初中数学教案
一份优秀的教案应该包含合理的教学流程,其中包括引导课程、教授新知识、复习巩固、课堂总结以及布置作业等环节。这里给大家分享初中数学教案,方便大家写初中数学教案时参考。
初中数学教案篇1
一、说教材
(一)教材的地位和作用
本节教材是八年级数学第十六章第二节第一课时的内容,是初中数学的重要内容之一。一方面,这是在学习了分式基本性质、分式的约分和因式分解的基础上,进一步学习分式的乘除法;另一方面,又为学习分式加减法和分式方程等知识奠定了基础。因此,本节课在整个的初中数学的学习中起着承上启下的过渡作用。
(二)教学目标分析
根据新课标的要求和本节课内容特点,考虑到年级班级学生的知识水平,以及对教材的地位与作用的分析,我制定了如下三维教学目标、
1.认知目标、理解并掌握分式的乘除法法则,能进行简单的分式乘除法运算,能解决一些与分式乘除有关的实际问题。
2.技能目标、经历从分数的乘除法运算到分式的乘除法运算的过程,培养班级学生类比的探究能力,加深对从特殊到一般数学的思想认识。
3.情感目标、教学中让班级学生在主动探究,合作交流中渗透类比转化的思想,使班级学生在学知识的同时感受探索的乐趣和成功的体验。
(三)教学重难点
本着课程标准,在充分理解教材的基础上,我确立了如下的教学重点、难点、
教学重点、运用分式的乘除法法则进行运算。
教学难点、分子、分母为多项式的分式乘除运算。
下面,为了讲清重点难点,使班级学生能达到本节课的教学目标,我再从教法和学法上谈谈、
二、说学情
1.班级学生已经学习分式基本性质、分式的约分和因式分解,通过与分数的乘除法类比,促进知识的正迁移。
2.八年级的班级学生接受能力、思维能力、自我控制能力都有很大变化和提高,自学能力较强,通过类比学习加快知识的学习。
三、说教法学法
(一)说教法
教学方式的改变是新课标改革的目标,新课标要求把过去单纯的老师讲,班级学生接受的教学方式,变为师生互动式教学。师生互动式教学以教学大纲为依据,渗透新的教育理念,遵循教师主导、班级学生为主体的原则,结合本节课的内容特点和班级学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,倡导班级学生主动参与教学实践活动,以师生互动的形式,在教师的指导下突破难点、分式的乘除法运算,在例题的引导分析时,教学中应予以简单明白,深入浅出的分析本课教学难点、分子、分母为多项式的分式乘除运算。让班级学生在练习题中巩固难点,从真正意义上完成对知识的自我建构。
另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发班级学生的学习兴趣,增大教学容量,提高教学效率。
(二)说学法
从认知状况来说,班级学生在此之前对分数乘除法运算比较熟悉,加上对本章第一节分式及其性质学习,抓住初中生具有丰富的想象能力和活跃的思维能力,爱发表见解,希望得到老师的表扬这些心理特征,因此,我认为本节课适合采用班级学生自主探索、合作交流的数学学习方式。一方面运用实际生活中的问题引入,激发班级学生的兴趣,使他们在课堂上集中注意力;另一方面,由于分式的乘除法法则与分数的乘除法法则类似,以类比的方法得出分式的乘除法则,易于班级学生理解、接受,让班级学生在自主探索、合作交流中加深理解分式的乘除运算,充分发挥班级学生学习的主动性。不但让班级学生"学会"还要让班级学生"会学"
四、说教学过程
新课标指出,数学教学过程是教师引导班级学生进行学习活动的过程,是教师和班级学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,接下来,我再具体谈谈本节课的教学过程安排、
(一)提出问题,引入课题
俗话说、"好的开端是成功的一半"同样,好的引入能激发班级学生兴趣和求知欲。因此我用实际出发提出现实生活中的问题、
问题1求容积的高是,(引出分式乘法的学习需要)。
问题2求大拖拉机的工作效率是小拖拉机的工作效率的倍,(引出分式除法的学习需要)。
从实际出发,引出分式的乘除的实在存在意义,让班级学生感知学习分式的乘法和除法的实际需要,从而激发班级学生兴趣和求知欲。
(二)类比联想,探究新知
从班级学生熟悉的分数的乘除法出发,引发班级学生的学习兴趣。(1)(2)
解后总结概括、
(1)式是什么运算?依据是什么?
(2)式又是什么运算?依据是什么?能说出具体内容吗?(如果有困难教师应给于引导)
(班级学生应该能说出依据的是、分数的乘法和除法法则)教师加以肯定,并指出与分数的乘除法法则类似,引导班级学生类比分数的乘除法则,猜想出分式的乘除法则。
【分式的乘除法法则】
乘法法则、分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母。
除法法则、分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
用式子表示为、
设计意图、由于分式的乘除法法则与分数的乘除法法则类似,故以类比的方法得出分式的乘除法则,易于班级学生理解、接受,体现了自主探索,合作学习的新理念。
(三)例题分析,应用新知
师生活动、教师参与并指导,班级学生独立思考,并尝试完成例题。
P11的例1,在例题分析过程中,为了突出重点,应多次回顾分式的乘除法法则,使班级学生耳熟能详。P11例2是分子、分母为多单项式的分式乘除法则的运用,为了突破本节课的难点我采取板演的形式,和班级学生一起详细分析,提醒班级学生关注易错易漏的环节,学会解题的方法。
(四)练习巩固,培养能力
P13练习第2题的(1)(3)(4)与第3题的(2)
师生活动、教师出示问题,班级学生独立思考解答,并让班级学生板演或投影展示班级学生的解题过程。
通过这一环节,主要是为了通过课堂跟踪反馈,达到巩固提高的目的,进一步熟练解题的思路,也遵循了巩固与发展相结合的原则。让班级学生板演,一是为了暴露问题,二是为了规范解题格式和结果。
(五)课堂小结,回扣目标
引导班级学生自主进行课堂小结、
1.本节课我们学习了哪些知识?
2.在知识应用过程中需要注意什么?
3.你有什么收获呢?
师生活动、班级学生反思,提出疑问,集体交流。
设计意图、学习结果让班级学生作为反馈,让他们体验到学习数学的快乐,在交流中与全班同学分享,从而加深对知识的理解记忆。
(六)布置作业
教科书习题6.2第1、2(必做)练习册P(选做),我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。
五、说板书设计
在本节课中我将采用提纲式的板书设计,因为提纲式-条理清楚、从属关系分明,给人以清晰完整的印象,便于班级学生对教材内容和知识体系的理解和记忆。
初中数学教案篇2
因式分解
教材分析
因式分解是进行代数式恒等变形的重要手段之一,因式分解是在学习整式四则运算的基础上进行的,它不仅仅在多项式的除法、简便运算中等有直接的应用,也为以后学习分式的约分与通分、解方程(组)及三解函数式的恒等变形带给了必要的基础,因此学好因式分解对于代数知识的后续学习,具有相当重要的好处。由于本节课后学习提取公因式法,运用公式法,分组分解法来进行因式分解,务必以理解因式分解的概念为前提,所以本节资料的重点是因式分解的概念。由整式乘法寻求因式分解的方法是一种逆向思维过程,而逆向思维对初一学生还比较生疏,理解起来有必须难度,再者本节还没涉及因式分解的具体方法,所以理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法是教学中的难点。
教学目标
认知目标:(1)理解因式分解的概念和好处
(2)认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。
潜力目标:由学生自行探求解题途径,培养学生观察、分析、决定潜力和创新潜力,发展学生智能,深化学生逆向思维潜力和综合运用潜力。
情感目标:培养学生理解矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度。
目标制定的思想
1.目标具体化、明确化,从学生实际出发,具有针对性和可行性,同时便于上课操作,便于检测和及时反馈。
2.课堂教学体现潜力立意。
3.寓德育教育于教学之中。
教学方法
1.采用以设疑探究的引课方式,激发学生的求知欲望,提高学生的学习兴趣和学习用心性。
2.把因式分解概念及其与整式乘法的关系作为主线,训练学生思维,以设疑——感知——概括——运用为教学程序,充分遵循学生的认知规律,使学生能顺利地掌握重点,突破难点,提高潜力。
3.在课堂教学中,引导学生体会知识的发生发展过程,坚持启发式,鼓励学生充分地动脑、动口、动手,用心参与到教学中来,充分体现了学生的主动性原则。
4.在充分尊重教材的前提下,融教材练习、想一想于教学过程中,增设了由浅入深、各不相同却又紧密相关的训练题目,为学生顺利掌握因式分解概念及其与整式乘法关系创造了有利条件。
5.改变传统言传身教的方式,利用计算机辅助教学手段进行教学,增大教学的容量和直观性,提高教学效率和教学质量。
教学过程安排
一、提出问题,创设情境
问题:看谁算得快?(计算机出示问题)
(1)若a=101,b=99,则a2—b2=(a+b)(a—b)=(101+99)(101—99)=400
(2)若a=99,b=—1,则a2—2ab+b2=(a—b)2=(99+1)2=10000
(3)若x=—3,则20x2+60x=20x(x+3)=20x(—3)(—3+3)=0
二、观察分析,探究新知
(1)请每题想得最快的同学谈思路,得出最佳解题方法(同时计算机出示答案)
(2)观察:a2—b2=(a+b)(a—b)①的左边是一个什么式子?右边又是什么形式?
a2—2ab+b2=(a—b)2②
20x2+60x=20x(x+3)③
(3)类比小学学过的因数分解概念,(例42=2×3×7④)得出因式分解概念。
板书课题:§7。1因式分解
1.因式分解概念:把一个多项式化成几个整式的积的形式叫做因式分解,也叫分解因式。
三、独立练习,巩固新知
练习
1.下列由左边到右边的变形,哪些是因式分解?哪些不是?为什么?(计算机演示)
①(x+2)(x—2)=x2—4
②x2—4=(x+2)(x—2)
③a2—2ab+b2=(a—b)2
④3a(a+2)=3a2+6a
⑤3a2+6a=3a(a+2)
⑥x2—4+3x=(x—2)(x+2)+3x
⑦k2++2=(k+)2
⑧x—2—1=(x—1+1)(x—1—1)
⑨18a3bc=3a2b·6ac
2.因式分解与整式乘法的关系:
因式分解
结合:a2—b2=========(a+b)(a—b)
整式乘法
说明:从左到右是因式分解其特点是:由和差形式(多项式)转化成整式的积的形式;从右到左是整式乘法其特点是:由整式积的形式转化成和差形式(多项式)。
结论:因式分解与整式乘法正好相反。
问题:你能利用因式分解与整式乘法正好相反这一关系,举出几个因式分解的例子吗?
(如:由(x+1)(x—1)=x2—1得x2—1=(x+1)(x—1)
由(x+2)(x—1)=x2+x—2得x2+x—2=(x+2)(x—1)等等)
四、例题教学,运用新知:
例:把下列各式分解因式:(计算机演示)
(1)am+bm(2)a2—9(3)a2+2ab+b2
(4)2ab—a2—b2(5)8a3+b6
练习2:填空:(计算机演示)
(1)∵2xy=2x2y—6xy2
∴2x2y—6xy2=2xy
(2)∵xy=2x2y—6xy2
∴2x2y—6xy2=xy
(3)∵2x=2x2y—6xy2
∴2x2y—6xy2=2x
五、强化训练,掌握新知:
练习3:把下列各式分解因式:(计算机演示)
(1)2ax+2ay(2)3mx—6nx(3)x2y+xy2
(4)x2+—x(5)x2—0。01(6)a3—1
(让学生上来板演)
六、变式训练,扩展新知(计算机演示)
1。若x2+mx—n能分解成(x—2)(x—5),则m=,n=
2.机动题:(填空)x2—8x+m=(x—4),且m=
七、整理知识,构成结构(即课堂小结)
1.因式分解的概念因式分解是整式中的一种恒等变形
2.因式分解与整式乘法是两种相反的恒等变形,也是思维方向相反的&39;两种思维方式,因此,因式分解的思维过程实际也是整式乘法的逆向思维的过程。
3.利用2中关系,能够从整式乘法探求因式分解的结果。
4.教学中渗透对立统一,以不变应万变的辩证唯物主义的思想方法。
八、布置作业
1.作业本(一)中§7。1节
2.选做题:①x2+x—m=(x+3),且m=。
②x2—3x+k=(x—5),且k=。
评价与反馈
1.透过由学生自己得出因式分解概念及其与整式乘法的关系的结论,了解学生观察、分析问题的潜力和逆向思维潜力及创新潜力。发现问题,及时反馈。
2.透过例题及练习,了解学生对概念的理解程度和实际运用潜力,最大限度地让学生暴露问题和认知误差,及时发现和弥补教与学中的遗漏和不足,从而及时调控教与学。
3.透过机动题,了解学生对概念的熟练程度和思维的灵敏性、深刻性、广阔性及探研创造潜力,及时评价,及时矫正。
4.透过课后作业,了解学生对知识的掌握状况与综合运用知识及灵活运用知识的潜力,教师及时批阅,及时反馈讲评,同时对个别学生面批作业,能够更及时、更准确地了解学生思维发展的状况,矫正的针对性更强。
5.透过课堂小结,了解学生对概念的熟悉程度和归纳概括潜力、语言表达潜力、知识运用潜力,教师恰当地给予引导和启迪。
6.课堂上反馈信息除了语言和练习外,学生神情也是信息来源,而且这些信息更真实。学生神态、表情、坐姿都反映出学生对教师教学资料的理解和理解程度。教师应用心捕捉学生在知识掌握、思维发展、潜力培养等各方面全方位的反馈信息,随时评价,及时矫正,随时调节教学。
初中数学教案篇3
各位专家领导:
你们好!
