公式结合解决问题,还要用错位相减法求一些数列的前项和.
(2)重点、难点分析
教学重点、难点是等比数列前项和公式的推导与应用.公式的推导中蕴含了丰富的数学思想、方法(如分类讨论思想,错位相减法等),这些思想方法在其他数列求和问题中多有涉及,所以对等比数列前项和公式的要求,不单是要记住公式,更重要的是掌握推导公式的方法.等比数列前项和公式是分情况讨论的,在运用中要特别注意和两种情况.
教学建议
(1)本节内容分为两课时,一节为等比数列前项和公式的推导与应用,一节为通项公式与前项和公式的综合运用,另外应补充一节数列求和问题.
(2)等比数列前项和公式的推导是重点内容,引导学生观察实例,发现规律,归纳总结,证明结论.
(3)等比数列前项和公式的推导的其他方法可以给出,提高学生学习的兴趣.
(4)编拟例题时要全面,不要忽略的情况.
(5)通项公式与前项和公式的综合运用涉及五个量,已知其中三个量可求另两个量,但解指数方程难度大.
(6)补充可以化为等差数列、等比数列的数列求和问题.
教学设计示例
课题:等比数列前项和的公式
教学目标
(1)通过教学使学生掌握等比数列前项和公式的推导过程,并能初步运用这一方法求一些数列的前项和.
(2)通过公式的推导过程,培养学生猜想、分析、综合能力,提高学生的数学素质.
(3)通过教学进一步渗透从特殊到一般,再从一般到特殊的辩证观点,培养学生严谨的学习态度.
教学重点,难点
教学重点是公式的推导及运用,难点是公式推导的思路.
教学用具
幻灯片,课件,电脑.
教学方法
引导发现法.
教学过程
一、新课引入:
(问题见教材第129页)提出问题:(幻灯片)
二、新课讲解:
记,式中有64项,后项与前项的比为公比2,当每一项都乘以2后,中间有62项是对应相等的,作差可以相互抵消.
(板书)即,①
,②
②-①得即.
由此对于一般的等比数列,其前项和,如何化简?
(板书)等比数列前项和公式
仿照公比为2的等比数列求和方法,等式两边应同乘以等比数列的公比,即
(板书)③两端同乘以,得
④,
③-④得⑤,(提问学生如何处理,适时提醒学生注意的取值)
当时,由③可得(不必导出④,但当时设想不到)
当时,由⑤得.
于是
反思推导求和公式的方法——错位相减法,可以求形如的数列的和,其中为等差数列,为等比数列.
(板书)例题:求和:.
设,其中为等差数列,为等比数列,公比为,利用错位相减法求和.
解:,
两端同乘以,得
,
两式相减得
于是.
说明:错位相减法实际上是把一个数列求和问题转化为等比数列求和的问题.
公式其它应用问题注意对公比的分类讨论即可.
三、小结:
1.等比数列前项和公式推导中蕴含的思想方法以及公式的应用;
2.用错位相减法求一些数列的前项和.
四、作业:略
数学高考教案篇3
课题古典概型课型高一新授课教学目标理解古典概型及其概率计算公式,并能计算有关随机事件的概率教学重点理解古典概型的概念及利用古典概型求解随机事件的概率。教学难点如何判断一个试验是否为古典概型,弄清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。教学方法导学式、启发式教学教具多媒体辅助教学过程教学内容与教师活动学生活动设计意图
创设情境引出课题
问题1:考察两个试验:
(1)抛掷一枚质地均匀的硬币的试验;
(2)掷一颗质地均匀的骰子的试验。
问:在这两个试验中,可能的结果分别有哪些?
教师引导学生思考问题1:学生思考结果且给出基本事件的特点1
问题1设计意图:通过掷硬币与掷骰子两个接近于生活的试验的设计。先激发学生的学习兴趣,然后引导学生观察试验,分析结果,找出共性。
问题2:在掷骰子试验中,随机试验“出现偶数点”可以由哪些事件组成?教师引导学生思考问题2:学生归纳与总结,问题2设计意图:通过举例,引出基本事件的特点2。问题3:基本事件有什么特点?
教师加以引导与启发,利用基本事件的关系发现基本事件的特点问题3:学生口答问题3设计意图:提高学生概括总结能力问题4:例1、从字母a,b,c,d中任意取出两个不同字母的实验中,有那些基本事件?教师引导学生列举时做到不重复、不遗漏,教师指出画树状图是列举法的基本方法。
问题4:学生列举出基本事件。问题4引导学生用列举法列举基本事件的个数,不仅能让学生直观的感受到研究对象的总数,而且还能使学生在列举的时候作到不重不漏。解决了求古典概型中基本事件总数这一难点
通过设疑引出概念
问题1:(1)请问掷一枚均匀硬币出现正面朝上的概率是多少?
(2)掷一枚均匀的骰子各种点数向上的概率是多少?其中出现偶数点向上的概率是多少?让学生带着好奇心去观察数学模型,老师启发引导学生推导公式。
问题1学生得到答案且深层次的考虑问题
问题1设计意图:学生根据已有的知识,已经可以独立得出概率,通过教师的步步追问,引导学生深层次的考虑问题,看到问题的本质,得出概率公式。让学生带着思考问题观察试验,使其有目的的去寻找答案,有效的利用课堂时间,达到教学目标。
问题2:上述概率公式的推导过程中基本事件有什么特点?教师引导学生找出共性。具有下列两个特点的概率模型才能运用上述公式,我们称为古典概率模型,简称古典概型。
(1)试验中所有可能出现的基本事件只有有限个;(有限性)
(2)每个基本事件出现的可能性相等。(等可能性)问题2学生观察和初步概括归纳古典概率模型及特征
问题2设计意图培养运用从特殊到一般,从具体到抽象数学思想。启发诱导的同时,训练了学生观察和概括归纳的能力。通过问题的解决引出古典概型的概念。
问题3:(1)向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概型吗?为什么?
(2)某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环。你认为这是古典概型吗?为什么?问题3学生互相交流,回答补充得到的答案问题3设计意图:两个问题的设计是为了让学生更加准确的把握古典概型的两个特点。突破了如何判断一个试验是否是古典概型这一教学难点。
例题分析加深理例题分析加深理
例2、在数学考试中单选题是常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案。假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?
