数学教案的流程
写教案时,需要注重教学反思,对教学过程中出现的问题及时总结和记录,以便不断完善和提高自己的教学水平。下面是一些数学教案的流程免费阅读下载,希望对大家写数学教案的流程有用。
数学教案的流程篇1
教学内容:
北师大版三年级数学课本23-24页的相关内容。
教学目标:
1、知识与技能:通过观察和操作活动,初步认识轴对称图形。会直观判断轴对称图形,能用对折的方法找出轴对称图形的对称轴。
2、过程与方法:通过学生动手操作等实践活动,培养学生的观察能力和想象能力。
3、情感态度与价值观:在学生的学习活动中,让学生学会欣赏数学之美。
教学重点:
认识轴对称图形的基本特征,能画出轴对称图形的对称轴。
教学难点:
能直观判断出轴对称图形,能用折纸的方法找出对称轴;
教学准备:
课件、一些轴对称图形图片、纸和剪刀、长方形、正方形、圆形纸等。
教学过程:
一、巧设情境,激发好奇心。
花园里有只可爱的蝴蝶在翩翩起舞。一天她遇见了小蜻蜓,对小蜻蜓说:“我们是一家人。”小蜻蜓就奇怪了,我是小蜻蜓,你是蝴蝶,怎么是一家人了。蝴蝶笑了笑说,在大自然里还有很多物体和我们是一家呢。
二、欣赏图片,建立表象。
1、这不,你瞧。蝴蝶找来了什么?
课件出示:蝴蝶、枫树叶、七星瓢虫、蜻蜓、脸谱、交通标志、数字8、飞机、天平、一些字母等。这些图形漂亮吗?学生欣赏各种对称图形。
2、引导观察图形,交流汇报
刚才同学看到的这些图形在日常生活中还有很多很多,那么这些图形中你发现都有什么特征呢?把你的发现在小组内说一说。
师:你发现了什么数学问题?
生1:我发现他们都很美。
生2:左右一样。上下?
生3:我发现它们是对称的。
师:你是怎么理解对称的?
生3:对称就是左右两边是完全一样的。
3、教学板书“对称”
(1)课题导入
师:是啊,刚才我们看到的其实是生活中的轴对称图形的现象。今天老师和大家一起来研究数学上的轴对称图形。(板书课题) 刘元平三下《轴对称图形》教学设计 刘元平三下《轴对称图形》教学设计
(2)结合剪纸作品,抽象概念
师:谁能在最快的时间内剪出一个葫芦吗?
学生自己操作创作。(先把纸对折后再剪)
教师选几张学生剪得好的轴对称图形贴在黑板上。
找出不同的剪法,让学生说一说是怎样剪的。
师:请大家观察,比较这些图形,你发现了什么?
生1:他们的形状不同。
生2:他们的大小也不同。
生3:他们的两边是完全一样的。
生4:这些图形上都有一条折痕。
现在你们把你自己剪的图形重新对折一下,你们会发现他们怎么样?(两边完全重合)是的,那么什么样的图形才是轴对称图形呢?
学生回答自己理解的轴对称图形。(对折后两边的部分完全重合的图形就是轴对称图形)
那么这条折痕应该给它取个什么样的名字呢?(对称轴)
老师把课前准备好的作品展示给大家看。(灯笼、衣服等)
三、实践操作,深化认识。
1、组织活动——折一折
(1)每个学生剪下附页中的图1,先对折,看两边是否完全重合,再打开,看折痕的位置。
(2)学生小组合作,完成折一折。组织学生将自己小组折出的对称图形进行展示并汇报各自的折法。
(3)学生认识对称轴,中间这条折痕我们就把它叫做对称轴,用虚线表示。
请学生用铅笔画出你们剪出的对称图形的对称轴。
2、小结:通过折、画,小朋友们都认识了轴对称图形,那么现在谁能为大家介绍一下这样的图形。
得出结论:如果一个图形沿一条直线对折,两侧的图形能够完全重合,这个图形就叫做轴对称图形。
折痕所在得直线叫做对称轴。
四、巩固练习,深化认识。
1、看下面那些图形是轴对称图形。 刘元平三下《轴对称图形》教学设计
2、找一找下列哪些数字、汉字、字母是轴对称图形, 刘元平三下《轴对称图形》教学设计
3、用对折的方法找出下面图形的对称轴
五、回归生活,体会美感。
1、谈一谈:其实生活中也有很多对称的图形、物体,你能说一说吗?
2、欣赏生活、艺术、自然、建筑、剪纸等领域的对称之美。
六、总结全课,升华主题。
通过这节课的学习,你有什么收获?