今天我说课的内容是人教版七年级上册1、2、4绝对值内容。
首先,我对本节教材进行一些分析:
一、教材分析(说教材):
(一)、教材所处的地位与作用:
本节内容在全书及章节的地位是:《绝对值》是七年级数学教材上册1、2、4节内容。在此之前,学生已学习了有理数,数轴与相反数等基础内容,这为过渡到本节的学习起着铺垫作用。绝对值不仅可以使学生加深对有理数的认识,还为以后学习两个负数的比较大小以及有理数的运算作好必要的准备!所以说本讲内容在有理数这一节中,占据了一个承上启下的位置。
(二)、教育教学目标:
根据新课标的要求及七年级学生的认知水平我特制定的本节课的教学目标如下:
1、知识目标:
1)使学生了解绝对值的表示法,会计算有理数的绝对值。
2)能利用数形结合思想来理解绝对值的几何定义;理解绝对值非负的意义。
3)能利用分类讨论思想来理解绝对值的代数定义;理解字母a的任意性。
2、能力目标:
通过教学初步培养学生分析问题,解决实际问题,读图分析、收集处理信息、团结协作、语言表达的能力,以及通过师生双边活动,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力。
3、思想目标:
通过对绝对值的教学,让学生初步认识到数学知识来源于实践,引导学生从现实生活的经历与体验出发,激发学生对数学问题的兴趣,使学生了解数学知识的功能与价值,形成主动学习的态度。
(三):重点,难点以及确定的依据:
本课中绝对值的两种定义是重点,绝对值的代数定义是本课的难点,其理论依据是如何突破绝对值符号里字母a的任意性这一难点,由于学生年龄小,解决实际问题能力弱,对数学分类讨论思想理解难度大。
下面,为了讲清重难点,使学生能达到本节课设定的教学目标,我再从教法与学法上谈谈:
二、教学策略(说教法)
(一)、教学手段:
由于七年级学生的理解能力与思维特征,他们往往需要依赖直观具体形象的图形的年龄特点,以及七年级学生刚刚学习有理数中的正负数,相反数,对正负数,相反数的概念理解不一定非常深刻,许多学生容易造成知识遗忘,也为使课堂生动、有趣、高效,特将整节课以观察、思考、讨论贯穿于整个教学环节之中,采用启发式教学法与师生互动式教学模式,注意师生之间的情感交流,并教给学生“多观察、动脑想、大胆猜、勤钻研”的研讨式学习方法。
教学中积极利用多媒体课件,向学生提供更多的活动机会和空间,使学生在动脑、动手的过程中获得充足的体验与发展,从而培养学生的数形结合的思想。
为充分发挥学生的主体性与教师的主导辅助作用,教学过程中我设计了七个教学环节:
1、温故知新,激发情趣
2、得出定义,揭示内涵
3、手脑并用,深入理解
4、启发诱导,初步运用
5、反馈矫正,注重参与
6、归纳小结,强化思想
7、布置作业,引导预习
(二)、教学方法及其理论依据:
坚持“以学生为主体,以教师为主导”的原则,即“以学生活动为主,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则,根据七年级学生的心理发展规律,联系实际安排教学内容。采用学生参与程度高的学导式讨论教学法。在学生看书、讨论基础上,在教师启发引导下,运用问题解决式教学法,师生交谈法、问答法、课堂讨论法,引导学生来理解教材中的理论知识。
在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现的机会,培养其自信心,激发其学习热情。有效地开发各层次学生的潜在智能,力求使每个学生都能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践,学以致用,落实教学目标。
三:学情分析:(说学法)
1、知识掌握上,七年级学生刚刚学习有理数中的相反数,对相反数的概念理解不一定非常深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述。
2、学生学习本节课的知识障碍。学生对绝对值两种概念,不易理解,容易出错,所以教学中教师应予以简单明白、深入浅出的分析。
3、由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用多媒体课件,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
4、心理上,学生对数学课的重视与兴趣,老师应抓住这有利因素,引导学生认识到数学课的科学性,学好数学有利于其他学科的学习以及学科知识的渗透性。
最后我来具体谈一谈这一堂课的教学过程:
四、教学程序设计
(一)、温故知新,激发情趣:
首先打出第一张幻灯片复习提问:什么叫做相反数?学生回答后让大家讨论:你能找出互为相反数的两个数在数轴上表示的点的共同特点吗?学生会积极回答第一个问题,但第二个问题学生可能难以准确回答,于是打出第二张幻灯片引导学生仔细观察,认真思考。从而引出课题:绝对值。结合实例使学生以轻松愉快的心情进入了本节课的学习,也使学生体会到数学来源于实践,同时对新知识的学习有了期待,为顺利完成教学任务作了思想上的准备。
(二)、得出定义,揭示内涵:
由于学生是第一次接触绝对值这样比较深奥的数学名词,所以我利用数轴在第三张幻灯片里直接给出绝对值的几何定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,(absolutevalue)这个定义学生接受起来比较容易。
给出定义后引导学生讨论:“定义里的数a可以表示什么样的数?
(通过教师亲切的语言启发学生,以培养师生间的默契)通过讨论由师生共同得到绝对值定义里的数a可以是正数,负数和0。
然后再回到第一张幻灯片里提出的问题:互为相反数的两个数的绝对值有什么关系?
(三)、手脑并用,深入理解:
1、在上一环节与学生一起理解了绝对值的定义后,我再提出问题:如何由文字语言向数学符号语言的转化,即如何简单地标记绝对值,而不用汉字?在此不用提问学生,采取自问自答形式给出绝对值的记法。
2、为进一步强化概念,在对绝对值有了正确认识的基础上,请学生做教材的课堂练习第一题,写出一些数的绝对值。可以请学生起立回答。我就学生的回答情况给出评价,如“非常好”“非常规范”“老师相信你,你一定行”等语言来激励学生,以促进学生的发展;并再次强调绝对值的定义。
3、在完成第一题的练习后,我又给出一新的幻灯片,并提出问题:议一议一个数的绝对值与这个数有什么关系?启发学生举一些实际的例子来发现规律,并总结规律。从而引出绝对值的第二个定义。
(四)、启发诱导,初步运用:
有了绝对值的两个定义后,我安排了10道不同层次的判断题让学生思考。特别注重对于不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现的机会,培养其自信心,激发其学习热情。
(五)、反馈矫正,注重参与:
为巩固本节的教学重点我再次给出三道问题:
1)绝对值是7的数有几个?各是什么?有没有绝对值是-2的数?
2)绝对值是0的数有几个?各是什么?
3)绝对值小于3的整数一共有多少个?
先让学生通过小组讨论得出结果,通过以上练习使学生在掌握知识的基础上达到灵活运用,形成一定的能力。
视学生的反馈情况以及剩余时间的多少我还预备了五道课堂升华的思考题,再次强化训练,启发学生的思维。
(六)、归纳小结,强化思想:
(七)、布置作业,引导预习:
1、全体学生必做课本习题1、23,4,5,10。
2、选作两道思考题:
(1)求绝对值不大于2的整数;(2)已知x是整数,且2、5<x<7,求x、
总之,在教学过程中,我始终注意发挥学生的主体作用,让学生通过自主、探究、合作学习来主动发现结论,实现师生互动,通过这样的教学实践取得了良好的教学效果,我认识到教师不仅要教给学生知识,更要培养学生良好的数学素养和学习习惯,让学生学会学习,才能使自己真正成为一名受学生欢迎的好教师。
以上是我对本节课的设想,不足之处请老师们多多批评、指正,谢谢!
初中数学教案篇4
相反数人教版数学七年级上册教案
一、学习目标
1.掌握相反数的概念;
2.会求一个已知数的相反数;
3.体验数形结合思想;
4.根据相反数的意义化简符号.
二、知识回顾
1.数轴的三要素是什么?在下面画出一条数轴:
原点、正方向和单位长度.
2.在上面的数轴上描出表示5、—2、—5、+2这四个数的点.
3.观察上图并填空:数轴上与原点的距离是2的点有2个,这些点表示的数是2、-2;与原点的距离是5的点有2个,这些点表示的数是5、-5.
三、新知讲解
1.相反数的几何意义
数轴上表示互为相反数的两个数的点关于原点对称.
2.相反数的概念
像2和—2、5和—5、3和—3这样,只有符号不同的两个数叫做互为相反数.把其中一个数叫做另一个数的相反数.特别地,0的相反数是0.
四、典例探究
1.相反数的几何意义(相反数的引入)
【例1】如果a是一个正数,那么数轴上与原点的距离是a的点有两个,即一个表示a,另一个是,它们分别在原点的左边和右边,我们说,这两点关于.
a和互为相反数,也就是说,-a是的&39;相反数.
总结:互为相反数的两个数分别位于原点的两侧,且到原点的距离相等,我们也说数轴上表示互为相反数的两个数的点关于原点对称.
练1数轴上表示相反数的两个点和原点的距离.
2.相反数的概念辨析
【例2】判断下列说法正误.
(1)-5是相反数.
(2)-5是5的相反数,5不是-5的相反数.()
(3)符号相反的两个数叫做互为相反数.()
总结:理解相反数的定义,要注意以下几点:
1.相反数是成对出现的,是指两个数之间的特殊关系,它们不能单独存在,不能说“-2是相反数”;
2.是相反数的两个数之间的关系是相互的,如的相反数是,反之的相反数是;
3.“只有”指的是仅仅是符号不同,而数字(绝对值)是相同的,如-3和5不是相反数,因为它们的数字不同.
练2辨析:因为向东6米和向西3米是一对相反意义的量,如果规定向东是正方向,向东6米可以记作+6米,向西3米可以记作-3米,所以+6和-3互为相反数.()
3.求一个数的相反数
初中数学教案篇5
一元二次方程的应用(一)
一、素质教育目标
(-)知识教学点:使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题.
(二)能力训练点:通过列方程解应用问题,进一步提高分析问题、解决问题的能力.
二、教学重点、难点
1.教学重点:会用列一元二次方程的方法解有关数与数字之间的关系的应用题.
2.教学难点 :根据数与数字关系找等量关系.
三、教学步骤
(一)明确目标
(二)整体感知:
(三)重点、难点的学习和目标完成过程
1.复习提问
(1)列方程解应用问题的步骤?
①审题,②设未知数,③列方程,④解方程,⑤答.
(2)两个连续奇数的表示方法是,2n+1,2n-1;2n-1,2n-3;……(n表示整数).
2.例1 两个连续奇数的积是323,求这两个数.
分析:(1)两个连续奇数中较大的奇数与较小奇数之差为2,(2)设元(几种设法) .设较小的奇数为x,则另一奇数为x+2, 设较小的奇数为x-1,则另一奇数为x+1; 设较小的奇数为2x-1,则另一个奇数2x+1.
以上分析是在教师的引导下,学生回答,有三种设法,就有三种列法,找三位学生使用三种方法,然后进行比较、鉴别,选出最简单解法.
解法(一)
设较小奇数为x,另一个为x+2,
据题意,得x(x+2)=323.
整理后,得x2+2x-323=0.
解这个方程,得x1=17,x2=-19.
由x=17得x+2=19,由x=-19得x+2=-17,
答:这两个奇数是17,19或者-19,-17.
解法(二)
设较小的奇数为x-1,则较大的奇数为x+1.
据题意,得(x-1)(x+1)=323.
整理后,得x2=324.
解这个方程,得x1=18,x2=-18.
当x=18时,18-1=17,18+1=19.
当x=-18时,-18-1=-19,-18+1=-17.