教师引导学生思考是否满足古典概型的特征?教师对学生的回答进行归纳与总结
例2学生思考、讨论、交流,说出看法
例2设计意图:通过例题的学习让学生学会对古典概型的判断,就是看是否满足古典概型的两个基本特征:有限性与等可能性,由此掌握求此类题目的方法,让学生进一步理解古典概型的概率计算公式。
变式:假设我们现在将单选题改为不定项选择题,不定项选择题从A、B、C、D四个选项中选出所有正确答案,假设还是这名考生,他随机的选择一个答案,他猜对的概率是多少
教师引导学生列举15种可能出现的答案,判断是否满足古典概型的特征,利用概率公式求值。变式:学生在老师的引导下列举15种可能出现的答案,并且判断是否满足古典概型的特征,利用概率公式求值。变式设计意图:让学生感受到数学模型的生活化,能用所学知识解决新问题是数学学习的主旨。当学生用自己的知识解决问题后,会有极大的成就感,提高了学习兴趣。
例3、同时掷两个骰子,计算:(1)一共有多少种不同的结果?
(2)其中向上的点数之和是5的结果有多少种?
(3)向上的点数之和是5的概率是多少?
教师将学生的结果汇总展示,学生给出的答案可能会有多种,然后引导学生分析原因,寻找解答中存在的问题。其中这两种答案分别对应了解题中的两种处理方法:把骰子标号进行解题和不标号进行解题,可以提示学生先把这两种方法下的基本事件全部列出来,然后验证是否为古典概型。
教师分析两种方式中每个基本事件的等可能性,引导学生发现在第二种情况下每个基本事件不是等可能的,不是古典概型,因此不能用古典概型计算公式。
例3学生思考、讨论,列出两种方法下的基本事件,发现基本事件的总数不相等,学生发现在第二种情况下每个基本事件不是等可能的,不是古典概型,因此不能用古典概型计算公式
例3设计意图:引导学生根据古典概型的特征,用列举法解决概率问题。深化巩固对古典概型及其概率计算公式的理解,和用列举法来计算一些随机事件所含基本事件的个数及事件发生的概率。培养学生运用数形结合的思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣,形成学习数学知识的积极态度。
数学高考教案篇4
教材分析:
前面已学习了向量的概念及向量的线性运算,这里引入一种新的向量运算——向量的数量积。教科书以物体受力做功为背景引入向量数量积的概念,既使向量数量积运算与学生已有知识建立了联系,又使学生看到向量数量积与向量模的大小及夹角有关,同时与前面的向量运算不同,其计算结果不是向量而是数量。
在定义了数量积的概念后,进一步探究了两个向量夹角对数量积符号的影响;然后由投影的概念得出了数量积的几何意义;并由数量积的定义推导出一些数量积的重要性质;最后“探究”研究了运算律。
教学目标:
(一)知识与技能
1.掌握数量积的定义、重要性质及运算律;
2.能应用数量积的重要性质及运算律解决问题;
3.了解用平面向量数量积可以解决长度、角度、垂直共线等问题,为下节课灵活运用平面向量数量积解决问题打好基础。
(二)过程与方法
以物体受力做功为背景引入向量数量积的概念,从数与形两方面引导学生对向量数量积定义进行探究,通过例题分析,使学生明确向量的数量积与数的乘法的联系与区别。
(三)情感、态度与价值观
创设适当的问题情境,从物理学中“功”这个概念引入课题,开始就激发学生的学习兴趣,让学生容易切入课题,培养学生用数学的意识,加强数学与其它学科及生活实践的联系。
教学重点:
1.平面向量的数量积的定义;
2.用平面向量的数量积表示向量的模及向量的夹角。
教学难点:
平面向量数量积的定义及运算律的理解和平面向量数量积的应用。
教学方法:
启发引导式
教学过程:
(一)提出问题,引入新课
前面我们学习了平面向量的线性运算,包括向量的加法、减法、以及数乘运算,它们的运算结果都是向量,既然两个向量可以进行加法、减法运算,我们自然会提出:两个向量是否能进行“乘法”运算呢?如果能,运算结果又是什么呢?
这让我们联想到物理中“功”的概念,即如果一个物体在力F的作用下产生位移s,F与s的夹角是θ,那么力F所做的功如何计算呢?
我们知道:W=Fscosθ,
功是一个标量(数量),而力它等于力F和位移s都是矢量(向量),功等于力和位移这两个向量的大小与它们夹角余弦的乘积。这给我们一种启示:能否把功W看成是两向量F和s的一种运算的结果呢,为此我们引入平面向量的数量积。
(二)讲授新课
今天我们就来学习:(板书课题)
2.4平面向量的数量积
一、向量数量积的定义
1.已知两个非零向量与,我们把数量cosθ叫做与的数量积(或内积),记作,即=cosθ,其中θ是与的夹角。
2.规定:零向量与任一向量的数量积为0,即=0
注意:
(1)符号“”在向量运算中既不能省略,也不能用“×”代替。
(2)是与的夹角,范围是0≤θ≤π,(再找两向量夹角时,若两向量起点不同,必须通过平移,把起点移到同一点,再找夹角)。
(3)两个向量的数量积是一个数量,而不是向量。而且这个数量的大小与两个向量的模及其夹角有关。
(4)两非零向量与的数量积的符号由夹角θ决定:
cosθ
=cosθ=0
cosθ
前面我们学习了向量的加法、减法及数乘运算,他们都有明确的几何意义,那么向量的数量积的几何意义是什么呢?
二、数量积的几何意义
1.“投影”的概念:已知两个非零向量与,θ是与的夹角,cos(叫做向量在方向上的投影
思考:投影是向量,还是数量?
根据投影的定义,投影当然算数量,可能为正,可能为负,还可能为0
(为锐角(为钝角(为直角
cos(cos(cos(=0
当(为锐角时投影为正值;当(为钝角时投影为负值;当(为直角时投影为0;当(=0(时投影为;当(=180(时投影为(
思考:在方向上的投影是什么,并作图表示
2.数量积的几何意义:数量积等于的长度与在方向上投影cos(的乘积,也等于的长度与在方向上的投影cos(的乘积。
根据数量积的定义,可以推出一些结论,我们把它们作为数量积的重要性质
三、数量积的重要性质
设与都是非零向量,θ是与的夹角
数学高考教案篇5
一、教学目标:
1、知识与技能:
(1)结合实例,了解正整数指数函数的概念.
(2)能够求出正整数指数函数的解析式,进一步研究其性质.
2、过程与方法:
(1)让学生借助实例,了解正整数指数函数,体会从具体到一般,从个别到整体的研究过程和研究方法.
(2)从图像上观察体会正整数指数函数的性质,为这一章的学习作好铺垫.
3、情感.态度与价值观:使学生通过学习正整数指数函数体会学习指数函数的重要意义,增强学习研究函数的积极性和自信心.
二、教学重点:正整数指数函数的定义.教学难点:正整数指数函数的解析式的确定.
三、学法指导:学生观察、思考、探究.教学方法:探究交流,讲练结合。
四、教学过程
(一)新课导入
[互动过程1]:
(1)请你用列表表示1个细胞分裂次数分别为1,2,3,4,5,6,7,8时,得到的细胞个数;
(2)请你用图像表示1个细胞分裂的次数n()与得到的细胞个数y之间的关系;
(3)请你写出得到的细胞个数y与分裂次数n之间的关系式,试用科学计算器计算细胞分裂15次、20次得到的细胞个数.