七、板书设计、
轴对称
对折:两边完全重合——轴对称图形
折痕——对称轴
数学教案的流程篇2
一、说教学内容分析
本节课是高一数学第五章《三角比》第三单元中正弦定理的第一课时,它既是初中“解直角三角形”内容的直接延拓,也是坐标法等知识在三角形中的具体运用,是生产、生活实际问题的重要工具,正弦定理揭示了任意三角形的边角之间的一种等量关系,它与后面的余弦定理都是解三角形的重要工具。
本节课其主要任务是引入证明正弦定理及正弦定理的基本应用,在课型上属于“定理教学课”。因此,做好“正弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,学生通过对定理证明的探究和讨论,体验到数学发现和创造的&39;历程,进而培养学生提出问题、解决问题等研究性学习的能力。
二、说学情分析
对高一的学生来说,一方面已经学习了平面几何,解直角三角形,任意角的三角比等知识,具有一定观察分析、解决问题的能力;但另一方面对新旧知识间的联系、理解、应用往往会出现思维障碍,思维灵活性、深刻性受到制约。根据以上特点,教师恰当引导,提高学生学习主动性,注意前后知识间的联系,引导学生直接参与分析问题、解决问题。
三、说设计思想:
培养学生学会学习、学会探究是全面发展学生能力的重要方面,也是高中新课程改革的主要任务。如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。”这个观点从教学的角度来理解就是:知识不仅是通过教师传授得到的,更重要的是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。本节“正弦定理”的教学,将遵循这个原则而进行设计。
四、说教学目标:
1、在创设的问题情境中,让学生从已有的几何知识和处理几何图形的常用方法出发,探索和证明正弦定理,体验坐标法将几何问题转化为代数问题的优越性,感受数学论证的严谨性、
2、理解三角形面积公式,能运用正弦定理解决三角形的两类基本问题,并初步认识用正弦定理解三角形时,会有一解、两解、无解三种情况。
3、通过对实际问题的探索,培养学生的数学应用意识,激发学生学习的兴趣,让学生感受到数学知识既来源于生活,又服务与生活。
五、说教学重点与难点
教学重点:正弦定理的探索与证明;正弦定理的基本应用。
教学难点:正弦定理的探索与证明。
突破难点的手段:抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给于适当的提示和指导。
六、说复习引入:
1、在任意三角形行中有大边对大角,小边对小角的边角关系?是否可以把边、角关系准确量化?
2、在ABC中,角A、B、C的正弦对边分别是a,b,c,你能发现它们之间有什么关系吗?
结论:
证明:(向量法)过A作单位向量j垂直于AC,由AC+CB=AB边同乘以单位向量。
正弦定理:在一个三角形中,各边和它所对角的正弦的比相等。
《正弦定理》说教学反思
本节是“正弦定理”定理的第一节,在备课中有两个问题需要精心设计、一个是问题的引入,一个是定理的证明、通过两个实际问题引入,让学生体会为什么要学习这节课,从学生的“最近发展区”入手进行设计,寻求解决问题的方法、具体的思路就是从解决课本的实际问题入手展开,将问题一般化导出三角形中的边角关系——正弦定理、因此,做好“正弦定理”的教学既能复习巩固旧知识,也能让学生掌握新的有用的知识,有效提高学生解决问题的能力。
1、在教学过程中,我注重引导学生的思维发生,发展,让学生体会数学问题是如何解决的,给学生解决问题的一般思路。从学生熟悉的直角三角形边角关系,把锐角三角形和钝角三角形的问题也转化为直角三角形的性,从而得到解决,并渗透了分类讨论思想和数形结合思想等思想。
2、在教学中我恰当地利用多媒体技术,是突破教学难点的一个重要手段、利用《几何画板》探究比值的值,由动到静,取得了很好的效果,加深了学生的印象、
3、由于设计的内容比较的多,教学时间的超时,这说明我自己对学生情况的把握不够准确到位,致使教学过程中时间的分配不够适当,教学语言不够精简,今后我一定避免此类问题,争取更大的进步。
数学教案的流程篇3
教学目标:
1、使学生初步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法一步应用题。
2、培养学生分析能力,发展学生思维。
教学重点:
理解题中的单位“1”和问题的关系。
教学难点:
抓住知识关键,正确、灵活判断单位“1”。
教具准备:
多媒体课件。
教学过程:
一、复习引入(激发兴趣,引入铺垫)
1、列式计算。
(1)20的是多少?
(2)6的是多少?
二、自主探究(自主学习,探讨问题)
1、教学例1。
出示例1:学校买来100千克白菜,吃了,吃了多少千克?
(1)指名读题,说出条件和问题。
(2)引导学生画出线段图,并在线段图上标出题目中的条件和问题。
先画一条线段,表示“100千克白菜”。
吃了,吃了谁的?(100千克白菜)要把“100千克白菜”平均分成5份,吃了4份,怎样表示?
教师边说边画出下图
(3)分析数量关系,启发解题思路。
A.请同学们仔细观察图画,并认真想一想,吃了,是吃了哪个数量的?
B.分组讨论交流:依据吃了100千克的把哪个量看作单位“1”呢?为什么?你是怎样想的?
(4)列式计算。
A.学生完整叙述解题思路。
B.学生列式计算,教师板书:(千克)
C.写出答话,教师板书:答:吃了80千克。
(5)总结思路。
根据以上分析,让学生讨论一下解题顺序:吃了吃了谁的谁是多少(已知)谁的是多少乘法。
(6)反馈练习。(14页)1-3题,做完后订正。说一说你是怎样想的?