答:两个奇数分别为17,19;或者-19,-17.
解法(三)
设较小的奇数为2x-1,则另一个奇数为2x+1.
据题意,得(2x-1)(2x+1)=323.
整理后,得4x2=324.
解得,2x=18,或2x=-18.
当2x=18时,2x-1=18-1=17;2x+1=18+1=19.
当2x=-18时,2x-1=-18-1=-19;2x+1=-18+1=-17
答:两个奇数分别为17,19;-19,-17.
引导学生观察、比较、分析解决下面三个问题:
1.三种不同的设元,列出三种不同的方程,得出不同的x值,影响最后的结果吗?
2.解题中的x出现了负值,为什么不舍去?
答:奇数、偶数是在整数范围内讨论,而整数包括正整数、零、负整数.3.选出三种方法中最简单的一种.
练习
1.两个连续整数的积是210,求这两个数.
2.三个连续奇数的和是321,求这三个数.
3.已知两个数的和是12,积为23,求这两个数.
学生板书,练习,回答,评价,深刻体会方程的思想方法.例2 有一个两位数等于其数字之积的3倍,其十位数字比个位数字小2,求这两位数.
分析:数与数字的关系是:
两位数=十位数字×10+个位数字.
三位数=百位数字×100+十位数字×10+个位数字.
解:设个位数字为x,则十位数字为x-2,这个两位数是10(x-2)+x.
据题意,得10(x-2)+x=3x(x-2),
整理,得3x2-17x+20=0,
当x=4时,x-2=2,10(x-2)+x=24.
答:这个两位数是24.
练习1 有一个两位数,它们的十位数字与个位数字之和为8,如果把十位数字与个位数字调换后,所得的两位数乘以原来的两位数就得1855,求原来的两位数.(35,53)
2.一个两位数,其两位数字的差为5,把个位数字与十位数字调换后所得的数与原数之积为976,求这个两位数.
教师引导,启发,学生笔答,板书,评价,体会.
(四)总结,扩展
1奇数的表示方法为2n+1,2n-1,……(n为整数)偶数的表示方法是2n(n是整数),连续奇数(偶数)中,较大的与较小的差为2,偶数、奇数可以是正数,也可以是负数.
数与数字的关系
两位数=(十位数字×10)+个位数字.
三位数=(百位数字×100)+(十位数字×10)+个位数字.
……
2.通过本节课内容的比较、鉴别、分析、综合,进一步提高分析问题、解决问题的能力,深刻体会方程的思想方法在解应用问题中的用途.
四、布置作业
教材P.42中A1、2、
一元二次方程的应用(一)
一、素质教育目标
(-)知识教学点:使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题.
(二)能力训练点:通过列方程解应用问题,进一步提高分析问题、解决问题的能力.
二、教学重点、难点
1.教学重点:会用列一元二次方程的方法解有关数与数字之间的关系的应用题.
2.教学难点 :根据数与数字关系找等量关系.
三、教学步骤
(一)明确目标
(二)整体感知:
(三)重点、难点的学习和目标完成过程
1.复习提问
(1)列方程解应用问题的步骤?
①审题,②设未知数,③列方程,④解方程,⑤答.
(2)两个连续奇数的表示方法是,2n+1,2n-1;2n-1,2n-3;……(n表示整数).
2.例1 两个连续奇数的积是323,求这两个数.
分析:(1)两个连续奇数中较大的奇数与较小奇数之差为2,(2)设元(几种设法) .设较小的奇数为x,则另一奇数为x+2, 设较小的奇数为x-1,则另一奇数为x+1; 设较小的奇数为2x-1,则另一个奇数2x+1.
以上分析是在教师的引导下,学生回答,有三种设法,就有三种列法,找三位学生使用三种方法,然后进行比较、鉴别,选出最简单解法.
解法(一)
设较小奇数为x,另一个为x+2,
据题意,得x(x+2)=323.
整理后,得x2+2x-323=0.
解这个方程,得x1=17,x2=-19.
由x=17得x+2=19,由x=-19得x+2=-17,
答:这两个奇数是17,19或者-19,-17.
解法(二)
设较小的奇数为x-1,则较大的奇数为x+1.
据题意,得(x-1)(x+1)=323.
整理后,得x2=324.
解这个方程,得x1=18,x2=-18.
当x=18时,18-1=17,18+1=19.
当x=-18时,-18-1=-19,-18+1=-17.
答:两个奇数分别为17,19;或者-19,-17.
解法(三)
设较小的奇数为2x-1,则另一个奇数为2x+1.
据题意,得(2x-1)(2x+1)=323.
整理后,得4x2=324.
解得,2x=18,或2x=-18.
当2x=18时,2x-1=18-1=17;2x+1=18+1=19.
当2x=-18时,2x-1=-18-1=-19;2x+1=-18+1=-17
答:两个奇数分别为17,19;-19,-17.
引导学生观察、比较、分析解决下面三个问题:
1.三种不同的设元,列出三种不同的方程,得出不同的x值,影响最后的结果吗?
2.解题中的x出现了负值,为什么不舍去?
答:奇数、偶数是在整数范围内讨论,而整数包括正整数、零、负整数.3.选出三种方法中最简单的一种.
练习
1.两个连续整数的积是210,求这两个数.
2.三个连续奇数的和是321,求这三个数.
3.已知两个数的和是12,积为23,求这两个数.
学生板书,练习,回答,评价,深刻体会方程的思想方法.例2 有一个两位数等于其数字之积的3倍,其十位数字比个位数字小2,求这两位数.
分析:数与数字的关系是:
两位数=十位数字×10+个位数字.
三位数=百位数字×100+十位数字×10+个位数字.
解:设个位数字为x,则十位数字为x-2,这个两位数是10(x-2)+x.
据题意,得10(x-2)+x=3x(x-2),
整理,得3x2-17x+20=0,
当x=4时,x-2=2,10(x-2)+x=24.
答:这个两位数是24.
练习1 有一个两位数,它们的十位数字与个位数字之和为8,如果把十位数字与个位数字调换后,所得的两位数乘以原来的两位数就得1855,求原来的两位数.(35,53)
2.一个两位数,其两位数字的差为5,把个位数字与十位数字调换后所得的数与原数之积为976,求这个两位数.
教师引导,启发,学生笔答,板书,评价,体会.
(四)总结,扩展
1奇数的表示方法为2n+1,2n-1,……(n为整数)偶数的表示方法是2n(n是整数),连续奇数(偶数)中,较大的与较小的差为2,偶数、奇数可以是正数,也可以是负数.
数与数字的关系
两位数=(十位数字×10)+个位数字.
三位数=(百位数字×100)+(十位数字×10)+个位数字.
……
2.通过本节课内容的比较、鉴别、分析、综合,进一步提高分析问题、解决问题的能力,深刻体会方程的思想方法在解应用问题中的用途.
四、布置作业
教材P.42中A1、2、
初中数学教案篇6
总体说明:
完全平方公式则是对多项式乘法中出现的较为特殊的算式的一种归纳、总结.同时,完全平方公式的推导是初中数学中运用推理方法进行代数式恒等变形的开端,通过完全平方公式的学习对简化某些整式的运算、培养学生的求简意识有较大好处.而且完全平方公式是后继学习的必备基础,不仅对学生提高运算速度、准确率有较大作用,更是以后学习分解因式、分式运算、解一元二次方程以及二次函数的恒等变形的重要基础,同时也具有培养学生逐渐养成严密的逻辑推理能力的作用.因此学好完全平方公式对于代数知识的后继学习具有相当重要的意义.
本节是北师大版七年级数学下册第一章《整式的运算》的第8小节,占两个课时,这是第一课时,它主要让学生经历探索与推导完全平方公式的过程,培养学生的符号感与推理能力,让学生进一步体会数形结合的思想在数学中的作用.
一、学生学情分析
学生的技能基础:学生通过对本章前几节课的学习,已经学习了整式的概念、整式的加减、幂的运算、整式的乘法、平方差公式,这些基础知识的学习为本节课的学习奠定了基础.
学生活动经验基础:在平方差公式一节的学习中,学生已经经历了探索和应用的过程,获得了一些数学活动的经验,培养了一定的符号感和推理能力;同时在相关知识的学习过程中,学生经历了很多探究学习的过程,具有了一定的独立探究意识以及与同伴合作交流的能力.
二、教学目标
知识与技能:
(1)让学生会推导完全平方公式,并能进行简单的应用.
(2)了解完全平方公式的几何背景.
数学能力:
(1)由学生经历探索完全平方公式的过程,进一步发展学生的符号感与推理能力.
(2)发展学生的数形结合的数学思想.
情感与态度:
将学生头脑中的前概念暴露出来进行分析,避免形成教学上的“相异构想”.
三、教学重难点
教学重点:1、完全平方公式的推导;
2、完全平方公式的应用;
教学难点:1、消除学生头脑中的前概念,避免形成“相异构想”;
2、完全平方公式结构的认知及正确应用.
四、教学设计分析
本节课设计了十一个教学环节:学生练习、暴露问题——验证——推广到一般情况,形成公式——数形结合——进一步拓广——总结口诀——公式应用——学生反馈——学生PK——学生反思——巩固练习.
第一环节:学生练习、暴露问题
活动内容:计算:(a+2)2
设想学生的做法有以下几种可能:
①(a+2)2=a2+22
②(a+2)2=a2+2a+22
③正确做法;
针对这几种结果都将a=1代入计算,得出①②都是错误的,但③的做法是否一定正确呢?怎么验证?
活动目的:在很多学生的头脑中,认为两数和的完全平方与两数的平方和等同,即:
(a+2)2=a2+22,如果不将这种定式思维,就很难建立起一个正确的概念;这一环节的目的就是让学生的这种错误或其它错误充分暴露出来,并让学生充分认识到自己原有的定式思维是错误的,为下一步构建新的思维模式埋下伏笔.
第二环节:验证(a+2)2=a2–4a+22
活动内容:(a+2)2=(a+2)•(a+2)=a2+2a+2a+22
活动目的:在前一环节已经打破了学生的原有的思维定式的基础上,给学生建立正确的思维方法,避免形成“相异构想”.
第三环节:推广到一般情况,形成公式
活动内容:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2
活动目的:让学生经历从特殊到一般的探究过程,体验到发现的快乐.
第四环节:数形结合
活动内容:设问:在多项式的乘法中,很多公式都都可以用几何图形进行解释,那么完全平方公式怎样用几何图形解释呢?
展示动画,用几何图形诠释完全平方公式的几何意义.
学生思考:还有没有其它的方法来诠释完全平方公式?(课后思考)
活动目的:让学生进一步认识到数与形都不是孤立存在的,数与形是可以有机地结合在一起,从而发展学生的数形结合的数学思想.
第五环节:进一步拓广
活动内容:推导两数差的完全平方公式:(a–b)2=a2–2ab+b2
方法1:(a–b)2=(a–b)(a–b)=a2–ab–ab+b2=a2–2ab+b2
方法2:(a–b)2=[a+(–b)]2=a2+2a(–b)+(–b)2=a2–2ab+b2
活动目的:让学生经历由两数和的完全平方公式拓广到两数差的完全平方公式的过程,体会到符号差异带来的结果差异,由第二种推导方法体会到两数差的完全平方公式是两数和的完全平方公式的应用.
第六环节:总结口诀、认识特征
活动内容:比较两个公式的共同点与不同点:(a+b)2=a2+2ab+b2
(a–b)2=a2–2ab+b2
特征:①左边都是一个二项式的完全平方,两者仅有一个符号不同;右边都是二次三项式,其中第一、三项是公式左边二项式中每一项的平方,中间一项是左边二项式中两项乘积的两倍,两者也仅一个符号不同;
②公式中的a、b可以是任意一个代数式(数、字母、单项式、多项式)
口诀:首平方,尾平方,首尾相乘的两倍在中央.
活动目的:认识完全平方公式的特征,总结出完全平方公式的口诀,便于学生理解与记忆,避免学生在应用该公式中出现错误.
第七环节:公式应用
活动内容:例:计算:①(2x–3)2;②(4x+)2
解:①(2x–3)2=(2x)2–2•(2x)•3+32=4x2–12x+9
②(4x+)2=(4x)2+2•••••(4x)()+()2=16x2+2xy+
活动目的:在前几个环节中,学生对完全平方公式已经有了感性认识,通过本环节的讲解以及下一环节的练习,使学生逐步经历认识——模仿——再认识.从而上升到理性认识的阶段.
第八环节:随堂练习
活动内容:计算:①;②;③(n+1)2–n2
活动目的:通过学生的反馈练习,使教师能全面了解学生对完全平方公式的理解是否到位,完全平方公式的应用是否得当,以便教师能及时地进行查缺补漏.