解:
(1)利用正整数指数幂的运算法则,可以算出1个细胞分裂1,2,3,4,5,6,7,8次后,得到的细胞个数
分裂次数12345678
细胞个数248163264128256
(2)1个细胞分裂的次数与得到的细胞个数之间的关系可以用图像表示,它的图像是由一些孤立的点组成
(3)细胞个数与分裂次数之间的关系式为,用科学计算器算得,所以细胞分裂15次、20次得到的细胞个数分别为32768和1048576.
探究:从本题中得到的函数来看,自变量和函数值分别是什么?此函数是什么类型的函数?细胞个数随着分裂次数发生怎样变化?你从哪里看出?
小结:从本题中可以看出我们得到的细胞分裂个数都是底数为2的指数,而且指数是变量,取值为正整数.细胞个数与分裂次数之间的关系式为.细胞个数随着分裂次数的增多而逐渐增多.
[互动过程2]:问题2.电冰箱使用的氟化物的释放破坏了大气上层的臭氧层,臭氧含量Q近似满足关系式Q=Q00.9975t,其中Q0是臭氧的初始量,t是时间(年),这里设Q0=1.
(1)计算经过20,40,60,80,100年,臭氧含量Q;
(2)用图像表示每隔20年臭氧含量Q的变化;
(3)试分析随着时间的增加,臭氧含量Q是增加还是减少.
解:(1)使用科学计算器可算得,经过20,40,60,80,100年,臭氧含量Q的值分别为0.997520=0.9512,0.997540=0.9047,0.997560=0.8605,0.997580=0.8185,0.9975100=0.7786;
(2)用图像表示每隔20年臭氧含量Q的变化,它的图像是由一些孤立的点组成.
(3)通过计算和观察图形可以知道,随着时间的增加,臭氧含量Q在逐渐减少.
探究:从本题中得到的函数来看,自变量和函数值分别又是什么?此函数是什么类型的函数?,臭氧含量Q随着时间的增加发生怎样变化?你从哪里看出?
小结:从本题中可以看出我们得到的臭氧含量Q都是底数为0.9975的指数,而且指数是变量,取值为正整数.臭氧含量Q近似满足关系式Q=0.9975t,随着时间的增加,臭氧含量Q在逐渐减少.
[互动过程3]:上面两个问题所得的函数有没有共同点?你能统一吗?自变量的取值范围又是什么?这样的函数图像又是什么样的?为什么?
正整数指数函数的定义:一般地,函数叫作正整数指数函数,其中是自变量,定义域是正整数集.
说明:1.正整数指数函数的图像是一些孤立的点,这是因为函数的定义域是正整数集.2.在研究增长问题、复利问题、质量浓度问题中常见这类函数.
(二)、例题:某地现有森林面积为1000,每年增长5%,经过年,森林面积为.写出,间的函数关系式,并求出经过5年,森林的面积.
分析:要得到,间的函数关系式,可以先一年一年的增长变化,找出规律,再写出,间的函数关系式.
解:根据题意,经过一年,森林面积为1000(1+5%);经过两年,森林面积为1000(1+5%)2;经过三年,森林面积为1000(1+5%)3;所以与之间的函数关系式为,经过5年,森林的面积为1000(1+5%)5=1276.28(hm2).
练习:课本练习1,2
补充例题:高一某学生家长去年年底到银行存入2000元,银行月利率为2.38%,那么如果他第n个月后从银行全部取回,他应取回钱数为y,请写出n与y之间的关系,一年后他全部取回,他能取回多少?
解:一个月后他应取回的钱数为y=2000(1+2.38%),二个月后他应取回的钱数为y=2000(1+2.38%)2;,三个月后他应取回的钱数为y=2000(1+2.38%)3,,n个月后他应取回的钱数为y=2000(1+2.38%)n;所以n与y之间的关系为y=2000(1+2.38%)n(nN+),一年后他全部取回,他能取回的钱数为y=2000(1+2.38%)12.
补充练习:某工厂年产值逐年按8%的速度递增,今年的年产值为200万元,那么第n年后该厂的年产值为多少?
(三)、小结:1.正整数指数函数的图像是一些孤立的点,这是因为函数的定义域是正整数集.2.在研究增长问题、复利问题、质量浓度问题中常见这类函数。
数学高考教案篇6
一、说课内容:
苏教版高一年级数学下册第六章第一节的二次函数的概念及相关习题
二、教材分析:
1、教材的地位和作用
这节课是在学生已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的中考题中占有较大比例。同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。进一步学习二次函数将为它们的解法提供新的方法和途径,并使学生更为深刻的理解“数形结合”的重要思想。而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。所以这节课在整个教材中具有承上启下的重要作用。
2、教学目标和要求:
(1)知识与技能:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。
(2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高学生解决问题的能力.
(3)情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的愿望与信心.
3、教学重点:对二次函数概念的理解。
4、教学难点:由实际问题确定函数解析式和确定自变量的取值范围。
三、教法学法设计:
1、从创设情境入手,通过知识再现,孕伏教学过程
2、从学生活动出发,通过以旧引新,顺势教学过程
3、利用探索、研究手段,通过思维深入,领悟教学过程
四、教学过程:
(一)复习提问
1.什么叫函数?我们之前学过了那些函数?
(一次函数,正比例函数,反比例函数)
2.它们的形式是怎样的?
(y=kx+b,k≠0;y=kx,k≠0;y=,k≠0)
3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k≠0的条件?k值对函数性质有什么影响?
设计意图复习这些问题是为了帮助学生弄清自变量、函数、常量等概念,加深对函数定义的理解.强调k≠0的条件,以备与二次函数中的a进行比较.
(二)引入新课
函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。看下面三个例子中两个变量之间存在怎样的关系。(电脑演示)
例1、(1)圆的半径是r(cm)时,面积s(cm)与半径之间的关系是什么?
解:s=πr(r>0)
例2、用周长为20m的篱笆围成矩形场地,场地面积y(m)与矩形一边长x(m)之间的关系是什么?
解:y=x(20/2-x)=x(10-x)=-x+10x(0
例3、设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。如果存款额是100元,那么请问两年后的本息和y(元)与x之间的关系是什么(不考虑利息税)?
解:y=100(1+x)
=100(x+2x+1)
=100x+200x+100(0
教师提问:以上三个例子所列出的函数与一次函数有何相同点与不同点?