2、阅读课本:把书中的想的过程和线段图认真看一下,不懂提问。
三、拓展总结(应用拓展,盘点收获)
1、判断下面每组中的两个量,应该把谁看作单位“1”。
(1)乙是甲的,甲是乙的。
(2)甲是乙的,乙是甲的倍。
2、练习四1、2题,完成在练习本上,然后订正。
3、操作:画出“体育小组的人数是美术小组的倍”的线段图自己补充条件和问题并解答。
数学教案的流程篇4
教学目标:
1.在具体情境中进一步理解“增加百分之几”或“减少百分之几”的意义,能计算出实际问题中“比一个数增加百分之几的数”或“比一个数减少百分之几的数”,提高运用数学解决实际问题的能力。
2.能对现实生活中的有关数学信息作出合理的解释,并尝试解决生活中的一些简单的百分数问题;能试图探索出解答一般百分数应用题的方法,初步学会与他人合作。
3.体验百分数与日常生活的密切联系,认识到许多实际中的问题可以借助数学方法来解决。提高学生学习数学的兴趣,发展学生质疑的能力,感悟数学知识的魅力。
教学重点:
理解“增加百分之几”和“减少百分之几”的意义。
教学难点:
掌握百分数应用题的特征及解答方法。
教学过程:
一、导入
师:同学们,随着科学技术的发展,社会生产力不断进步,我国从1997年至今。铁路已经进行了多次大规模的提速,高速列车已经步入了人们的生活。今天我们一起来研究与列车提速有关的问题。
【设计意图:从时事中提取数学信息,引导学生读活书、用活书,培养关注时事的兴趣。】
二、过程
师:说说从图中你了解到哪些信息?还想知道什么问题?(课件出示:教材第90页情境图)
生:从图中知道,原来的列车每时行驶180千米,现在高速列车的速度比原来的列车提高了50%。我想知道,现在的高速列车每时行驶多少千米?
师:“现在的高速列车每时行驶多少千米”,你是如何思考这个问题的?
生1:现在高速列车的速度比原来的列车快多了。
生2:我们首先要明白“现在高速列车的速度比原来的列车提高了50%”这句话的意思。
师:你是怎样理解这句话的?
生:我们可以画图表示现在的速度和原来的速度之间的关系,这样能帮助我们理解题意。
师:好,那就自己画图,试试看,能明白这句话的意思吗?
学生尝试画图,教师巡视了解情况,个别指导有困难的学生。
师:谁来说说自己的理解?
生1:很容易从图中看出,“现在高速列车的速度比原来的列车提高了50%”,意思是指提高的部分相当于原来的50%,是把原来的速度看作单位“1”,这样我们就可以先计算速度提高了多少千米,也就是求一个数的百分之几是多少,用乘法计算;然后计算现在高速列车的速度。
生2:从图中我们能看出,提高的部分是原来的50%,也就是说现在高速列车的速度是原来列车速度的(1+50%),这样就把问题转化成了“求一个数的百分之几是多少”的问题,用乘法计算。
师:说的都对。请同学们自己列式解决问题吧!
学生尝试独立列式解答,教师巡视了解情况。
组织学生交流汇报,重点说说想法:
先求比原来每时多行驶了多少千米,180×50%+180=270(千米)。
先求现在的速度是原来的百分之几,180×(1+50%)=270(千米)。
对于解答正确的学生及时给予表扬和鼓励。
师:从下面的信息中,选择两个信息,然后提出一个问题,并试着解决。跟小组同学交流一下。(课件出示:教材第91页“试一试”中的4条信息)
学生自己选择信息提出问题并解答,然后交流各自的方法;教师巡视了解情况。
选取不同情况的学生代表汇报交流,只要有道理就要给予肯定。
师:经过练习之后,淘气发现无论解决的是什么问题,都可以用下面的图来表示烘干前后的关系,你同意淘气的看法吗?为什么?(课件出示:教材第91页线段图)
组织学生讨论交流,达成一致意见,明确:烘干前的质量多,烘干后的质量少。
【设计意图:在具体问题的解决过程中,通过寻找数量关系,使学生进一步体会画线段图是一种非常常见的、有效的方法。】
三、总结
让学生说说本节课的收获。
【设计意图:调动学生的积极性,提高课堂的学习效率。】
板书设计:
百分数的应用(二)
先求原来每时多行驶了多少千米
180×50%+180
先求现在的速度是原来的百分之几
180×(1+50%)
教学反思:
能够与实际生活联系在一起,使学生切身体会到数学在实际生活中的运用,更好的激发出学生对数学的学习兴趣。每个学生是不同的个体,他们的思维方法可能千差万别,他们对教材也会有不同的理解。学生的这种不同理解,其实就是一种很好的课程资源。在新知教学过程中,学生在理解题意的基础上,先独立思考,后尝试解答,再合作研讨。提倡、发现学生的多种思维和不同解法。在这个过程中,学生的想法得到了充分的肯定和鼓励,同时也拓宽了其他学生的思路。
数学教案的流程篇5
分解因式
一、公式:
1、ma+mb+mc=m(a+b+c);
2、a2-b2=(a+b)(a-b);
3、a22ab+b2=(ab)2。
二、把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。
1、把几个整式的积化成一个多项式的形式,是乘法运算。
2、把一个多项式化成几个整式的积的形式,是因式分解。
3、ma+mb+mcm(a+b+c);
4、因式分解与整式乘法是相反方向的变形。
三、把多项式的各项都含有的相同因式,叫做这个多项式的各项的公因式.提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式.找公因式的一般步骤:
(1)若各项系数是整系数,取系数的公约数;
(2)取相同的字母,字母的指数取较低的;
(3)取相同的多项式,多项式的指数取较低的;
(4)所有这些因式的乘积即为公因式。
四、分解因式的一般步骤为:
(1)若有-先提取-,若多项式各项有公因式,则再提取公因式;
(2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式;
(3)每一个多项式都要分解到不能再分解为止。
五、形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式。
分解因式的方法:
1、提公因式法;
2、运用公式法。
数学教案的流程篇6
函数及其相关概念
1、变量与常量
在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。
2、函数解析式
用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点
(1)解析法
两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法
把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法
用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤
(1)列表:列表给出自变量与函数的一些对应值
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
数学教案的流程篇7
线段、射线、直线
教学目标 :
1、 在现实情境中理解线段、射线、直线等简单图形(知识目标)
2、 会说出线段、射线、直线的特征;会用字母表示线段、射线、直线(能力目标)
3、 通过操作活动,了解两点确定一条直线等事实,积累操作活动的经验
,培养学生的兴趣、爱好,感受图形世界的丰富多彩。(情感态度目标)
教学难点 :了解“两点确定一条直线”等事实,并应用它解决一些实际问题
教具:多媒体、棉线、三角板
教学过程 :
情景创设:观察电脑展示图,使学生感受图形世界的丰富多彩,激发学习兴趣。
如何来描述我们所看到的现象?