第九环节:学生PK
活动内容:每个学生各出五道完全平方公式的计算题给自己的同桌解答,比一比谁的准确性率高,速度快.
活动目的:活跃课堂气氛,激起学生的好胜心,进一步巩固学生对完全平方公式的理解与应用.
第十环节:学生反思
活动内容:通过今天这堂课的学习,你有哪些收获?
收获1:认识了完全平方公式,并能简单应用;
收获2:了解了两数和与两数差的完全平方公式之间的差异;
收获3:感受到数形结合的数学思想在数学中的作用.
活动目的:通过对一堂课的归纳与总结,巩固学生对完全平方公式的认识,体会数学思想的精妙.
第十一环节:布置作业:
课本P43习题1.13
初中数学教案篇7
一、教材分析
1、教材的地位与作用:
有理数乘方是有理数的一种基本运算。从教材编排的结构上看,共需四个课时,本课为第一课时,是在学生学习加、减、乘、除运算的基础上来学习的,它既是有理数乘法的推广与延续,又是后面继续学习有理数混合运算、科学记数法和开方的基础,起到承前启后、铺路架桥的作用。
2、教学目标:
根据新课标的要求及七年级学生的认知水平,我将制定本节课的教学目标如下:
⑴、知识与技能:
让学生理解并掌握有理数的乘方,幂,底数,指数的概念及意义;能够正确进行有理数的乘方运算。
⑵、过程与方法:
在生动的情景中让学生获得有理数乘方的初步体验;培养学生观察、分析、归纳、概括的能力;经历从乘法到乘方的推导过程,从中感受转化的数学思想。
⑶、情感、态度和价值观:
让学生通过观察、推理,归纳出有理数乘方的符号法则,增进学生学好数学的自信心;让学生经历知识的拓展过程,培养学生的探究能力与动手操作能力,体会与他人合作交流的重要性。
3、教学重点与难点:
有理数乘方的意义及运算是本节课的教学重点,而有理数乘方中幂,指数,底数的概念及其相互间关系的理解是本节课的教学难点。
二、教法学法
1、学情分析:
在知识掌握方面,由于学生刚学完有理数的加、减、乘、除运算,对许多概念、法则的理解不一定很深刻,容易造成知识的遗忘与混淆。所以在本节课的学习中应全面系统的加以讲述。
在知识障碍方面,学生对有理数乘方中相关概念的理解及其符号规律的推导、应用方面可能会有模糊现象。所以在本节课的教学中应予以简单明白,深入浅出的分析。
在学生特征方面:由于七年级学生具有好动、好问、好奇的心理特征。所以在教学中应抓住学生这一特征,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终在课堂上;另一方面要创造条件与机会,让学生发表见解,发挥学生学习的主动性。
2、教学策略:
根据本节课的教学目标,教材内容并结合七年级学生的理解能力和思维特征。我将以多媒体为教学平台,采用启发式教学法与师生互动式教学模式。通过精心设计的问题与活动,不断创造思维兴奋点,让学生在学习过程中亲自动手操作,探索结论。教给学生多观察、勤动手、大胆猜、肯钻研的研讨式学习方法,使学生在动脑、动手、动口的过程中获得充足的体验与发展,从而调动起学生的学习主动性与积极性。
三、教学过程
1、设置游戏,引入新课:
首先借助多媒体及课前准备好的硬纸片让全体学生共同做两个折纸游戏。
游戏一是把面积为1的长方形硬纸片沿中间对折,使两边能够完全重合。引导学生思考:如此折叠五次后所得长方形的面积是多少?得出算式:____;
游戏二是让学生把长方形纸片对折后再沿折痕剪开,将得到的所有纸片重合放置后再对折、剪开。如此操作五次之后共有多少张硬纸片?得出算式:2×2×2×2×2;
最后引导学生思考这两个算式的特点,引入新课。
这个环节通过学生动手操作,使其从直观上理解了乘方运算的特点,并为后续学习起到了导航作用。
2、合作交流,探索新知:
先让学生分组讨论下面算式特点:①____,②2×2×2×2×2,③(-3)×(-3)×(-3)×(-3),④(-0.3)×(-0.3)×(-0.3)
接着让学生思考正方形面积与边长a的关系,正方体体积与棱长a的关系,得出:a·a=a,a·a·a=a。然后让学生类比出上面四个算式的记法与读法,最后引导学生猜想:a·a·……·a的结果,总结出幂、底数与指数的概念。
n个a这个环节的设计意图是让学生从游戏结果出发,通过正方形面积与正方体体积的表示方法,类比出乘方的表示形式,总结出相关概念。既体现了学生思维的过程,又渗透了转化思想。
3、迁移训练,总结规律:
在这个环节中,我首先要求学生把算式①﹙-4﹚×﹙-4﹚×﹙-4﹚,②﹙-2﹚×﹙-2﹚×﹙-2﹚×﹙-2﹚,③﹙-﹚×﹙-﹚×﹙-﹚,④﹙-﹚×﹙-﹚写成乘方的形式,并说出其底数和指数分别是多少?接着评析例1,结合例1的解题结果,总结出负数的幂的&39;正负的规律。然后启发学生思考将例1各题的底数换为正数或0,结果会怎么样呢?在学生练习讨论的基础上总结出有理数乘方的符号规律。即:负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。最后结合例2,要求学生掌握计算器的用法,并运用计算器完成课本上的练习,进一步理解有理数乘方的符号规律。
本环节的设计意图是通过变换例1的条件让学生加以练习,进而归纳出结论。有利于调动学生学习的兴趣,使其初步接触到数学的奇妙,提高其积极性与主动性。
4、应用新知,尝试练习:
本环节我主要设计了两组练习,第一组练习是以运用符号规律为目的,让学生通过计算﹙-2﹚、-2、﹙﹚,进一步掌握有理数乘方符号规律的运用方法,并使其在对比﹙-2﹚与-2,﹙﹚与的基础上总结出:当底数为负数和分数时,一定要用括号把底数括起来。
第二组练习是以乘方的实际应用和综合应用为目的而设计的,共两个习题。希望借助第一题帮助学生学会运用所学的乘方知识解决实际问题,促使其树立一个学数学、用数学的思想。而第二题则是乘方与有理数大小比较的综合应用,可帮助学生提高数学分析能力和综合解题能力。
5、归纳小结,形成体系:
首先鼓励学生畅所欲言的总结本节课的收获与体会;然后帮助学生自主建构知识体系;接着布置本节课的课内与课外作业;最后说一下本节课的板书设计。
初中数学教案篇8
一、案例实施背景
教材为人教版义务教育课程标准实验教科书七年级数学(下册)。
二、案例主题分析与设计
本节课是人教版义务教育课程标准实验教科书七年级数学(下册)第五章第3节内容——5.3.1平行线的性质,它是直线平行的继续,是后面研究平移等内容的基础,是“空间与图形”的重要组成部分。
《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。本节课将以“生活?数学”“活动?思考”“表达?应用”为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同时通过小组内学生相互协作研究,培养学生合作性学习精神。
三、案例教学目标
1.知识与技能:掌握平行线的性质,能应用性质解决相关问题。
2.数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。
3.解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。
4.情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和团结合作、勇于探索、锲而不舍的精神。
四、案例教学重、难点
1.重点:对平行线性质的掌握与应用。
2.难点:对平行线性质1的探究。
五、案例教学用具
1.教具:多媒体平台及多媒体课件.
2.学具:三角尺、量角器、剪刀。
六、案例教学过程
1.创设情境,设疑激思
⑴播放一组幻灯片。
内容:①供火车行驶的铁轨上;②游泳池中的泳道隔栏;③横格纸中的线。
⑵提问温故:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?
⑶学生活动:针对问题,学生思考后回答——①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行。
⑷教师肯定学生的回答并提出新问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?从而引出课题:7.2探索平行线的性质(板书)。
2.数形结合,探究性质
⑴画图探究,归纳猜想。
教师提要求,学生实践操作:任意画出两条平行线(a∥b),画一条截线c与这两条平行线相交,标出8个角。(统一采用阿拉伯数字标角)
教师提出研究性问题一:
指出图中的同位角,并度量这些角,填写结果:
第一组:同位角()()角的度数()()数量关系()
第二组:同位角()()角的度数()()数量关系()
第三组:同位角()()角的度数()()数量关系()
第四组:同位角()()角的度数()()数量关系()
教师提出研究性问题二:
将图中的同位角任先一组剪下后叠合。学生活动一:画图—剪图—叠合—猜想学生活动二:画图—剪图—叠合—猜想让学生根据活动得出的数据与操作得出的结果归纳猜想:两直线平行,同位角相等。
教师提出研究性问题三:
再画出一条截线d,看你的猜想结论是否仍然成立?
学生活动:探究、按小组讨论,最后得出结论:仍然成立。
⑵教师用《几何画板》课件验证猜想,让学生直观感受猜想
⑶教师展示平行线性质1:两条平行线被第三条直线所截,同位角相等。(两直线平行,同位角相等)
3.引申思考,培养创新
教师提出研究性问题四:
请判断两条平行线被第三条直线所截,内错角、同旁内角各有什么关系?学生活动:独立探究——小组讨论——成果展示。
教师活动:评价学生的研究成果,并引导学生说理
因为a∥b(已知)所以∠1=∠2(两直线平行,同位角相等)
又∠1=∠3(对顶角相等)∠1+∠4=180°(邻补角的定义)
所以∠2=∠3(等量代换)∠2+∠4=180°(等量代换)
教师展示:平行线性质2:两条平行线被第三条直线所截,内错角相等。(两直线平行,内错角相等)
平行线性质3:两条平行线被第三条直线所截,同旁内角互补。(两直线平行,同旁内角互补)
4.实际应用,优势互补
⑴(抢答)课本P21练一练
1、2及习题5.3
1、3.
⑵(讨论解答)课本P22习题5.
32、
4、5.
5.课堂总结:
这节课你有哪些收获?
⑴学生总结:平行线的性质
1、
2、3.⑵教师补充总结:
①用“运动”的观点观察数学问题;(如前面将同位角剪下叠合后分析问题)。
②用数形结合的方法来解决问题;(如我们前面将同位角测量后分析问题)。③用准确的语言来表达问题(如平行线的性质
1、
2、3的表述)。
④用逻辑推理的形式来论证问题。(如我们前面对性质2和3的说理过程)
6.作业。学习与评价:P236(选择);P24
7、12(拓展与延伸)。
七、教学反思
数学课要注重引导学生探索与获取知识的过程而不单注重学生对知识内容的认识,因为“过程”不仅能引导学生更好地理解知识,还能够引导学生在活动中思考,更好地感受知识的价值,增强应用数学知识解决问题的意识;感受生活与数学的联系,获得“情感、态度、价值观”方面的体验。这节课的教学实现了三个方面的转变:
1.教的转变
本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者。教师成为了学生的导师、伙伴、甚至成为了学生的学生,在课堂上除了导引学生活动外,还要认真聆听学生“教”你他们活动的过程和通过活动所得的知识或方法。
2.学的转变
学生的角色从学会转变为会学,跟老师学转变为自主去学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境,不是简单地“学”数学,而是深入地“做”数学。
3.课堂氛围的转变
整节课以“流畅、开放、合作、隐导”为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以“对话”“讨论”为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。
总之,在数学教学的花园里,教师只要为学生布置好和谐的场景和明晰的路标,然后就让他们自由地快活地去跳舞吧!
初中数学教案篇9
学习目标
1、学会用公式法因式法分解
2、综合运用提取公式法、公式法分解因式
学习重难点重点:
完全平方公式分解因式.
难点:综合运用两种公式法因式分解
自学过程设计
完全平方公式:
完全平方公式的逆运用:
做一做:
1.(1)16x2-8x+_______=(4x-1)2;
(2)_______+6x+9=(x+3)2;
(3)16x2+_______+9y2=(4x+3y)2;
(4)(a-b)2-2(a-b)+1=(______-1)2.
2.在代数式(1)a2+ab+b2;(2)4a2+4a+1;(3)a2-b2+2ab;(4)-4a2+12ab-9b2中,可用完全平方公式因式分解的是_________(填序号)
3.下列因式分解正确的是()
A.x2+y2=(x+y)2B.x2-xy+x2=(x-y)2
C.1+4x-4x2=(1-2x)2D.4-4x+x2=(x-2)2
4.分解因式:(1)x2-22x+121(2)-y2-14y-49(3)(a+b)2+2(a+b)+1
5.计算:20062-40102006+20052=___________________.