设计意图通过具体事例,让学生列出关系式,启发学生观察,思考,归纳出二次函数与一次函数的联系:
(1)函数解析式均为整式(这表明这种函数与一次函数有共同的特征)。
(2)自变量的最高次数是2(这与一次函数不同)。
(三)讲解新课
以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。
二次函数的定义:形如y=ax2+bx+c(a≠0,a,b,c为常数)的函数叫做二次函数。
巩固对二次函数概念的理解:
1、强调“形如”,即由形来定义函数名称。二次函数即y是关于x的二次多项式(关于的x代数式一定要是整式)。
2、在y=ax2+bx+c中自变量是x,它的取值范围是一切实数。但在实际问题中,自变量的取值范围是使实际问题有意义的值。(如例1中要求r>0)
3、为什么二次函数定义中要求a≠0?
(若a=0,ax2+bx+c就不是关于x的二次多项式了)
4、在例3中,二次函数y=100x2+200x+100中,a=100,b=200,c=100.
5、b和c是否可以为零?
由例1可知,b和c均可为零.
若b=0,则y=ax2+c;
若c=0,则y=ax2+bx;
若b=c=0,则y=ax2.
注明:以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c是二次函数的一般形式.
设计意图这里强调对二次函数概念的理解,有助于学生更好地理解,掌握其特征,为接下来的判断二次函数做好铺垫。
判断:下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b、c.
(1)y=3(x-1)+1(2)
(3)s=3-2t(4)y=(x+3)-x
(5)s=10πr(6)y=2+2x
(8)y=x4+2x2+1(可指出y是关于x2的二次函数)
设计意图理论学习完二次函数的概念后,让学生在实践中感悟什么样的函数是二次函数,将理论知识应用到实践操作中。
五、教学设计思考
以实现教学目标为前提
以现代教育理论为依据
以现代信息技术为手段
贯穿一个原则——以学生为主体的原则
突出一个特色——充分鼓励表扬的特色
渗透一个意识——应用数学的意识
数学高考教案篇7
古典概型
学情分析
(二)教学目标
1.知识与技能:
(1)通过试验理解基本事件的概念和特点;
(2)通过具体实例分析,抽离出古典概型的两个基本特征,并推导出古典概型下的概率计算公式;
(3)会求一些简单的古典概率问题。
2.过程与方法:经历探究古典概型的过程,体验由特殊到一般的数学思想方法。
3.情感与价值:用具有现实意义的实例,激发学生的学习兴趣,培养学生勇于探索,善于发现的创新思想。
(三)教学重、难点
重点:理解古典概型的概念,利用古典概型求解随机事件的概率。
难点:如何判断一个试验是否为古典概型,弄清在一个古典概型中基本事件的总数和某随机事件包含的基本事件的个数。
(四)教学用具
多媒体课件,投影仪,硬币,骰子。
(五)教学过程
[情景设置]
[温故知新]
(1)回顾前几节课对概率求取的方法:大量重复试验。
(2)由随机试验方法的不足之处引发矛盾冲突:我们需要寻求另外一种更为简单易行的方式,提出建立概率模型的必要性。
[探究新知]
一、基本事件
思考:试验1:掷一枚质地均匀的硬币,观察可能出现哪几种结果?
试验2:掷一枚质地均匀的骰子,观察可能出现的点数有哪几种结果?
定义:一次试验中可能出现的每一个结果称为一个基本事件。
思考:掷一枚质地均匀的骰子
(1)在一次试验中,会同时出现“1点”和“2点”这两个基本事件吗
(2)随机事件“出现点数小于3”与“出现点数大于3”包含哪几个基本事件?
掷一枚质地均匀的硬币
(1)在一次试验中,会同时出现“正面向上”和“反面向上”这两个基本事件吗
(2)“必然事件”包含哪几个基本事件?
基本事件的特点:(1)任何两个基本事件是互斥的;
(2)任何事件(除不可能事件)都可以表示成基本事件的和。
二、古典概型
思考:从基本事件角度来看,上述两个试验有何共同特征?
古典概型的特征:(1)试验中所有可能出现的基本事件的个数有限;
(2)每个基本事件出现的可能性相等。
师生互动:由学生和老师各自举出一些生活实例并分析是否具备古典概型的两个特征。
向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这一试验能用古典概型来描述吗?为什么?
(2)08年北京奥运会上我国选手张娟娟以出色的成绩为我国赢得了射箭项目的第一枚奥运金牌。你认为打靶这一试验能用古典概型来描述吗?为什么?
三、求解古典概型
思考:古典概型下,每个基本事件出现的概率是多少?随机事件出现的概率又如何计算?
(1)基本事件的概率
试验1:掷硬币
P(“正面向上”)=P(“反面向上”)=
试验2:掷骰子
P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”)=
结论:古典概型中,若基本事件总数有n个,则每一个基本事件出现的概率为
(2)随机事件的概率
掷骰子试验中,记事件A为“出现点数小于3”,事件B为“出现点数大于3”,如何求解P(A)与P(B)?
结论:古典概型中,若基本事件总数有n个,A事件所包含的基本事件个数为m,则
P(A)=
古典概型的概率计算公式:
[实战演练]
例1.标准化考试的选择题有单选和不定项选择两种类型。假设考生不会做,随机从A、B、C、D四个选项中选择正确的答案,请问哪种类型的选择题更容易答对?
分析:解决这个问题的关键在于本题什么情况下可以看成古典概型。如果考生掌握了所考察的部分或全部知识,这都不满足古典概型的第2个条件—等可能性,因此,只有在假定考生不会做,随机地选择了一个答案的情况下,才为古典概型。
数学高考教案篇8
正弦定理
一教材分析
本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理和余弦定理的知识非常重要。
根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:
认知目标:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理与三角形的内角和定理解斜三角形的两类问题。
能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。
情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,激发学生学习的兴趣。
教学重点:正弦定理的内容,正弦定理的证明及基本应用。
教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。
二教法
根据教材的内容和编排的特点,为是更有效地突出重点,空破难点,以学业生的发展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想,采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。突破重点的手段:抓住学生情感的兴奋点,激发他们的兴趣,鼓励学生大胆猜想,积极探索,以及及时地鼓励,使他们知难而进。另外,抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给以适当的提示和指导。突破难点的方法:抓住学生的能力线联系方法与技能使学生较易证明正弦定理,另外通过例题和练习来突破难点
三学法:
指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。
四教学过程
第一:创设情景,大概用2分钟
第二:实践探究,形成概念,大约用25分钟
第三:应用概念,拓展反思,大约用13分钟
(一)创设情境,布疑激趣
“兴趣是的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。
(二)探寻特例,提出猜想
1.激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。
2.那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。
3.让学生总结实验结果,得出猜想:
在三角形中,角与所对的边满足关系
这为下一步证明树立信心,不断的使学生对结论的认识从感性逐步上升到理性。
(三)逻辑推理,证明猜想
1.强调将猜想转化为定理,需要严格的理论证明。
2.鼓励学生通过作高转化为熟悉的直角三角形进行证明。
3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。
4.思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明
(四)归纳总结,简单应用
1.让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。
2.正弦定理的内容,讨论可以解决哪几类有关三角形的问题。
3.运用正弦定理求解本节课引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。
(五)讲解例题,巩固定理
1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.