教学过程 :
1、 一段拉直的棉线可近似地看作线段
师生画线段
演示投影片1:①将线段向一个方向无限延长,就形成了______
学生画射线
②将线段向两个方向无限延长就形成了_______
学生画直线
2、 讨论小组交流:
① 生活中,还有哪些物体可以近似地看作线段、射线、直线?
(强调近似两个字,注意引导学生线段、射线、直线是从生活上抽象出来的)
②线段、射线、直线,有哪些不同之处, 有哪些相同之处?
(鼓励学生用自己的语言描述它们各自的特点)
3、 问题1:图中有几条线段?哪几条?
“要说清楚哪几条,必须先给线段起名字!”从而引出线段的记法。
点的记法:用一个大写英文字母
线段的记法:①用两个端点的字母来表示
②用一个小写英文字母表示
自己想办法表示射线,让学生充分讨论,并比较如何表示合理
射线的记法:
用端点及射线上一点来表示,注意端点的字母写在前面
直线的记法:
① 用直线上两个点来表示
② 用一个小写字母来表示
强调大写字母与小写字母来表示它们时的区别
(我们知道他们是无限延长的,我们为了方便研究约定成俗的用上面的方法来表示它们。)
练习1:读句画图(如图示)
(1)连BC、AD
(2)画射线AD
(3)画直线AB、CD相交于E
(4)延长线段BC,反向延长线段DA相交与F
(5)连结AC、BD相交于O
练习2:右图中,有哪几条线段、射线、直线
4、 问题2请过一点A画直线,可以画几条?过两点A、B呢?
学生通过画图,得出结论:过一点可以画无数条直线
经过两点有且只有一条直线
问题3如果你想将一硬纸条固定在硬纸板上,至少需要几根图钉?
为什么?(学生通过操作,回答)
小组讨论交流:
你还能举出一个能反映“经过两点有且只有一条直线”的实例吗?
适当引导:栽树时只要确定两个树坑的位置,就能确定同一行的树坑所在的直线。建筑工人在砌墙时,经常在两个墙角分别立一根标志杆,在两根标志杆之间拉一根绳,沿这根绳就可以砌出直的墙来。
5、 小结:
① 学生回忆今天这节课学过的内容
进一步清晰线段、射线、直线的概念
② 强调线段、射线、直线表示方法的掌握
6、 作业 :①阅读“读一读”P121
②习题4的1、2、3。4作为思考题
数学教案的流程篇8
1教学目标
1、认识连加,理解连加的意义,初步渗透部分与整体的相对性;
2、通过教学活动,让学生掌握连加的计算方法,让学生初步理解一步计算和两步计算之间的联系,感受连加计算的形成过程;
3、学习过程中感受数学与生活的联系,培养对数学的情感。
2学情分析
学生已经初步掌握了10以内数的加减法计算方法,并能正确计算。并且初步学会解决图画信息和文章信息相结合的数学问题。
3重点难点
教学重点
理解连加的意义,掌握连加的计算方法。
教学难点
让学生初步理解一步计算和两步计算之间的联系,感受连加计算的形成过程。
4教学过程
4.1第一学时
4.1.1教学活动
活动1【导入】一、创设情境,复习旧知
1、星期六小明坐上口算号列车去乡下奶奶家,来算一算这些口算吧!