6.若x+y=1,则x2+xy+y2的值是_________________.
想一想
你还有哪些地方不是很懂?请写出来。
____________________________________________________________________________________预习展示一:
1.判别下列各式是不是完全平方式.
2、把下列各式因式分解:
(1)-x2+4xy-4y2
(2)3ax2+6axy+3ay2
(3)(2x+y)2-6(2x+y)+9
应用探究:
1、用简便方法计算
49.92+9.98+0.12
拓展提高:
(1)(a2+b2)(a2+b210)+25=0求a2+b2
(2)4x2+y2-4xy-12x+6y+9=0
求x、y关系
(3)分解因式:m4+4
教后反思 考察利用公式法因式分解的题目不会很难,但是需要学生记住公式的形式,之后利用公式把式子进行变形,从而达到进行因式分解的目的,但是这里有用到实际中去的例子,对学生来说会难一些。
初中数学教案篇10
一、教材分析:
1、教材所处的地位:
二次函数是沪科版初中数学九年级(上册)第22章的内容,在此之前,学生在八年级已经学过了函数及一次函数的内容,对于函数已经有了初步的认识。从一次函数的学习来看,学习一种函数大致包括以下内容:通过具体实例认识这种函数;探索这种函数的图象和性质,利用这种函数解决实际问题;探索这种函数与相应方程不等式的关系。本章“二次函数”的学习也是从以上几个方面展开的。本节课的主要内容在于使学生认识并了解两个变量之间的二次函数的关系,为二次函数的后续学习奠定基础
2、教学目的要求:
(1)学生经历从实际问题中抽象出两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系;
(2)让学生学习了二次函数的定义后,能够表示简单变量之间的二次函数关系;
(3)知道实际问题中存在的二次函数关系中,多自变量的取值范围的要求。
(4)把数学问题和实际问题相联系,使学生初步体会数学与人类生活的密切联系及对人类历史发展的作用。
3、教学重点和难点
本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点:
重点:
(1)二次函数的概念
(2)能够表示简单变量之间的二次函数关系.
难点:
具体的分析、确定实际问题中函数关系式
二.教法、学法分析:
下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:
1、教法研究
教学中教师应当暴露概念的再创造过程,鼓励学生不但要动口、动脑,而且要动手,学生经过自己亲身的实践活动,形成自己的经验、猜想,产生对结论的感知,这不仅让学生对所学内容留下了深刻的印象,而且能力得到培养,素质得以提高,充分地调动学生学习的热情,让学生学会主动学习,学会研究问题的方法,培养学生的能力。本节课的设计坚持以学生为主体,充分发挥学生的主观能动性。教学过程中,注重学生探究能力的培养。还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。
2、学法研究
初中学生的思维方式往往还是比较具象的,要让他们在问题的探究过程中充分体验问题的发现、解决及最终表述的方式方法,遇到困难可以和同伴、老师进行交流甚至争论,这样既可以加深学生对问题的理解又可以让学生体验获得学习的快乐。
3、教学方式
(1)由于本节课的内容是学生在学习了《一次函数》和《正比例函数》的基础上的加深,所以可以利用学生已有的知识在问题一、二中放手让学生先去探究探究两个问题中的变量之间的关系,在得到具体的关系式后,再引导学生观察关系式都有着什么样的特点,可以和多项式中的二次三项式或一元二次方程比较认识,并最终得出二次函数的一般式及二次项系数的取值为什么不为零的道理。
(2)要特别提醒学生注意:二次函数是解决实际生活生产的一个很有效的模板,因而对二次函数解析式中自变量的取值范围一定要从理论上和实际中加以综合讨论和认定。
(3)可以多让学生解决实际生活中的一些具有二次函数关系的实例来加深和提高学生对这一关系模型的理解。
三.教学流程分析:
这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。
1、温故知新—揭示课题
由回顾所学过的正比例函数,一次函数入手,引入函数大家庭中还会认识那一种函数呢?再由例子打篮球投篮时篮球运动的轨迹如何?何时达到最高点?引入二次函数。
2、自我尝试、合作探究—探求新知
通过学生自己独立解决运用函数知识表述变量间关系,即自我探讨环节;合作探究环节,学生间互动,集群体力量,共破难关,来自主探究新知,从而通过观察,归纳得到二次函数的解析式,获取新知。
3、小试身手—循序渐进
本组题目是对新学的直接应用,目的在于使学生能辨认二次函数,准确指出a、b、c,并应用其定义求字母系数的值,能应用二次函数准确表示具体问题中的变量间关系。本组题目的解决以学生快速解答为主,重点对第2题分析解决方法。这一环节主要由学生处理解决,以检查学生的掌握程度。
4、课堂回眸—归纳提高
本课小结从内容、应用、数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学知识,用知识是有很大的促进的。方法以学生畅谈收获为主。
5、课堂检测—测评反馈
共有6个题目,由学生独自处理第1、2、3、4、5小题,再发表自己的看法,第6小题可由学生或独自或同组交流均可。教师多以巡视为主,注意掌握学生对本节的掌握情况。
6、作业布置
作业我选择“同步作业”里的题目,其中基础训练为必做题,全员均做;综合应用为选做题,可供学有余力的学生能力提升用。
四、对本节课的一点看法
通过引入实例,丰富学生认识,理解新知识的意义,进而摆脱其原型,从而进行更深层次的研究,这种“数学化”的方法是认识事物规律的重要方法之一,通过教学让学生初步掌握这种方法,对于学生良好思维品质的形成有重要作用,对于学生的终身发展也有一定的作用。
初中数学教案篇11
一、教材及学情分析
《二次函数的图像与性质》是北师大版九年级下册第二章第二节的内容,在学生已经学习过一次函数(包括正比例函数)、反比例函数的图像与性质,以及会建立二次函数模型和理解二次函数的有关概念的基础上进行的,它既是前面所学知识的应用、拓展,是对前面所学一次函数、反比例函数图像与性质的一次升华,又是今后学习《确定二次函数的表达式》《二次函数的应用》、《二次函数与一元二次方程》的预备知识,又是学生高中阶段数学学习的基础知识,它在教材中起着非常重要的作用。另外,本节课最大特点,是结合图形来研究二次函数的性质,这充分体现了一个很重要的数学思想——数形结合数学思想。因此,这一节课,无论是在知识上,还是对学生动手能力培养上都有着十分重要的作用。
二、教学目标及重、难点分析
通过分析,我们知道,《二次函数的图像与性质》在整个教材体系中,起着承上启下的作用,有着广泛的应用。我认为这节课的重点是:作出函数=ax2+c的图象,比较函数=ax2和函数=ax2+c的异同,了解它们的性质;函数=ax2+c的图象与性质的理解,掌握抛物线的上下平移规律是本节课的难点。
知识与技能目标
(1)会做函数=ax2和=ax2+c的图象,并能比较它们的异同;理解a,c对二次函数图象的影响,能正确说出两函数的开口方向,对称轴和顶点坐标;
(2)了解抛物线=ax2上下平移规律。
过程与方法目标
本节课,过程是由抽象到直观,再由直观到抽象(既二次函数=ax2+c的关系式——作出图像——说出二次函数=ax2+c的图像与性质),培养学生分析问题、解决问题的能力,培养学生观察、探讨、分析、分类讨论的能力。
情感、态度与价值观
引导学生养成全面看问题、分类讨论的学习习惯,通过直观多媒体演示和学生动手作图、分析,激发学生学习数学的积极性。
三、教学结构设计
建立以“实施主体性教学,培养学生自主探究的能力”为主的课堂教学结构模式——学教结合式。让学生先自己动手画图,然后由老师来演示,这样从直观的看图观察,思考,提问,容易激发学生的求知欲望,调动学生学习的兴趣。以“学教结合”为模式的课堂结构设计为“三个阶段”:
①准备阶段教师先从回忆函数=ax2图象与性质,从而导入二次函数=ax2+c的图像与性质,进而带出本节课的学习目标。
②参与阶段学生围绕目标自我表现,相互交流,启发理解。
③应用与升华阶段这一阶段是让学生从“学会”到“会学”的升华。延伸阶段要做到“三化”,一是知识的深化,二是知识向能力、技能的转化,三是学习方法的固化,即演练巩固,牢固掌握其方法。
初中数学教案篇12
教学目标
1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;
2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系;
3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;
4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。
教学建议
1.知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出代数式的概念。
2.教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。运用算术的方法解决问题,是小学学生的思维方法,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。对代数式的概念课文没有直接给出,而是用实例形象地说明了代数式的概念。对代数式的概念可以从三个方面去理解:
(1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性.
(2)代数式中并不要求数和表示数的字母同时出现,单独的一个数和字母也是代数式.如:2,m都是代数式.
等都不是代数式.
3.教学难点分析:能正确说出一个代数式的数量关系,即用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序。用语言表达代数式的意义,具体说法没有统一规定,以简明而不引起误会为出发点。
如:说出代数式7(a-3)的意义。
分析7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。代数式7(a-3)的最后运算是积,应把a-3作为一个整体。所以,7(a-3)的意义是7与(a-3)的积。
4.书写代数式的注意事项:
(1)代数式中数字与字母或者字母与字母相乘时,通常把乘号简写作“·”或省略不写,同时要求数字应写在字母前面.
如3×a,应写作3.a或写作3a,a×b应写作3.a或写作ab.带分数与字母相乘,应把带分数化成假分数,
FormatImgID_0
.数字与数字相乘一般仍用“×”号.
(2)代数式中有除法运算时,一般按照分数的写法来写.
(3)含有加减运算的代数式需注明单位时,一定要把整个式子括起来.
5.对本节例题的分析:
例1是用代数式表示几个比较简单的数量关系,这些小学都学过.比较复杂一些的数量关系的代数式表示,课文安排在下一节中专门介绍.
例2是说出一些比较简单的`代数式的意义.因为代数式中用字母表示数,所以把字母也看成数,一种特殊的数,就可以像看待原来比较熟悉的数式一样,说出一个代数式所表示的数量关系,只是另外还要考虑乘号可能省略等新规定而已.
6.教法建议
(1)因为这一章知识大部分在小学学习过,讲授新课之前要先复习小学学过的运算律,在学生原有的认知结构上,提出新的问题。这样即复习了旧知识,又引出了新知识,能激发学生的学习兴趣。在教学中,一定要注意发挥本章承上启下的作用,搞好小学数学与初中代数的衔接,使学生有一个良好的开端。
(2)在本节的学习过程中,要使学生理解代数式的概念,首先要给学生多举例子(学生比较熟悉、贴近现实生活的例子),使学生从感性上认识什么是代数式,理清代数式中的运算和运算顺序,才能正确说出一个代数式所表示的数量关系,从而认识字母表示数的意义——普遍性、简明性,也为列代数式做准备。
(3)条件比较好的学校,老师可选用一些多媒体课件,激发学生的学习兴趣,增强学生自主学习的能力。
(4)老师在讲解第一节之前,一定要对全章内容和课时安排有一个了解,注意前后知识的衔接,只有这样,我们老师才能教给学生系统的而不是一些零散的知识,久而久之,学生头脑中自然会形成一个完整的知识体系。
(5)因为是新学期代数的第一节课,老师一定要给学生一个好印象,好的开端等于成功了一半。那么,怎么才能给学生留下好印象呢?首先,你要尽量在学生面前展示自己的才华。比,英语口语好的老师,可以用英语做一个自我介绍,然后为学生说一段祝福语。第二,上课时尽量使用多种语言与学生交流,其中包括情感语言(眉目语言、手势语言等),让学生感受到老师对他的关心。
7.教学重点、难点:
重点:用字母表示数的意义
难点:学会用字母表示数及正确说出一个代数式所表示的数量关系。
教学设计示例
课堂教学过程设计
一、从学生原有的认知结构提出问题
1在小学我们曾学过几种运算律?都是什么?如可用字母表示它们?
(通过启发、归纳最后师生共同得出用字母表示数的五种运算律)
(1)加法交换律a+b=b+a;
(2)乘法交换律a·b=b·a;
(3)加法结合律(a+b)+c=a+(b+c);
(4)乘法结合律(ab)c=a(bc);
(5)乘法分配律a(b+c)=ab+ac
指出:(1)“×”也可以写成“·”号或者省略不写,但数与数之间相乘,一般仍用“×”;
(2)上面各种运算律中,所用到的字母a,b,c都是表示数的字母,它代表我们过去学过的一切数
2(投影)从甲地到乙地的路程是15千米,步行要3小时,骑车要1小时,乘汽车要0.25小时,试问步行、骑车、乘汽车的速度分别是多少?