例1简单,结果为解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。
2.例2.在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.
例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟悉掌握已知两边和其中一边的对角时解三角形的各种情形。完了把时间交给学生。
(六)课堂练习,提高巩固
1.在△ABC中,已知下列条件,解三角形.
(1)A=45°,C=30°,c=10cm
(2)A=60°,B=45°,c=20cm
2.在△ABC中,已知下列条件,解三角形.
(1)a=20cm,b=11cm,B=30°
(2)c=54cm,b=39cm,C=115°
学生板演,老师巡视,及时发现问题,并解答。
(七)小结反思,提高认识
通过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会?
1.用向量证明了正弦定理,体现了数形结合的数学思想。
2.它表述了三角形的边与对角的正弦值的关系。
3.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。
(从实际问题出发,通过猜想、实验、归纳等思维方法,最后得到了推导出正弦定理。我们研究问题的突出特点是从特殊到一般,我们不仅收获着结论,而且整个探索过程我们也掌握了研究问题的一般方法。在强调研究性学习方法,注重学生的主体地位,调动学生积极性,使数学教学成为数学活动的教学。)
(八)任务后延,自主探究
如果已知一个三角形的两边及其夹角,要求第三边,怎么办?发现正弦定理不适用了,那么自然过渡到下一节内容,余弦定理。布置作业,预习下一节内容。
数学高考教案篇9
函数单调性与(小)值
一、教材分析
1、教材的地位和作用
(1)本节课主要对函数单调性的学习;
(2)它是在学习函数概念的基础上进行学习的,同时又为基本初等函数的学习奠定了基础,所以他在教材中起着承前启后的重要作用;(可以看看这一课题的前后章节来写)
(3)它是历年高考的热点、难点问题
(根据具体的课题改变就行了,如果不是热点难点问题就删掉)
2、教材重、难点
重点:函数单调性的定义
难点:函数单调性的证明
重难点突破:在学生已有知识的基础上,通过认真观察思考,并通过小组合作探究的办法来实现重难点突破。(这个必须要有)
二、教学目标
知识目标:(1)函数单调性的定义
(2)函数单调性的证明
能力目标:培养学生全面分析、抽象和概括的能力,以及了解由简单到复杂,由特殊到一般的化归思想
情感目标:培养学生勇于探索的精神和善于合作的意识
(这样的教学目标设计更注重教学过程和情感体验,立足教学目标多元化)
三、教法学法分析
1、教法分析
“教必有法而教无定法”,只有方法得当才会有效。新课程标准之处教师是教学的组织者、引导者、合作者,在教学过程要充分调动学生的积极性、主动性。本着这一原则,在教学过程中我主要采用以下教学方法:开放式探究法、启发式引导法、小组合作讨论法、反馈式评价法
2、学法分析
“授人以鱼,不如授人以渔”,最有价值的知识是关于方法的只是。学生作为教学活动的主题,在学习过程中的参与状态和参与度是影响教学效果最重要的因素。在学法选择上,我主要采用:自主探究法、观察发现法、合作交流法、归纳总结法。
(前三部分用时控制在三分钟以内,可适当删减)
四、教学过程
1、以旧引新,导入新知
通过课前小研究让学生自行绘制出一次函数f(x)=x和二次函数f(x)=x^2的图像,并观察函数图象的特点,总结归纳。通过课上小组讨论归纳,引导学生发现,教师总结:一次函数f(x)=x的图像在定义域是直线上升的,而二次函数f(x)=x^2的图像是一个曲线,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(适当添加手势,这样看起来更自然)
2、创设问题,探索新知
紧接着提出问题,你能用二次函数f(x)=x^2表达式来描述函数在(-∞,0)的图像?教师总结,并板书,揭示函数单调性的定义,并注意强调可以利用作差法来判断这个函数的单调性。
让学生模仿刚才的表述法来描述二次函数f(x)=x^2在(0,+∞)的图像,并找个别同学起来作答,规范学生的数学用语。
让学生自主学习函数单调区间的定义,为接下来例题学习打好基础。
3、例题讲解,学以致用
例1主要是对函数单调区间的巩固运用,通过观察函数定义在(—5,5)的图像来找出函数的单调区间。这一例题主要以学生个别回答为主,学生回答之后通过互评来纠正答案,检查学生对函数单调区间的掌握。强调单调区间一般写成半开半闭的形式
例题讲解之后可让学生自行完成课后练习4,以学生集体回答的方式检验学生的学习效果。
例2是将函数单调性运用到其他领域,通过函数单调性来证明物理学的波意尔定理。这是历年高考的热点跟难点问题,这一例题要采用教师板演的方式,来对例题进行证明,以规范总结证明步骤。一设二差三化简四比较,注意要把f(x1)-f(x2)化简成和差积商的形式,再比较与0的大小。
学生在熟悉证明步骤之后,做课后练习3,并以小组为单位找部分同学上台板演,其他同学在下面自行完成,并通过自评、互评检查证明步骤。
4、归纳小结
本节课我们主要学习了函数单调性的定义及证明过程,并在教学过程中注重培养学生勇于探索的精神和善于合作的意识。
5、作业布置
为了让学生学习不同的数学,我将采用分层布置作业的方式:一组习题1.3A组1、2、3,二组习题1.3A组2、3、B组1、2
6、板书设计
我力求简洁明了地概括本节课的学习要点,让学生一目了然。
(这部分最重要用时六到七分钟,其中定义讲解跟例题讲解一定要说明学生的活动)
五、教学评价
本节课是在学生已有知识的基础上学习的,在教学过程中通过自主探究、合作交流,充分调动学生的积极性跟主动性,及时吸收反馈信息,并通过学生的自评、互评,让内部动机和外界刺激协调作用,促进其数学素养不断提高。
数学高考教案篇10
一、总体设想:
本节课的设计有两条暗线:一是围绕物理中物体做功,引入数量积的概念和几何意义;二是围绕数量积的概念通过变形和限定衍生出新知识――垂直的判断、求夹角和线段长度的公式。教学方案可从三方面加以设计:一是数量积的概念;二是几何意义和运算律;三是两个向量的模与夹角的计算。
二、教学目标:
1.了解向量的数量积的抽象根源。
2.了解平面的数量积的概念、向量的夹角
3.数量积与向量投影的关系及数量积的几何意义
4.理解掌握向量的数量积的性质和运算律,并能进行相关的判断和计算
三、重、难点:
【重点】1.平面向量数量积的概念和性质
2.平面向量数量积的运算律的探究和应用
【难点】平面向量数量积的应用
课时安排:
2课时
五、教学方案及其设计意图:
1.平面向量数量积的物理背景
平面向量的数量积,其源自对受力物体在其运动方向上做功等物理问题的抽象。首先说明放置在水平面上的物体受力F的作用在水平方向上的位移是s,此问题中出现了两个矢量,即数学中所谓的向量,这时物体力F的所做的功为W,这里的(是矢量F和s的夹角,也即是两个向量夹角的定义基础,在定义两个向量的夹角时,要使学生明确“把向量的起点放在同一点上”这一重要条件,并理解向量夹角的范围。这给我们一个启示:功是否是两个向量某种运算的结果呢?以此为基础引出了两非零向量a,b的数量积的概念。
平面向量数量积(内积)的定义
已知两个非零向量a与b,它们的夹角是θ,则数量abcos(叫a与b的数量积,记作a(b,即有a(b=abcos(,(0≤θ≤π).