4+2=3+2=3+4=2+2=
6+3=5+1=7+3=4+4=
2、看图列式PPT出示喂鸡图
同学们你们看小明正帮奶奶干什么呢地上有几只鸡出示动态小鸡,你们又看到了什么
谁能试着把我们刚才看到的完整的说出来你能提出一个问题吗你会列式计算吗
师板书5+2=7
请你们再看黑板,说说又看到了什么又来了1只小鸡,刚才我们已经算出有7只了,又来了1只小鸡,现在一共有几只小鸡呢怎么列式计算
师板书7+1=8
活动2【讲授】二、探究新知
1、小明又拿来一碗米,请同学们继续看(ppt出示动态图)谁能用“原来···来了···又来了···”完整地把题目的意思说出来(原来有5只小鸡,来了2只小鸡,又来了1只小鸡,现在一共有几只小鸡)
A生说出题意B你能像他这样说一遍吗C同学们齐读题意
2、理解了题目的意思,你会列式吗
板书5+2+1
3、对比刚才我们同样是求一共有几只小鸡第一种方法是我们熟悉的,用了两次加法计算,第二种算式,与我们以前学过的加法哪儿不相同
4、师小结我们原来学的加法是把两部分合起来,现在要连着再加一部分,像这样把三个部分合起来的算式,我们可以叫它连加(板书连加)
5、认识了连加,跟老师一起读算式5加2再加1
6、这个算式当中5表示什么2表示什么1表示什么
7、5+2+1这里有3个数字,应该先算谁和谁再算谁和谁呢
8、计算时应该注意些什么
活动3【练习】三、知识运用
1、导学案出示看谁算得又对又快,分组比赛
7+2+1=3+0+5=
2、生活当中有许多连加的例子,你能用我们今天学的“原来···来了···又来了···”说句话吗
2、同桌合作摆一摆,一人摆,一人列式计算
1人拿出8根水彩笔,摆成三部分,另一人根据摆好的图,列出算式并且计算
3、导学案出示燕子图看懂题意再列式计算
4、编写连加算式
活动4【作业】四、总结
我们今天学到了什么
活动5【导入】拓展延伸
1、多个数连加的算式1+2+3+4+5+6+7+8+9
2、()+()+4=9
数学教案的流程篇9
教学目标:
1.使学生认识圆柱和圆锥的特征,能看懂圆柱、圆锥的平面图;认识圆柱和圆锥的底面、侧面和高,并会测量高。
2.通过观察、操作、思考、讨论等活动,培养同学们发现问题、分析问题、解决问题的能力。
3.从实际生活入手,通过解决实际问题,发展学生的空间观念。
教学重点:
认识圆柱和圆锥的高,并会测量高。
教学过程:
一、创设情境,引入新课。
师:前面我们学习了一些平面图形和立体图形,(出示)这是一个长方形,请同学们动脑筋想一想,当它沿一条边旋转一周,会形成什么图形?
师:这个三角形沿一条直角边旋转一周,会形成什么图形?(板书课题)
二、探索尝试,解释交流。
1.感知圆柱、圆锥。
师:日常生活中,有很多圆柱、圆锥形状的物体,大家看,这个茶叶盒的形状就是圆柱,这个积木的形状就是圆锥。请同学们想一想,生活中还有哪些物体的形状是圆柱或者圆锥?师:老师也收集了一些圆柱、圆锥物体的画面,当去掉这些画面的颜色和图案,就得到了圆柱、圆锥的立体图形。
师:圆柱、圆锥有什么特征呢?
2.认识圆柱的各部分名称。
师:我们先来研究圆柱有哪些特征?请同学们用看一看、摸一摸、量一量等方法来研究圆柱的特征,看哪个小组合作的好,发现的多。
(1)哪个小组先来说一说你们的发现?
(2)介绍圆柱各部分的名称,让学生结合圆柱各部分的名称再来说一说圆柱的特征。
(3)质疑:你是怎样知道两个底面相等的?侧面是粗细均匀的?
(4)圆柱两个底面之间的距离叫圆柱的高。
圆柱的高有多少条?这些高的长度有什么关系?
(5)在日常生活中,硬币的高叫什么?钢管横着放高叫什么?圆柱形水井的高叫什么?
(6)结合实物,师生一起整理圆柱的特征。
(7)谁能结合板书,完整的说一说圆柱的特征。
3.探究圆锥的特征。
(1)我们已经知道了圆柱的特征,下面请同学们结合圆柱特征的研究方法,来研究圆锥有哪些特征?
(2)哪个小组来说一说你们的发现?
(3)说一说圆锥的特征。
4.对比。
师:我们已经知道了圆柱、圆锥的特征请同学们结合板书,想一想,圆柱、圆锥有什么相同点和不同点?
三、拓宽应用。
1.圆柱上下面是两个()的圆形,圆锥的底面是一个()形。
2.圆柱有()个面是弯曲的,圆锥的侧面是一个()面。
3.圆柱两个底面之间的距离叫圆柱的(),一个圆柱有()条高。
4.从圆锥的()到()的距离是圆锥的高,一个圆锥有()条高。
四、总结
这节课你有什么收获?
数学教案的流程篇10
一、设计意图:
认识数字"7"是在幼儿认识"6"的基础上进行的活动。认识数字在数学活动中是比较枯燥的。于是我就以幼儿平时最喜欢的动画片葫芦娃作为该活动的中心,将整个活动与葫芦娃交朋友贯穿起来,让幼儿通过操作感知认识数字"7",从而大大提高了幼儿对活动的兴趣。
二、活动目标:
1、正确感知7的数量,并认识数字"7"
2、乐意参与活动,体验成功后的乐趣。
三、活动准备:
1、情景布置葫芦娃的家(门口挂有葫芦藤)。
2、人手一份1—7数字卡片和7以内的实物卡片、大图片一幅(里面有7以内的实物)、记录表一张、葫芦娃歌曲。
3、活动室周围放置若干身上有1—7圆点或数字的动物。
四、活动过程:
(一)到葫芦娃家做客,感知"7"的数量。
1、师引导幼儿观察家门前的葫芦藤上有什么,一共有几个葫芦?(复习数字6)
2、师再增添1个葫芦,引导幼儿观察现在有几个葫芦?可以用数字几表示?