3若用s表示路程,t表示时间,ν表示速度,你能用s与t表示ν吗?
4(投影)一个正方形的边长是a厘米,则这个正方形的周长是多少?面积是多少?
(用I厘米表示周长,则I=4a厘米;用S平方厘米表示面积,则S=a2平方厘米)
此时,教师应指出:(1)用字母表示数可以把数或数的关系,简明的表示出来;(2)在公式与中,用字母表示数也会给运算带来方便;(3)像上面出现的a,5,15÷3,4a,a+b,s/t以及a2等等都叫代数式.那么究竟什么叫代数式呢?代数式的意义又是什么呢?这正是本节课我们将要学习的内容.
三、讲授新课
1代数式
单独的一个数字或单独的一个字母以及用运算符号把数或表示数的字母连接而成的式子叫代数式.学习代数,首先要学习用代数式表示数量关系,明确代数上的意义
2举例说明
例1填空:
(1)每包书有12册,n包书有__________册;
(2)温度由t℃下降到2℃后是_________℃;
(3)棱长是a厘米的正方体的体积是_____立方厘米;
(4)产量由m千克增长10%,就达到_______千克
(此例题用投影给出,学生口答完成)
解:(1)12n;(2)(t-2);(3)a3;(4)(1+10%)m
例2说出下列代数式的意义:
解:(1)2a+3的意义是2a与3的和;(2)2(a+3)的意义是2与(a+3)的积;
(5)a2+b2的意义是a,b的平方的和;(6)(a+b)2的意义是a与b的和的平方
说明:(1)本题应由教师示范来完成;
(2)对于代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点如第(1)小题也可以说成“a的2倍加上3”或“a的2倍与3的和”等等
例3用代数式表示:
(1)m与n的和除以10的商;
(2)m与5n的差的平方;
(3)x的2倍与y的和;
(4)ν的立方与t的3倍的积
分析:用代数式表示用语言叙述的数量关系要注意:①弄清代数式中括号的使用;②字母与数字做乘积时,习惯上数字要写在字母的前面
四、课堂练习
1填空:(投影)
(1)n箱苹果重p千克,每箱重_____千克;
(2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高为_____厘米;
(3)底为a,高为h的三角形面积是______;
(4)全校学生人数是x,其中女生占48%?则女生人数是____,男生人数是____
2说出下列代数式的意义:(投影)
3用代数式表示:(投影)
(1)x与y的和;(2)x的平方与y的立方的差;
(3)a的60%与b的2倍的和;(4)a除以2的商与b除3的商的和
五、师生共同小结
首先,提出如下问题:
1本节课学习了哪些内容?2用字母表示数的意义是什么?
3什么叫代数式?
教师在学生回答上述问题的基础上,指出:①代数式实际上就是算式,字母像数字一样也可以进行运算;②在代数式和运算结果中,如有单位时,要正确地使用括号
六、作业
1一个三角形的三条边的长分别的a,b,c,求这个三角形的周长
2张强比王华大3岁,当张强a岁时,王华的年龄是多少?
3飞机的速度是汽车的40倍,自行车的速度是汽车的1/3,若汽车的速度是ν千米/时,那么,飞机与自行车的速度各是多少?
4a千克大米的售价是6元,1千克大米售多少元?
5圆的半径是R厘米,它的面积是多少?
6用代数式表示:
(1)长为a,宽为b米的长方形的周长;
(2)宽为b米,长是宽的2倍的长方形的周长;
(3)长是a米,宽是长的1/3的长方形的周长;
(4)宽为b米,长比宽多2米的长方形的周长
初中数学教案篇13
教学目的
1. 使学生熟练地运用等腰三角形的性质求等腰三角形内角的角度。
2. 熟识等边三角形的性质及判定.
2.通过例题教学,帮助学生总结代数法求几何角度,线段长度的方法。
教学重点: 等腰三角形的性质及其应用。
教学难点: 简洁的逻辑推理。
教学过程
一、复习巩固
1.叙述等腰三角形的性质,它是怎么得到的?
等腰三角形的两个底角相等,也可以简称“等边对等角”。把等腰三角形对折,折叠两部分是互相重合的,即AB与AC重合,点B与点 C重合,线段BD与CD也重合,所以∠B=∠C。
等腰三角形的顶角平分线,底边上的中线和底边上的高线互相重合,简称“三线合一”。由于AD为等腰三角形的对称轴,所以BD= CD,AD为底边上的中线;∠BAD=∠CAD,AD为顶角平分线,∠ADB=∠ADC=90°,AD又为底边上的高,因此“三线合一”。
2.若等腰三角形的两边长为3和4,则其周长为多少?
二、新课
在等腰三角形中,有一种特殊的情况,就是底边与腰相等,这时,三角形三边都相等。我们把三条边都相等的三角形叫做等边三角形。
等边三角形具有什么性质呢?
1.请同学们画一个等边三角形,用量角器量出各个内角的度数,并提出猜想。
2.你能否用已知的知识,通过推理得到你的猜想是正确的?
等边三角形是特殊的等腰三角形,由等腰三角形等边对等角的性质得到∠A=∠B=C,又由∠A+∠B+∠C=180°,从而推出∠A=∠B=∠C=60°。
3.上面的条件和结论如何叙述?
等边三角形的各角都相等,并且每一个角都等于60°。
等边三角形是轴对称图形吗?如果是,有几条对称轴?
等边三角形也称为正三角形。
例1.在△ABC中,AB=AC,D是BC边上的中点,∠B=30°,求∠1和∠ADC的度数。
分析:由AB=AC,D为BC的中点,可知AB为 BC底边上的中线,由“三线合一”可知AD是△ABC的顶角平分线,底边上的高,从而∠ADC=90°,∠l=∠BAC,由于∠C=∠B=30°,∠BAC可求,所以∠1可求。
问题1:本题若将D是BC边上的中点这一条件改为AD为等腰三角形顶角平分线或底边BC上的高线,其它条件不变,计算的结果是否一样?
问题2:求∠1是否还有其它方法?
三、练习巩固
1.判断下列命题,对的打“√”,错的打“×”。
a.等腰三角形的角平分线,中线和高互相重合( )
b.有一个角是60°的等腰三角形,其它两个内角也为60°( )
2.如图(2),在△ABC中,已知AB=AC,AD为∠BAC的平分线,且∠2=25°,求∠ADB和∠B的度数。
3.P54练习1、2。
四、小结
由等腰三角形的性质可以推出等边三角形的各角相等,且都为60°。“三线合一”性质在实际应用中,只要推出其中一个结论成立,其他两个结论一样成立,所以关键是寻找其中一个结论成立的条件。
五、作业: 1.课本P57第7,9题。
2、补充:如图(3),△ABC是等边三角形,BD、CE是中线,求∠CBD,∠BOE,∠BOC,∠EOD的度数。
12.3.2 等边三角形(二)
教学目标
1.掌握等边三角形的性质和判定方法. 2.培养分析问题、解决问题的能力.
教学重点:等边三角形的性质和判定方法.
教学难点:等边三角形性质的应用
教学过程
I创设情境,提出问题
回顾上节课讲过的等边三角形的有关知识
1.等边三角形是轴对称图形,它有三条对称轴.
2.等边三角形每一个角相等,都等于60°
3.三个角都相等的三角形是等边三角形.
4.有一个角是60°的等腰三角形是等边三角形.
其中1、2是等边三角形的性质;3、4的等边三角形的判断方法.
II例题与练习
1.△ABC是等边三角形,以下三种方法分别得到的△ADE都是等边三角形吗,为什么?
①在边AB、AC上分别截取AD=AE.
②作∠ADE=60°,D、E分别在边AB、AC上.
③过边AB上D点作DE∥BC,交边AC于E点.
2. 已知:如右图,P、Q是△ABC的边BC上的两点,,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.
分析:由已知显然可知三角形APQ是等边三角形,每个角都是60°.又知△APB与△AQC都是等腰三角形,两底角相等,由三角形外角性质即可推得∠PAB=30°.
3. P56页练习1、2
III课堂小结:1.等腰三角形和性质;等腰三角形的条件
V布置作业: 1.P58页习题12.3第ll题.
2.已知等边△ABC,求平面内一点P,满足A,B,C,P四点中的任意三点连线都构成等腰三角形.这样的点有多少个?
12.3.2 等边三角形(三)
教学过程
一、 复习等腰三角形的判定与性质
二、 新授:
1.等边三角形的性质:三边相等;三角都是60°;三边上的中线、高、角平分线相等
2.等边三角形的判定:
三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形;
在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半
注意:推论1是判定一个三角形为等边三角形的一个重要方法.推论2说明在等腰三角形中,只要有一个角是600,不论这个角是顶角还是底角,就可以判定这个三角形是等边三角形。推论3反映的是直角三角形中边与角之间的关系.
3.由学生解答课本148页的例子;
4.补充:已知如图所示, 在△ABC中, BD是AC边上的中线, DB⊥BC于B,
∠ABC=120o, 求证: AB=2BC
分析 由已知条件可得∠ABD=30o, 如能构造有一个锐角是30o的直角三角形, 斜边是AB,30o角所对的边是与BC相等的线段,问题就得到解决了.
初中数学教案篇14
课题:数轴
编写:审阅:
班级学号姓名使用日期_________
【学习目标】
1.利用数轴比较两个数的大小;用数轴帮助深化对数的认识;
2.探索有理数与数轴上的点的对应关系,初步感受“数形结合”思想;
3.感受点在数轴上左右运动时,所表示数的大小变化.
【导学提纲】
1.观察数轴,比较右边的点表示的数与左边的点表示的数的大小关系;
并比较-3与-1,与1的大小关系.
2.观察数轴,比较正数、负数、0的大小关系.
【展示交流】
活动一:
1.在数轴上画出表示-5,3,-1,0,4的点.你能将这些数从大到小排列吗?说说你这样排列的理由.
2.2°C与-2°C哪个温度高?-1°C与0°C哪个温度高?-3°C与-4°C哪个温度高?在数轴上画出表示数2、-2;-1、0和-3,-4的点,它们的位置关系如何?
3.把-3°C、-2°C、0°C、5°C按温度从低到高的顺序排列;在数轴上画出表示-3、-2、0、5的点,你能比较这几个数的大小吗?
活动二:
1.比较下列各组数的大小
(1)5和0(2)-0.5和0(3)-3、0、1.5(4)-3.5和-0.5
2.在数轴上画出下列各数的点,并用“<”将它们连接起来.
4,-2.5,0,-4.5,
【盘点收获】
【课堂反馈】
1.课本P18-19练一练1、2、3
2.在数轴上,到原点距离不大于2的所有整数是;
3.如图,在数轴上有三个点A、B、C,请回答:
(1)将点B向左移动3个单位后,三个点所表示的数谁最小?
(2)将点A向右移动4个单位后的数是多少?这时三个点所表示的数谁最小?
(3)将C点向左移动6个单位后,这时点B所表示的数比点C表示的数大多少?
(4)移动A、B、C中的两个点,使三个点表示的数相同,有几种移法?
【迁移创新】
利用数轴回答:
(1)写出所有不大于4且大于-3的整数:;
(2)不小于-4的非正整数是;
(3)比-2大的数是;-3比-6大.
【课堂作业】
课本P19习题3、4
初中数学教案篇15
教学目标:
1、知识与技能:
⑴、在具体的现实情境中,认识一个角的余角和补角,掌握余角和补角的性质。
⑵、了解方位角,能确定具体物体的方位。
2、过程与方法:
进一步提高学生的抽象概括能力,发展空间观念和知识运用能力,学会推理,并能对问题的结论进行合理的猜想。
3、情感态度与价值观:
体会观察、归纳、推理对数学知识中获取数学猜想和论证的重要作用,初步数学中推理的严谨性和结论的确定性,能在独立思考和小组交流中获益。
重、难点及关键:
1、重点:认识角的互余、互补关系及其性质,确定方位是本节课的重点。
2、难点:通过简单的推理,归纳出余角、补角的性质,并能用规范的语言描述性质是难点。
3、关键:了解推理的意义和推理过程是掌握性质的关键。
教学过程:
一、引入新课:
让学生观察意大利著名建筑比萨斜塔。
比萨斜塔建于1173年,工程曾间断了两次很长的时间,历经约二百年才完工。设计为垂直建造,但是在工程开始后不久便由于地基不均匀和土层松软而倾斜。
二、新课讲解:
1、探究互为余角的定义:
如果两个角的和是90(直角),那么这两个角叫做互为余角,其中一个角是另一个角的余角。即:1是2的余角或2是1的余角。
2、练习⑴:
图中给出的各角,那些互为余角?