并规定0与任何向量的数量积为0.
零向量的方向是任意的,它与任意向量的夹角是不确定的,按数量积的定义a(b=abcos(无法得到,因此另外进行了规定。
3.两个非零向量夹角的概念
已知非零向量a与b,作=a,=b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.
,是记法,是定义的实质――它是一个实数。按照推理,当时,数量积为正数;当时,数量积为零;当时,数量积为负。
4.“投影”的概念
定义:bcos(叫做向量b在a方向上的投影。
投影也是一个数量,它的符号取决于角(的大小。当(为锐角时投影为正值;当(为钝角时投影为负值;当(为直角时投影为0;当(=0(时投影为b;当(=180(时投影为(b.因此投影可正、可负,还可为零。
根据数量积的定义,向量b在a方向上的投影也可以写成
注意向量a在b方向上的投影和向量b在a方向上的投影是不同的,应结合图形加以区分。
5.向量的数量积的几何意义:
数量积a(b等于a的长度与b在a方向上投影bcos(的乘积.
向量数量积的几何意义在证明分配律方向起着关键性的作用。其几何意义实质上是将乘积拆成两部分:。此概念也以物体做功为基础给出。是向量b在a的方向上的投影。
6.两个向量的数量积的性质:
设a、b为两个非零向量,则
(1)a(b(a(b=0;
(2)当a与b同向时,a(b=ab;当a与b反向时,a(b=(ab.特别的a(a=a2或
(3)a(b≤ab
(4),其中为非零向量a和b的夹角。
例1.(1)已知向量a,b,满足,a与b的夹角为,则b在a上的投影为______
(2)若,,则a在b方向上投影为_______
例2.已知,,按下列条件求
数学高考教案篇11
第一章:空间几何体
1.1.1柱、锥、台、球的结构特征
一、教学目标
1.知识与技能
(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
2.过程与方法
(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。
3.情感态度与价值观
(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
二、教学重点、难点
重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
难点:柱、锥、台、球的结构特征的概括。
三、教学用具
(1)学法:观察、思考、交流、讨论、概括。
(2)实物模型、投影仪
四、教学思路
(一)创设情景,揭示课题
1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。
2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。
(二)、研探新知
1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。
2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?
3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。
4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。
5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?
6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。
7.让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。
8.引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。
9.教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。
10.现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成。请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?
(三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。
1.有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)
2.棱柱的何两个平面都可以作为棱柱的底面吗?
3.课本P8,习题1.1A组第1题。
4.圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?
5.棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?
四、巩固深化
练习:课本P7练习1、2(1)(2)
课本P8习题1.1第2、3、4题
五、归纳整理
由学生整理学习了哪些内容
六、布置作业
课本P8练习题1.1B组第1题
课外练习课本P8习题1.1B组第2题
1.2.1空间几何体的三视图(1课时)
一、教学目标
1.知识与技能
(1)掌握画三视图的基本技能
(2)丰富学生的空间想象力
2.过程与方法
主要通过学生自己的亲身实践,动手作图,体会三视图的作用。
3.情感态度与价值观
(1)提高学生空间想象力
(2)体会三视图的作用
二、教学重点、难点
重点:画出简单组合体的三视图
难点:识别三视图所表示的空间几何体
三、学法与教学用具
1.学法:观察、动手实践、讨论、类比
2.教学用具:实物模型、三角板
四、教学思路
(一)创设情景,揭开课题
“横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图。
在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的三视图吗?
(二)实践动手作图
1.讲台上放球、长方体实物,要求学生画出它们的三视图,教师巡视,学生画完后可交流结果并讨论;
2.教师引导学生用类比方法画出简单组合体的三视图
(1)画出球放在长方体上的三视图
(2)画出矿泉水瓶(实物放在桌面上)的三视图
学生画完后,可把自己的作品展示并与同学交流,总结自己的作图心得。
作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图。
3.三视图与几何体之间的相互转化。
(1)投影出示图片(课本P10,图1.2-3)
请同学们思考图中的三视图表示的几何体是什么?
(2)你能画出圆台的三视图吗?
(3)三视图对于认识空间几何体有何作用?你有何体会?
教师巡视指导,解答学生在学习中遇到的困难,然后让学生发表对上述问题的看法。
4.请同学们画出1.2-4中其他物体表示的空间几何体的三视图,并与其他同学交流。
(三)巩固练习
课本P12练习1、2P18习题1.2A组1
(四)归纳整理
请学生回顾发表如何作好空间几何体的三视图
(五)课外练习
1.自己动手制作一个底面是正方形,侧面是全等的三角形的棱锥模型,并画出它的三视图。
2.自己制作一个上、下底面都是相似的正三角形,侧面是全等的等腰梯形的棱台模型,并画出它的三视图。
1.2.2空间几何体的直观图(1课时)
一、教学目标
1.知识与技能
(1)掌握斜二测画法画水平设置的平面图形的直观图。
(2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。
2.过程与方法
学生通过观察和类比,利用斜二测画法画出空间几何体的直观图。
3.情感态度与价值观
(1)提高空间想象力与直观感受。
(2)体会对比在学习中的作用。
(3)感受几何作图在生产活动中的应用。
二、教学重点、难点
重点、难点:用斜二测画法画空间几何值的直观图。
三、学法与教学用具
1.学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程。
2.教学用具:三角板、圆规
四、教学思路
(一)创设情景,揭示课题
1.我们都学过画画,这节课我们画一物体:圆柱
把实物圆柱放在讲台上让学生画。
2.学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢?这是我们这节主要学习的内容。
(二)研探新知
1.例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评。
画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法。强调斜二测画法的步骤。
练习反馈
根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查。
2.例2,用斜二测画法画水平放置的圆的直观图
教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点。
教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法。
3.探求空间几何体的直观图的画法
(1)例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体ABCD-A’B’C’D’的直观图。
教师引导学生完成,要注意对每一步骤提出严格要求,让学生按部就班地画好每一步,不能敷衍了事。
(2)投影出示几何体的三视图、课本P15图1.2-9,请说出三视图表示的几何体?并用斜二测画法画出它的直观图。教师组织学生思考,讨论和交流完成,教师巡视帮不懂的同学解疑,引导学生正确把握图形尺寸大小之间的关系。
4.平行投影与中心投影
投影出示课本P17图1.2-12,让学生观察比较概括在平行投影下画空间图形与在中心投影下画空间图形的各自特点。
5.巩固练习,课本P16练习1(1),2,3,4
三、归纳整理
学生回顾斜二测画法的关键与步骤
四、作业
1.书画作业,课本P17练习第5题
2.课外思考课本P16,探究(1)(2)
数学高考教案篇12
一、教学目标
1.知识与技能
(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
2.过程与方法
(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。
3.情感态度与价值观
(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
二、教学重点、难点
重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
难点:柱、锥、台、球的结构特征的概括。
三、教学用具
(1)学法:观察、思考、交流、讨论、概括。
(2)实物模型、投影仪
四、教学思路
(一)创设情景,揭示课题
1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。
2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的`内容。
(二)、研探新知
1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。
2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?