3、师引导幼儿认识数字"7"并说说数字"7"像什么?可以表示什么?
(二)闯关拜见葫芦娃,正确判断"7"以内的数量。
1、第一关:《送礼物》请小朋友们从盒子里找出实物数量是7的卡片送给葫芦娃,比一比,谁找到的礼物又对又快。(幼儿操作实物卡片,教师观察。)
提问:你找到了什么礼物,它有几个?
3、第二关:《考眼力》师出示挂图,请幼儿根据挂图上事物的数量拿出相应的数字卡片,师验证。
(三)游戏《找朋友》,巩固对7数量的正确判断。
玩法:师放《葫芦蛙》音乐,幼儿找出身上有7个圆点或数字是7的小动物,音乐停,比一比谁找的动物又对又多。
1、幼儿游戏,教师观察、指导幼儿正确找出身上有7个圆点或数字是7的小动物。
2、幼儿相互检查谁找到的小动物又对又多。
(四)自由结束:小朋友们真能干,帮葫芦娃找到了这么多朋友,现在我们和葫芦娃一起到外面去玩一玩吧。
五、活动反思:
由于活动是结合幼儿喜欢的葫芦娃进行的教学活动,幼儿在整个活动中兴趣极高,大部分幼儿都能掌握对数字"7"的认识。不足之处就是在游戏《考眼力》一环节中,师可适当增加难度,多安排—些数量是"7"的实物让幼儿观察辨认,进一步巩固对数字"7"的认识。在引导幼儿认识数量的同时师可引导幼儿用正确的量词来表达物体的数量,如:7个苹果,让幼儿有个完整的慨念。
数学教案的流程篇11
【考纲要求】
了解双曲线的定义,几何图形和标准方程,知道它的简单性质。
【自学质疑】
1.双曲线的轴在轴上,轴在轴上,实轴长等于,虚轴长等于,焦距等于,顶点坐标,焦点坐标
2.又曲线的左支上一点到左焦点的距离是7,则这点到双曲线的右焦点的距离是
3.经过两点的双曲线的标准方程是。
4.双曲线的渐近线方程是,则该双曲线的离心率等于。
5.与双曲线有公共的渐近线,且经过点的双曲线的方程为
【例题精讲】
1.双曲线的离心率等于,且与椭圆有公共焦点,求该双曲线的方程。
2.已知椭圆具有性质:若是椭圆上关于原点对称的两个点,点是椭圆上任意一点,当直线的斜率都存在,并记为时,那么之积是与点位置无关的定值,试对双曲线写出具有类似特性的性质,并加以证明。
3.设双曲线的半焦距为,直线过两点,已知原点到直线的距离为,求双曲线的离心率。
【矫正巩固】
1.双曲线上一点到一个焦点的距离为,则它到另一个焦点的距离为。
2.与双曲线有共同的渐近线,且经过点的双曲线的一个焦点到一条渐近线的距离是。
3.若双曲线上一点到它的右焦点的距离是,则点到轴的距离是
4.过双曲线的左焦点的直线交双曲线于两点,若。则这样的直线一共有条。
【迁移应用】
1.已知双曲线的焦点到渐近线的距离是其顶点到渐近线距离的2倍,则该双曲线的离心率
2.已知双曲线的焦点为,点在双曲线上,且,则点到轴的距离为。
3.双曲线的焦距为
4.已知双曲线的一个顶点到它的一条渐近线的距离为,则
5.设是等腰三角形,则以为焦点且过点的双曲线的离心率为.
6.已知圆。以圆与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为
数学教案的流程篇12
活动目标:
1、通过比较轻重,让幼儿感知、学习比较轻重的方法。
2、让幼儿学习比较物体的轻重,并根据物体的轻重排序。
3、提高幼儿的感知觉能力。
活动准备:
1、衣架一个
2、三个相同的矿泉水瓶(一个装满水,一个装半瓶水,一个空瓶)三个相同的易拉罐(一个装满水,一个装半瓶水,一个空瓶)
3、一大一小积木若干,大小、形状相同的积木若干(按3、6、10数量扎一起)
4、棉花沙包、豆子沙包若干、篮球、铁球、苹果、梨、桔子
5、在生活活动、区域活动中学习如何使用天平
活动过程:
一、出示平衡的衣架,让幼儿观察并提问:
师:小朋友,你们知道这是什么吗?(衣架)它有什么作用?(挂衣服用的)现在我挂在前面,它处于什么位置?(水平)。请小朋友再看:我在衣架的一侧挂上一袋橡皮,你们观察衣架有什么变化?(挂橡皮的一侧下垂)为什么会有这种现象?(挂橡皮一侧重,另一侧没挂物品的轻),你们在看,我在衣架另一侧挂一把尺子,你会发现什么变化?(挂尺子的一端下垂,挂橡皮的一端翘起来)为什么会有这种现象?或这说明了什么?(挂尺子的一端比挂橡皮一端重)
师:小朋友非常聪明,知道在平衡的衣架上挂物品,重的一端下垂,轻的一端上翘,衣服架可以帮助我们区分哪个物体重,哪个物体轻。
二、出示矿泉水瓶、易拉罐等相同材料的物品来比较轻重
(一)
1、教师:我这里有三个矿泉水瓶(一个装满水、一个装半瓶水、一个空瓶子)你们知道哪个瓶子重?哪个瓶子轻?你是怎么知道的?