3、探究互为补角的定义:
如果两个角的和是180(平角),那么这两个角叫做互为补角,其中一个角是另一个角的补角。即:3是4的补角或4是3的补角。
4、练习⑵:
(1)图中给出的各角,那些互为补角?
(2)填下列表:
a的余角a的补角
5
32
45
77
6223
x
结论:同一个锐角的补角比它的余角大90。
(3)填空:
①70的余角是,补角是。
②a(90)的它的余角是,它的补角是。
重要提醒:ⅰ(如何表示一个角的余角和补角)
锐角a的余角是(90a)
a的补角是(180a)
ⅱ互余和互补是两个角的数量关系,与它们的位置无关。
5、讲解例题:
例1:若一个角的补角等于它的余角4倍,求这个角的度数。
解:设这个角是x,则它的补角是(180-x),余角是(90-x)。
根据题意得:
(180-x)=4(90-x)
解之得:x=60
答:这个角的度数是60。
6、练习⑶:
一个角的补角是它的3倍,这个角是多少度?
7、探究补角的性质:
如图1与2互补,3与4互补,如果1=3,那么2与4相等吗?为什么?
教师活动:操作多媒体演示。
学生活动:观察图形的运动,得出结果:4
补角性质:同角或等角的补角相等
教师活动:向学生说明,以上从观察图形得到的`结论,还可以从理论上说明其理由。
∵1+2=180,3+4=180
2=180-1,4=180-3
∵1=3
180-1=180-3
即:2=4
8、探究余角的性质:
如图1与2互余,3与4互余,如果1=3,那么2与4相等吗?为什么?
教师活动:操作多媒体演示。
学生活动:观察图形的运动,得出结果:4
余角性质:同角或等角的余角相等
教师活动:向学生说明,以上从观察图形得到的结论,还可以从理论上说明其理由。
∵1+2=90,3+4=90
2=90-1,4=90-3
∵1=3
90-1=90-3
即:2=4
9、讲解例题:
例2:如图,AOB=90COD=EOD=90,C,O,E在一条直线上,且4,请说出1与3之间的关系?并试着说明理由?
解:3
∵2=COD=90
3+2=AOB=90
3(等角的余角相等)
10、练习⑷:
如图AOB=90COD=90则1与2是什么关系?
11、讲解方位角:
(1)认识方位:
正东、正南、正西、正北、东南、
西南、西北、东北。
(2)找方位角:
ⅰ乙地对甲地的方位角ⅱ甲地对乙地的方位角
12、讲解例题:
例3:选择题:
(1)A看B的方向是北偏东21,那么B看A的方向()
A:南偏东69B:南偏西69C:南偏东21D:南偏西21
(2)如图,下列说法中错误的是()
A:OC的方向是北偏东60
B:OC的方向是南偏东60
C:OB的方向是西南方向
D:OA的方向是北偏西22
(3)在点O北偏西60的某处有一点A,在点O南偏西20的某处有一点B,则AOB的度数是()
A:100B:70C:180D:140
例4:如图.货轮O在航行过程中,发现灯塔A在它南偏东60的方向上,同时,在它北偏东40,南偏西10,西北(即北偏西45)方向上又分别发现了客轮B,货轮C和海岛D.仿照表示灯塔方位的方法画出表示客轮B,货轮C和海岛D方向的射线.
三、课堂小结:
1、本节课学习了余角和补角,并通过简单的推理,得到出了余角和补角的性质。
2、了解方位角,学会了确定物体运动的方向。
四、课外作业:
1、课本第114页:9、11、12题。
2、学习指要第78-79页:训练二和训练三。
课后反思:
初中数学教案篇16
一、课题引入
为了让学生更好地理解正数与负数的概念,作为教师有必要了解数系的发展.从数系的发展历程来看,微积分的基础是实数理论,实数的基础是有理数,而有理数的基础则是自然数.自然数为数学结构提供了坚实的基础.
对于“数的发展”(也即“数的扩充”),有着两种不同的认知体系.一是数的自然扩充过程,如图1所示,即数系发展的自然的、历史的体系,它反映了人类对数的认识的历史发展进程;另一是数的逻辑扩充过程,如图2所示,即数系发展所经历的理论的、逻辑的体系,它是策墨罗、冯诺伊曼、皮亚诺、高斯等数学家构造的一种逻辑体系,其中综合反映了现代数学中许多思想方法.
二、课题研究
在实际生活中,存在着诸如上升5m,下降5m;收入5000元,支出5000元等各种具体的数量.这些数量不仅与5、5000等数量有关,而且还含有上升与下降、收入与支出等实际的意义.显然上升5m与下降5m,收入5000元与支出5000元的实际意义是不同的.
为了准确表达诸如此类的一些具有相反意义的量,仅用小学学过的正整数、正分数、零,是不够的.如果把收入5000元记作5000元,那么支出5000元显然是不可以也同样记作5000元的.收入与支出是“意义相反”的两回事,是不能用同一个数来表达的.因此,为了准确表达支出5000元,就有必要引入了一种新数—负数.
我们把所学过的大于零的数,都称为正数;而且还可以在正数的前面添加一个“+”号,比如在5的前面添加一个“+”号就成了“+5”,把“+5”称为一个正数,读作“正5”.
在正数的前面添加一个“-”号,比如在5的前面添加一个“-”号,就成了“-5”,所有按这种形式构成的数统称为负数.“-5”读作“负5”,“-5000”读作“负5000”.
于是“收入5000元”可以记作“5000元”,也可以记作“+5000元”,同时“支出5000元”就可以记作“-5000元”了.这样具有相反意义的两个数量就有了不同的表达方式.
利用正数与负数可以准确地表达或记录诸如上升与下降、收入与支出、海平面以上与海平面以下、零上与零下等一些“具有相反意义的量”.再如,某个机器零件的实际尺寸比设计尺寸大0.5mm就可以表示成“0.5mm”,或“+0.5mm”;如果“另一个机器零件的实际尺寸比设计尺寸小0.5mm”,那么就可以表示成“-0.5mm”了.在一次足球比赛中,如果甲队赢了乙队2个球,那么可以把甲队的净胜球数记作“+2”,把乙队的净胜球数记作“-2”.
借助实际例子能够让学生较好地理解为什么要引入负数,认识到负数是为了有效表达与实际生活相关的一些数量而引入的一种新数,而不是人为地“硬造”出来的一种“新数”.
三、巩固练习
例1博然的父母6月共收入4800元,可以将这笔收入记作+4800元;由于天气炎热,博然家用其中的1600元钱买了一台空调,又该怎样记录这笔支出呢?
思路分析:“收入”与“支出”是一对“具有相反意义的量”,可以用正数或负数来表示.一般来说,把“收入4800元”记作+4800元,而把与之具有相反意义的量“支出1600元”记作-1600元.
特别提醒:通常具有“增加、上升、零上、海平面以上、盈余、上涨、超出”等意义的数量,都用正数来表示;而与之相对的、具有“减少、下降、零下、海平面以下、亏损、下跌、不足”等意义的数量则用负数来表示.
再如,若游泳池的水位比正常水位高5cm,则可以将这时游泳池的水位记作+5cm;若游泳池的水位比正常的水位低3cm,则可以将这时游泳池的水位记作-3cm;若游泳池的水位正好处于正常水位的位置,则将其水位记作0cm.
例2周一证券交易市场开盘时,某支股票的开盘价为18.18元,收盘时下跌了2.11元;周二到周五开盘时的价格与前一天收盘价相比的涨跌情况及当天的收盘价与开盘价的涨跌情况如下表:单位:元
日期周二周三周四周五
开盘+0.16+0.25+0.78+2.12
收盘-0.23-1.32-0.67-0.65
当日收盘价
试在表中填写周二到周五该股票的收盘价.
思路分析:以周二为例,表中数据“+0.16”所表示的实际意义是“周二该股票的开盘价比周一的收盘价高出了0.16元”;而表中数据“-0.23”则表示“周二该股票收盘时的收盘价比当天的开盘价降低了0.23元”.
因此,这五天该股票的开盘价与收盘价分别应该按如下的方式进行计算:
周一该股票的收盘价是18.18-2.11=16.07元;周二该股票的收盘价为16.07+0.16-0.23=16.00元;周三该股票的收盘价为16.00+0.25-1.32=14.93元;周四的该股票的收盘价为14.93+0.78-0.67=15.04元;周五该股票的收盘价为15.04+2.12-0.65=16.51元.
例3甲、乙、丙三支球队以主客场的形式进行双循环比赛,每两队之间都比赛两场,下表是这三支球队的比赛成绩,其中左栏表示主队,上行表示客队,比分中前后两数分别是主客队的进球数,例如3∶2表示主队进3球客队进2球.
初中数学教案篇17
一、教学目标知识与技能目标。
1、能熟练作出一次函数的图像,掌握一次函数及其图像的简单性质;
2、初步了解函数表达式与图像之间的关系。
过程与方法目标。
1、经历作图过程中由一般到特殊方法的转变过程,让学生体会研究问题的基本方法。
2、经历对一次函数性质的探索过程,增强学生数形结合的意识,培养学生识图能力;
3、经历对一次函数性质的探索过程,培养学生的观察力、语言表达能力。情感与态度目标
1、在作图的过程中,体会数学的美;
2、经历作图过程,培养学生尊重科学,实事求是的作风。
二、教材分析。
本节课是在学习了一次函数解析式的基础上,从图像这个角度对一次函数进行近一步的研究。教材先介绍了作函数图像的一般方法:列表、描点、连线法,再进一步总结出作一次函数图像的特殊方法——两点连线法。结合一次函数的图像,对一次函数的单调性作了探讨;对一次函数的几何意义也有涉及。在教学中要结合学生的认识情况,循序渐进,逐层深入,对教材内容可作适当增加,但不宜太难。为进一步学习图像及性质奠定了基础。教学重点:结合一次函数的图像,研究一次函数的简单性质教学难点:一次函数性质的应用
三、学情分析函数的图像的概念及作法对学生而言都是较为陌生的。
教材从作函数图像的一般步骤开始介绍,得出一次函数图像是条直线。在此基础上介绍用两点连线得一次函数的图像,学生就容易接受了。在函数解析式与图像二者之间的探讨这部分内容上,不要作更高要求,学生能回答书中的问题就可以了。教学中尽可能的多作几个一次函数的图像,让学生直观感受到一次函数的图像是条直线。
四、教学流程(一)、复习引入
1、什么叫做一次函数?
2、你能说说正比例函数y=kx(k≠0)的性质吗?
3、针对函数y=kx+b,要研究什么?怎样研究?
(二)做一做
例1、画出函数y1=2x与y2=2x+3,y3=2x-2的图像二、新课讲解把一个函数的自变量和对应的因变量的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图像。下面我们来作一次函数y1=2x与y2=2x+3,y3=2x-2的图像分析:根据定义,需要在直角坐标系中描出许多点,因此我们应先计算这些点的横、纵坐标,即x与对应的y的值。我们可借助一个表格来列出每一对x,y的值。因为一次函数的自变量X可以取一切实数,所以X一般在0附近取值。解:列表:x…-2-1012…y1=2x…0…y2=2x+3y3=2x-2描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点。连线:把这些点依次连接起来,得到图像(如图)它们是一条直线。
观察图像回答下列问题:
(1)这三个一次函数图像的形状都是,并且倾斜程度,即互相。
(2)y1=2x的图像经过。
(3)y2=2x+3的图像与y1=2x图像,且与y轴交于,即y2可以看作由y1向平移个单位长度得到,图像经过第象限,k,b的符号如何?()(4)y3=2x-2的图像与y1=2x图像,且与y轴交于,即y3可以看作由y1向平移个单位长度得到,图像经过第象限,k,b的符号如何?
结论:
1、一次函数y=kx+b(k≠0)的图像可以由直线y=kx平移个单位长度得到。(上加下减)
2、一次函数y=kx+b(k≠0)的图像是一条直线,我们称它为直线y=kx+b。
3、平行的直线k相等。
三、做一做。
(1)利用两点确定一条直线(两点画法)画出y=-x+3和y=-x及y=-x-4的图象的图像。
师:回顾刚才的作图过程,经历了几个步骤?
生:经历了列表、描点、连线这三个步骤。
师:回答得很好。作函数图像的一般步骤是列表、描点、连线。今后我们可以用这个方法去作出更多函数的图像。
师:从刚才同学们作出的一次函数的图像中我们可以观察到一次函数图像是一条直线。
(2)在所作的图像上取几个点,找出它们的横、纵坐标
四、议一议观察图像思考:
(1)一次函数的图像从左往右是上升还是下降,由图像怎么看函数的增减性(y随x的变化),你认为决定条件是什么?