3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。
4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。
5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?
6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。
7.让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。
8.引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。
9.教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。
10.现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成。请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?
(三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。
1.有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)
2.棱柱的何两个平面都可以作为棱柱的底面吗?
3.课本P8,习题1.1A组第1题。
4.圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?
5.棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?
四、巩固深化
练习:课本P7练习1、2(1)(2)
课本P8习题1.1第2、3、4题
五、归纳整理
由学生整理学习了哪些内容
六、布置作业
课本P8练习题1.1B组第1题
课外练习课本P8习题1.1B组第2题
1.2.1空间几何体的三视图(1课时)
数学高考教案篇13
《平面向量》
各位评委,老师们:大家好!
很高兴参加这次说课活动.这对我来说也是一次难得的学习和锻炼的机会,感谢各位老师在百忙之中来此予以指导.希望各位评委和老师们对我的说课内容提出宝贵意见.
我说课的内容是<平面向量>的教学,所用的教材是人民教育出版社出版的全日制普通高级中学教科书(试验修订本-必修)<数学>第一册下,教学内容为第96页至98页第五章第一节.本校是浙江省一级重点中学,学生基础相对较好.我在进行教学设计时,也充分考虑到了这一点.
下面我从教材分析,教学目标的确定,教学方法的选择和教学过程的设计四个方面来汇报我对这节课的教学设想.
一教材分析
(1)地位和作用
向量是近代数学中重要和基本的概念之一,有着深刻的几何背景,是解决几何问题的有力工具.向量概念引入后,全等和平行(平移),相似,垂直,勾股定理等就可以转化为向量的加(减)法,数乘向量,数量积运算(运算率),从而把图形的基本性质转化为向量的运算体系.向量是沟通代数,几何与三角函数的一种工具,有着极其丰富的实际背景,在数学和物理学科中具有广泛的应用.
平面向量的基本概念是在学生了解了物理学中的有关力,位移等矢量的概念的基础上进一步对向量的深入学习.为学习向量的知识体系奠定了知识和方法基础.
(2)教学结构的调整
课本在这一部分内容的教学为一课时,首先从小船航行的距离和方向两个要素出发,抽象出向量的概念,并重点说明了向量与数量的区别.然后介绍了向量的几何表示,向量的长度,零向量,单位向量,平行向量,共线向量,相等向量等基本概念.为使学生更好地掌握这些基本概念,同时深化其认知过程和探究过程.在教学中我将教学的顺序做如下的调整:将本节教学中认知过程的教学内容适当集中,以突出这节课的主题;例题,习题部分主要由学生依照概念自行分析,独立完成.
(3)重点,难点,关键
由于本节课是本章内容的第一节课,是学生学习本章的基础.为了本章后面知识的学习,首先必须掌握向量的概念,要抓住向量的本质:大小与方向.所以向量,相等向量的概念,向量的几何表示是这节课的重点.本节课是为高一后半学期学生设计的,尽管此时的学生已经有了一定的学习方法和习惯,但根据以往的教学经验,多数学生对向量的认识还比较单一,仅仅考虑其大小,忽略其方向,这对学生的理解能力要求比较高,所以我认为向量概念也是这节课的难点.而解决这一难点的关键是多用复杂的几何图形中相等的有向线段让学生进行辨认,加深对向量的理解.
二教学目标的确定
根据本课教材的特点,新大纲对本节课的教学要求,学生身心发展的合理需要,我从三个方面确定了以下教学目标:
(1)基础知识目标:理解向量,零向量,单位向量,共线向量,平行向量,相等向量的概念,会用字母表示向量,能读写已知图中的向量.会根据图形判定向量是否平行,共线,相等.
(2)能力训练目标:培养学生观察、归纳、类比、联想等发现规律的一般方法,培养学生观察问题,分析问题,解决问题的能力。
(3)情感目标:让学生在民主、和谐的共同活动中感受学习的乐趣。
三教学方法的选择
Ⅰ教学方法
本节课我采用了”启发探究式的教学方法,根据本课教材的特点和学生的实际情况在教学中突出以下两点:
(1)由教材的特点确立类比思维为教学的主线.
从教材内容看平面向量无论从形式还是内容都与物理学中的有向线段,矢量的概念类似.因此在教学中运用类比作为思维的主线进行教学.让学生充分体会数学知识与其他学科之间的联系以及发生与发展的过程.
(2)由学生的特点确立自主探索式的学习方法
通常学生对于概念课学起来很枯燥,不感兴趣,因此要考虑学生的情感需要,找一些学生感兴趣的题材来激发学生的学习兴趣,另外,学生都有表现自己的欲望,希望得到老师和其他同学的认可,要多表扬,多肯定来激励他们的学习热情.考虑到我校学生的基础较好,思维较为活跃,对自主探索式的学习方法也有一定的认识,所以在教学中我通过创设问题情境,启发引导学生运用科学的思维方法进行自主探究.将学生的独立思考,自主探究,交流讨论等探索活动贯穿于课堂教学的全过程,突出学生的主体作用.
Ⅱ教学手段
本节课中,除使用常规的教学手段外,我还使用了多媒体投影仪和计算机来辅助教学.多媒体投影为师生的交流和讨论提供了平台;计算机演示的作图过程则有助于渗透数形结合思想,更易于对概念的理解和难点的突破.