幼儿:装满水的重;装半瓶水的轻;空瓶子的最轻(利用目测)
教师:请幼儿验证,用手掂一掂,感知哪个瓶子重?哪个瓶子轻?
2、按由轻到重、由重到轻排序
教师:现在,小朋友知道哪个重、哪个轻,请你按由轻到重排序,再按由重到轻排序。请个别幼儿操作
(二)
1、教师:矿泉水瓶透明,小朋友用眼睛看就知道,哪瓶水重,哪瓶水轻,我这里还有三个不透明的相同的易拉罐,你们怎么分辨哪个罐重?哪个罐轻?(一个装满水;一个空的;一个装半罐)并按由轻到重顺序排起来。
2、一大一小的积木
3、大小、形状相同、块数不同的积木(3块扎一起;6块扎一起;10块扎一起)
4、幼儿自由看、玩、掂,比较轻重并排序。
5、师幼一起验证幼儿操作,总结:相同的易拉罐,空的最轻,装半瓶水的较轻,装满水的最重;相同的积木,大的重,小的轻;大小、形状相同的积木,块数多的重,块数少的轻。
三、比较不同物品的轻重
(一)
1、大的棉花沙包、小的豆子沙包
师:请小朋友猜一猜,哪个沙包重,哪个轻?
2、篮球、铁球
师:这两个球,哪个最重,哪个最轻?
3、大小几乎相同的苹果、桔子、梨
师:这三个水果,大小差不多,用掂的方法很难比较,我们用什么方法来比较这三个水果的轻重呢?来小朋友动手玩一玩。
(二)幼儿玩
1、集体讨论:为什么大的棉花沙包轻,小的豆子沙包重?为什么大的皮球轻,小的铁球重?
2、请个别幼儿验证怎样比较苹果、梨、桔子的轻重(用天平秤,称一称)
四、比赛
两组比赛:不同轻重的物体混放,每一种两个,每组幼儿协商每人排一种,比较同类物体的轻重,分别摆放在两个写有轻重的箱子里,快、对的那一组为优胜组。
另换两组比赛:不同轻重、不同类物体混放,请幼儿用掂、称等方法,按照从轻到重的顺序排序,正确的一组为优胜组。
数学教案的流程篇13
立体几何初步
1、柱、锥、台、球的结构特征
(1)棱柱:
定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥
定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体
分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等
表示:用各顶点字母,如五棱锥
几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:
定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分
分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等
表示:用各顶点字母,如五棱台
几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点
(4)圆柱:
定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体
几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:
定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体
几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:
定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分
几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
(7)球体:
定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体
几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
数学教案的流程篇14
活动目的:
1、通过游戏的方式,幼儿认识圆形(圆面和圆圈)
2、发展幼儿动手操作的能力活动准备:圆镜,圆盘子,脸盆;圆形纸片若干,大、中、小圆圈各1只,幼儿每人一套大、中、小圆
活动过程:
一、实物演示
1、(出示圆镜)这是什么?这面镜子是什么形状的?
2、(出示圆盘)这是什么?这只盘子是什么形状的?盘子的口实什么形状的?
出示脸盆(提问同上)
3、教师:小朋友,我们周围有许多东西是圆形的,你们动脑筋想一想,平时看到过哪些东西是圆形的?(幼儿自由发言)教师小结:圆形的东西很多,在家里,在马路上,在幼儿园里,在许多地方我们都能看到。
二、图片演示
1、出示图片:黑地板上贴有各种大小不同的彩色的圆形纸片。
教师:这里有许多漂亮的纸片,又红的,蓝的,绿的,黄的,小朋友看看他们都是什么形状的?这些圆形有大的,有小的,还有最小的呢。(教师用手逐一指出)你们看看这些圆形像什么?