四教学过程的设计
Ⅰ知识引入阶段---提出学习课题,明确学习目标
(1)创设情境——引入概念
数学学习应该与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中去发现数学、探究数学、认识并掌握数学。
由生活中具体的向量的实例引入:大海中船只的航线,中国象棋中”马”,”象”的走法等.这些符合高中学生思维活跃,想象力丰富的特点,有利于激发学生的学习兴趣.
(2)观察归纳——形成概念
由实例得出有向线段的概念,有向线段的三个要素:起点,方向,长度.明确知道了有向线段的起点,方向和长度,它的终点就确定.再有目的的进行设计,引导学生概括总结出本课新的知识点:向量的概念及其几何表示。
(3)讨论研究——深化概念
在得到概念后进行归纳,深化,之后向学生提出以下三个问题:
①向量的要素是什么?
②向量之间能否比较大小?
③向量与数量的区别是什么?
同时指出这就是本节课我们要研究和学习的主题.
Ⅱ知识探索阶段---探索平面向量的平行向量.相等向量等概念
(1)总结反思——提高认识
方向相同或相反的非零向量叫平行向量,也即共线向量,并且规定0与任一向量平行.长度相等且方向相同的向量叫相等向量,规定零向量与零向量相等.平行向量不一定相等,但相等向量一定是平行向量,即向量平行是向量相等的必要条件.
(2)即时训练—巩固新知
为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一组即时训练题,通过学生的观察尝试,讨论研究,教师引导来巩固新知识。
[练习1]判断下列命题是否正确,若不正确,请简述理由.
数学高考教案篇14
古典概型
一、目标引领
1.理解随机事件和古典概率的概念?.
2.会用列举法计算一些随机事件所含的基本事件数及事件发生的概率.
?重点及难点
重点是求随机事件的概率,难点是如何判断一个随机事件是否是古典概型,搞清随机事件所包含的基本事件的个数及其总数.
?二、自学探究
在课前,教师布置任务,以数学小组为单位,完成下面两个模拟试验,
试验一:抛掷一枚质地均匀的硬币,分别记录“正面朝上”和“反面朝上”的次数,要求每个数学小组至少完成30次(最好是整十数),最后由课代表汇总.
试验二:抛掷一枚质地均匀的骰子,分别记录“1点”、“2点”、“3点”、“4点”、“5点”和“6点”的次数,要求每个数学小组至少完成30次,最后由课代表汇总.
三、合作交流
在我们所做的每个实验中,有几个结果,每个结果出现的概率是多少?
学生回答:
在试验一中结果只有两个,即“正面朝上”和“反面朝上”,并且他们都是相互独立的,由于硬币质地是均匀的,因此出现两种结果的可能性相等,即它们的概率都是.
在试验二中结果有六个,即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”,并且他们都是相互独立的,由于骰子质地是均匀的,因此出现六种结果可能性相等,即它们的概率都是.
引入新的概念:
基本事件:我们把试验可能出现的结果叫做基本事件.
古典概率:把具有以下两个特点的概率模型叫做古典概率.
(1)一次试验所有的基本事件只有有限个.
例如试验一中只有“正面朝上”和“反面朝上”两种结果,即有两个基本事件.试验二中结果有六个,即有六个基本事件.
(2)每个基本事件出现的可能性相等.
试验一和试验二其基本事件出现的可能性均相同.
随机现象:对于在一定条件下可能出现也可能不能出现,且有统计规律性的现象叫做随机现象.试验一抛掷硬币的游戏中,可能出现“正面朝上”也可能出现“反面朝上”,这就是随机现象.
随机事件:在概率论中,掷骰子、转硬币……都叫做试验,试验的结果叫做随机事件.例如掷骰子的结果中“是偶数”、“是奇数”、“大于2”等等都是随机事件.随机事件“是偶数”就是由基本事件“2点”、“4点”、“6点”构成.随机事件一般用大写英文字母A、B等来表示.
必然事件:试验后必定出现的事件叫做必然事件,记作.例如掷骰子的结果中“都是整数”、“都大于0”等都是必然事件.
不可能事件:实验中不可能出现的事件叫做不可能事件,
基本事件有如下的两个特点:
(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.
四、精讲点拨
例1:从字母a、b、c、d任意取出两个不同字母的试验中,有哪些基本事件?
解:有ab,ac,ad,bc,bd,cd.
例2:(1)向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概率吗?为什么?
答:不是古典概型,因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概率的第一个条件.
数学高考教案篇15
教学准备
教学目标
熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。
教学重难点
熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。
教学过程
【复习要求】熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。_
【方法规律】应用数列知识界实际应用问题的关键是通过对实际问题的综合分析,确定其数学模型是等差数列,还是等比数列,并确定其首项,公差(或公比)等基本元素,然后设计合理的计算方案,即数学建模是解答数列应用题的关键。
一、基础训练
1.某种细菌在培养过程中,每20分钟_一次(一个_为两个),经过3小时,这种细菌由1个可繁殖成()
A、511B、512C、1023D、1024
2.若一工厂的生产总值的月平均增长率为p,则年平均增长率为()
A、B、
C、D、
二、典型例题
例1:某人每期期初到银行存入一定金额A,每期利率为p,到第n期共有本金nA,第一期的利息是nAp,第二期的利息是(n-1)Ap……,第n期(即最后一期)的利息是Ap,问到第n期期末的本金和是多少?
评析:此例来自一种常见的存款叫做零存整取。存款的方式为每月的某日存入一定的金额,这是零存,一定时期到期,可以提出全部本金及利息,这是整取。计算本利和就是本例所用的有穷等差数列求和的方法。用实际问题列出就是:本利和=每期存入的金额[存期+1/2存期(存期+1)利率]
例2:某人从1999到20__年间,每年6月1日都到银行存入m元的一年定期储蓄,若每年利率q保持不变,且每年到期的存款本息均自动转为新的一年定期,到20__年6月1日,此人到银行不再存款,而是将所有存款的本息全部取回,则取回的金额是多少元?
例3、某地区位于沙漠边缘,人与自然进行长期顽强的斗争,到1999年底全地区的绿化率已达到30%,从2000年开始,每年将出现以下的变化:原有沙漠面积的16%将栽上树,改造为绿洲,同时,原有绿洲面积的4%又被侵蚀,变为沙漠.问经过多少年的努力才能使全县的绿洲面积超过60%.(lg2=0.3)
例4、.流行性感冒(简称流感)是由流感病毒引起的急性呼吸道传染病.某市去年11月分曾发生流感,据资料记载,11月1日,该市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人,由于该市医疗部门采取措施,使该种病毒的传播得到控制,从某天起,每天的新感染者平均比前一天的新感染着减少30人,到11月30日止,该市在这30天内感染该病毒的患者共有8670人,问11月几日,该市感染此病毒的新的患者人数最多?并求这一天的新患者人数.