2、出示图片:黑地板上贴有两个圆圈,红的大,黄的小。问:这里有几个圆?那个大?那个小?(再出示最小的1个绿色的圆)现在这里有几个圆/?哪一个是最小的圆?(和幼儿一起说出大圆,小圆,最小的圆。)教师:小朋友说得真好,这是大圆,我们就叫她大圆妈妈。这是小圆,我们叫她小圆宝宝。最小的圆呢,我们就叫她最小的圆宝宝。(幼儿复述一遍)教师:大圆妈妈说话了,她说:"小圆小圆,我的好宝宝,我们来做游戏好吗?请到我的身边来,并排站好。"小圆就滚呀滚,滚到大圆身边和大院并排站好。
圆妈妈又说:最小的圆宝宝快来呀,请你也打我的身边来,并排站好。请一个小朋友帮小圆宝宝滚到妈妈身边去。现在,3个院都靠在一起了。
教师:圆妈妈又说话了:小圆宝宝,你再过来一点,让我们手拉手,一起跳舞吧!最小的圆宝宝你也来与妈妈拉着手一起跳舞吧!请一位幼儿帮忙。现在三个圆圈手拉手跳舞了。
教师:大圆妈妈非常喜欢圆宝宝,她又说:小圆宝宝你们全部进来,坐到妈妈身上来。小圆宝宝滚呀滚,全部滚到大圆里。圆妈妈又说,最小的圆宝宝你也全部进来吧!最小的圆宝宝也滚呀滚,全部滚进大圆里了。
教师:圆妈妈心里真高兴,她说:小圆宝宝请你到妈妈怀中来吧,妈妈抱你睡觉。小圆宝宝就滚到了妈妈身体的当中去了。小圆宝宝说话了:最小的圆弟弟,请你到我怀中来,让我来抱你睡觉。那个小朋友会帮小圆宝宝的忙。好,现在大圆抱着小圆,小圆抱着最小的圆,3个圆真高兴。
三、幼儿操作练习。
幼儿每人一套学具,4只大小不同的彩色圆圈教师:小朋友,你们没人有几个圆?请你和他们一起做游戏好吗?(幼儿自己拼放、游戏)。
数学教案的流程篇15
函数单调性与(小)值
一、教材分析
1、教材的地位和作用
(1)本节课主要对函数单调性的学习;
(2)它是在学习函数概念的基础上进行学习的,同时又为基本初等函数的学习奠定了基础,所以他在教材中起着承前启后的重要作用;(可以看看这一课题的前后章节来写)
(3)它是历年高考的热点、难点问题
(根据具体的课题改变就行了,如果不是热点难点问题就删掉)
2、教材重、难点
重点:函数单调性的定义
难点:函数单调性的证明
重难点突破:在学生已有知识的基础上,通过认真观察思考,并通过小组合作探究的办法来实现重难点突破。(这个必须要有)
二、教学目标
知识目标:(1)函数单调性的定义
(2)函数单调性的证明
能力目标:培养学生全面分析、抽象和概括的能力,以及了解由简单到复杂,由特殊到一般的化归思想
情感目标:培养学生勇于探索的精神和善于合作的意识
(这样的教学目标设计更注重教学过程和情感体验,立足教学目标多元化)
三、教法学法分析
1、教法分析
“教必有法而教无定法”,只有方法得当才会有效。新课程标准之处教师是教学的组织者、引导者、合作者,在教学过程要充分调动学生的积极性、主动性。本着这一原则,在教学过程中我主要采用以下教学方法:开放式探究法、启发式引导法、小组合作讨论法、反馈式评价法
2、学法分析
“授人以鱼,不如授人以渔”,最有价值的知识是关于方法的只是。学生作为教学活动的主题,在学习过程中的参与状态和参与度是影响教学效果最重要的因素。在学法选择上,我主要采用:自主探究法、观察发现法、合作交流法、归纳总结法。
(前三部分用时控制在三分钟以内,可适当删减)
四、教学过程
1、以旧引新,导入新知
通过课前小研究让学生自行绘制出一次函数f(x)=x和二次函数f(x)=x^2的图像,并观察函数图象的特点,总结归纳。通过课上小组讨论归纳,引导学生发现,教师总结:一次函数f(x)=x的图像在定义域是直线上升的,而二次函数f(x)=x^2的图像是一个曲线,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(适当添加手势,这样看起来更自然)
2、创设问题,探索新知
紧接着提出问题,你能用二次函数f(x)=x^2表达式来描述函数在(-∞,0)的图像?教师总结,并板书,揭示函数单调性的定义,并注意强调可以利用作差法来判断这个函数的单调性。
让学生模仿刚才的表述法来描述二次函数f(x)=x^2在(0,+∞)的图像,并找个别同学起来作答,规范学生的数学用语。
让学生自主学习函数单调区间的定义,为接下来例题学习打好基础。
3、例题讲解,学以致用
例1主要是对函数单调区间的巩固运用,通过观察函数定义在(—5,5)的图像来找出函数的单调区间。这一例题主要以学生个别回答为主,学生回答之后通过互评来纠正答案,检查学生对函数单调区间的掌握。强调单调区间一般写成半开半闭的形式
例题讲解之后可让学生自行完成课后练习4,以学生集体回答的方式检验学生的学习效果。
例2是将函数单调性运用到其他领域,通过函数单调性来证明物理学的波意尔定理。这是历年高考的热点跟难点问题,这一例题要采用教师板演的方式,来对例题进行证明,以规范总结证明步骤。一设二差三化简四比较,注意要把f(x1)-f(x2)化简成和差积商的形式,再比较与0的大小。
学生在熟悉证明步骤之后,做课后练习3,并以小组为单位找部分同学上台板演,其他同学在下面自行完成,并通过自评、互评检查证明步骤。
4、归纳小结
本节课我们主要学习了函数单调性的定义及证明过程,并在教学过程中注重培养学生勇于探索的精神和善于合作的意识。
5、作业布置
为了让学生学习不同的数学,我将采用分层布置作业的方式:一组习题1.3A组1、2、3,二组习题1.3A组2、3、B组1、2
6、板书设计
我力求简洁明了地概括本节课的学习要点,让学生一目了然。
(这部分最重要用时六到七分钟,其中定义讲解跟例题讲解一定要说明学生的活动)
五、教学评价
本节课是在学生已有知识的基础上学习的,在教学过程中通过自主探究、合作交流,充分调动学生的积极性跟主动性,及时吸收反馈信息,并通过学生的自评、互评,让内部动机和外界刺激协调作用,促进其数学素养不断提高。