(2)图像经过哪些象限?k,b的符号如何?
(3)y=-x+3和y=-x-4是由y=-x怎样平移得到的?一次函数y=kx+b的图像是一条直线,因此作一次函数的图像时,只要确定两个点,再过这两个点作直线就可以了。一次函数y=kx+b的图像也称为直线y=kx+b
例1做出下列函数的图像
(1)y=x+3
(2)y=-x+3
(3)y=2x-4
(4)y=-2x-4
五、课堂小结。
这节课我们学习了一次函数的图像。一次函数的图像是一条直线,正比例函数的图像是经过原点的一条直线。在作图时,只需确定直线上两点的位置,就可得到一次函数的图像。一般地,作函数图像的三个步骤是:列表、描点、连线。
六、课后练习。
书上93页练习五、教学反思本节课主要介绍作函数图像的一般方法,通过对一次函数图像的认识,得到作一次函数及正比例函数的图像的特殊方法(两点确定一条直线)。让学生能够迅速找到直线与坐标轴的交点,这是本节课的难点。数形结合,找准这两个特殊点坐标的特点(x=0或y=0),让学生理解的记忆才能收到较好的效果。
初中数学教案篇18
学习目标:
1、能借助数轴初步理解绝对值的概念,会求一个数的绝对值。
2、正确理解绝对值的代数意义和几何意义,渗透数形结合与分类讨论思想。重点和难点:理解绝对值的概念,能求一个数的绝对值。
学习过程:
任务一、复习旧知:
1、什么叫互为相反数?在数轴上表示互为相反数的两点和原点的位置关系怎样?
2、数轴上与原点的距离是2的点表示的数有_____个,他们表示的数是_____;与原点的距离是5的点有____个、任务二、新知理解:
1、自读课本p11-p12,体会绝对值的意义。
绝对值的几何意义:____________________________________、
a的绝对值记作_______,如5的绝对值记作______,结果是_____、
试一试:(1)+6=______,0、2=________,+8、2=_______
(2)0=_______;
(3)-3=_____,-0、2=_____,-8、2=________、
绝对值的代数意义:(1)一个正数的绝对值是__________;
(2)一个负数的绝对值是___________(3)0的绝对值是___________。
上述可以用式子表示为:(1)当a是正数时,a=_______,
(2)当a是负数时,a=_______,(2)当a=0时,a=________,
任务三:巩固练习
1、求下列各数的绝对值:?7
12,?
110
,?4、75,10、5
2.计算-2++834??815
-20??45
3、绝对值是3的数是_______,有____个绝对值是1、5的数?4、判断:(1)有理数的绝对值一定是正数;
(2)如果一个数是正数,那么这个数的绝对值是它本身;(3)如果一个数的绝对值是它本身,那么这个数是正数(4)一个数的绝对值越大,表示它的点在数轴上越靠右。归纳:(1)不论有理数a取何值,它的绝对值总是______。
(2)两个互为相反数的绝对值____。能力提升:
(1)-35、6=________;a=_____(a<0);若x=5,则x=______(2)绝对值小于4的整数有________;绝对值大于2小于5的整数有________;
(3)绝对值等于本身的数是_______,绝对值等于它的相反数的数是_________,绝对值最小的有理数是_______、(
4)若a-2=3,则a=______
归纳总结:
略
初中数学教案篇19
教材分析:
一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。教材通过一元二次方程ax2+bx+c=0(a≠0)的根x1、x2得出一元二次方程根与系数的关系,以及以数x1、x2为根的一元二次方程的求方程模型。然后通过4个例题介绍了利用根与系数的关系简化一些计算的知识。
学情分析:
1.学生已学习用求根公式法解一元二次方程。
2.本课的教学对象是九年级学生,学生对事物的认识多是直观、形象的,他们所注意的多是事物外部的、直接的、具体形象的特征。
3.在教学初始,出示一些学生所熟悉和感兴趣的东西,结合一元二次方程求根公式使他们在现代化的教学模式和传统的教学模式相结合的基础上掌握一元二次方程根与系数的关系。
教学目标:
1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。
2、能力目标:通过韦达定理的教学过程,使学生经历观察、实验、猜想、证明等数学活动过程,发展推理能力,能有条理地、清晰地阐述自己的观点,进一步培养学生的创新意识和创新精神。
3、情感目标:通过情境教学过程,激发学生的求知欲望,培养学生积极学习数学的态度。体验数学活动中充满着探索与创造,体验数学活动中的成功感,建立自信心。
教学重难点:
1、重点:一元二次方程根与系数的关系。
2、难点:让学生从具体方程的根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个已知方程求作新方程,使新方程的根与已知的方程的根有某种关系,比较抽象,学生真正掌握有一定的难度,是教学的难点。
板书设计:
一元二次方程根与系数的关系如果ax+bx+c=0(a≠0)的两根是x1,x2,那么x1+x2=,x1x2=。
问题6.在方程ax+bx+c=0(a≠0)中,a、b、c的作用吗?①二次项系数a是否为零,决定着方程是否为二次方程;②当a≠0时,b=0,a、c异号,方程两根互为相反数;③当a≠0时,△=b-4ac可判定根的情况;④当a≠0,b-4ac≥0时,x1+x2=,x1x2=。⑤当a≠0,c=0时,方程必有一根为0。
学生学习活动评价设计:
本节课充分让学生分析、观察、提高了学生的归纳能力及推理论证的能力。
教学反思:
1.一元二次方程根与系数的关系的推导是在求根公式的基础上进行。它深化了两根的和与积同系数之间的关系,是我们今后继续研究一元二次方程根的情况的主要工具,必须熟记,为进一步使用打下基础。
2.以一元二次方程根与系数的关系的探索与推导,向学生展示认识事物的一般规律,提倡积极思维,勇于探索的精神,借此锻炼学生分析、观察、归纳的能力及推理论证的能力。
3.一元二次方程的根与系数的关系,在中考中多以填空,选择,解答题的形式出现,考查的频率较高,也常与几何、二次函数等问题结合考查,是考试的热点,它是方程理论的重要组成部分。
4.使学生体会解题方法的多样性,开阔解题思路,优化解题方法,增强择优能力。力求让学生在自主探索和合作交流的过程中进行学习,获得数学活动经验,教师应注意引导。
初中数学教案篇20
课题名称:完全平方公式(1)
一、内容简介
本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。
关键信息:
1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。
2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。
二、学习者分析:
1、在学习本课之前应具备的基本知识和技能:
①同类项的定义。
②合并同类项法则
③多项式乘以多项式法则。
2、学习者对即将学习的内容已经具备的水平:
在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。
三、教学/学习目标及其对应的课程标准:
(一)教学目标:
1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。
2、会推导完全平方公式,并能运用公式进行简单的计算。
(二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理
数、实数、代数式、防城、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、防城、不等式、函数等进行描述。
(四)解决问题:能结合具体情景发现并提出数学问题;尝试从不同
角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。
(五)情感与态度:敢于面对数学活动中的困难,并有独立克服困难
和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解;能从交流中获益。
四、教育理念和教学方式:
1、教师是学生学习的组织者、促进者、合作者:学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。
教学是师生交往、积极互动、共同发展的过程。当学生迷路的时
候,教师不轻易告诉方向,而是引导他怎样去辨明方向;当学生登山畏惧了的时候,教师不是拖着他走,而是唤起他内在的精神动力,鼓励他不断向上攀登。
2、采用“问题情景—探究交流—得出结论—强化训练”的模式
展开教学。
3、教学评价方式:
(1)通过课堂观察,关注学生在观察、总结、训练等活动中的主
动参与程度与合作交流意识,及时给与鼓励、强化、指导和矫正。
(2)通过判断和举例,给学生更多机会,在自然放松的状态下,
揭示思维过程和反馈知识与技能的掌握情况,使老师可以及时诊断学情,调查教学。
(3)通过课后访谈和作业分析,及时查漏补缺,确保达到预期的
教学效果。
五、教学媒体:多媒体六、教学和活动过程:
教学过程设计如下:
〈一〉、提出问题
[引入]同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,通过运算下列四个小题,你能总结出结果与多项式中两个单项式的关系吗?
(2m+3n)2=_______________,(-2m-3n)2=______________,
(2m-3n)2=_______________,(-2m+3n)2=_______________。
〈二〉、分析问题
1、[学生回答]分组交流、讨论
(2m+3n)2=4m2+12mn+9n2,(-2m-3n)2=4m2+12mn+9n2,
(2m-3n)2=4m2-12mn+9n2,(-2m+3n)2=4m2-12mn+9n2。
(1)原式的特点。
(2)结果的项数特点。
(3)三项系数的特点(特别是符号的特点)。
(4)三项与原多项式中两个单项式的关系。
2、[学生回答]总结完全平方公式的语言描述:
两数和的平方,等于它们平方的和,加上它们乘积的两倍;
两数差的平方,等于它们平方的和,减去它们乘积的两倍。
3、[学生回答]完全平方公式的数学表达式:
(a+b)2=a2+2ab+b2;
(a-b)2=a2-2ab+b2.
〈三〉、运用公式,解决问题
1、口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性)
(m+n)2=____________,(m-n)2=_______________,
(-m+n)2=____________,(-m-n)2=______________,
(a+3)2=______________,(-c+5)2=______________,
(-7-a)2=______________,(0.5-a)2=______________.
2、判断:
()①(a-2b)2=a2-2ab+b2
()②(2m+n)2=2m2+4mn+n2
()③(-n-3m)2=n2-6mn+9m2
()④(5a+0.2b)2=25a2+5ab+0.4b2
()⑤(5a-0.2b)2=5a2-5ab+0.04b2
()⑥(-a-2b)2=(a+2b)2
()⑦(2a-4b)2=(4a-2b)2
()⑧(-5m+n)2=(-n+5m)2
3、小试牛刀
①(x+y)2=______________;②(-y-x)2=_______________;
③(2x+3)2=_____________;④(3a-2)2=_______________;
⑤(2x+3y)2=____________;⑥(4x-5y)2=______________;
⑦(0.5m+n)2=___________;⑧(a-0.6b)2=_____________.
〈四〉、[学生小结]
你认为完全平方公式在应用过程中,需要注意那些问题?
(1)公式右边共有3项。
(2)两个平方项符号永远为正。
(3)中间项的符号由等号左边的两项符号是否相同决定。
(4)中间项是等号左边两项乘积的2倍。
〈五〉、冒险岛:
(1)(-3a+2b)2=________________________________
(2)(-7-2m)2=__________________________________
(3)(-0.5m+2n)2=_______________________________
(4)(3/5a-1/2b)2=________________________________
(5)(mn+3)2=__________________________________
(6)(a2b-0.2)2=_________________________________
(7)(2xy2-3x2y)2=_______________________________
(8)(2n3-3m3)2=________________________________
〈六〉、学生自我评价
[小结]通过本节课的学习,你有什么收获和感悟?
本节课,我们自己通过计算、分析结果,总结出了完全平方公式。在知识探索的过程中,同学们积极思考,大胆探索,团结协作共同取得了进步。
〈七〉[作业]P34随堂练习P36习题
初中数学教案篇21
教学目标
1、使学生能说出有理数大小的比较法则
2、能熟练运用法则结合数轴比较有理数的大小,特别是应用绝对值概念比较两个负数的大小,能利用数轴对多个有理数进行有序排列。
3、能正确运用符号"<"">""∵""∴"写出表示推理过程中简单的因果关系。
三、教学重点与难点
重点:运用法则借助数轴比较两个有理数的大小。
难点:利用绝对值概念比较两个负分数的大小。
四、教学准备
多媒体课件
五、教学设计
(一)交流对话,探究新知
1、说一说
(多媒体显示)某一天我们5个城市的最低气温 从刚才的图片中你获得了哪些信息?(从常见的气温入手,激发学生的求知欲望,可能有些学生会说从中知道广州的最低气温10℃比上海的最低气温0℃高,有些学生会说哈尔滨的最低气温零下20℃比北京的最低气温零下10℃低等;不会说的,老师适当点拔,从而学生在合作交流中不知不觉地完成了以下填空。
比较这一天下列两个城市间最低气温的高低(填"高于"或"低于")
广州_______上海;北京________上海;北京________哈尔滨;武汉________哈尔滨;武汉__________广州。
2、画一画:(1)把上述5个城市最低气温的数表示在数轴上,(2)观察这5个数在数轴上的位置,从中你发现了什么?
(3)温度的高低与相应的数在数轴上的位置有什么?
(通过学生自己动手操作,观察、思考,发现原点左边的数都是负数,原点右边的数都是正数;同时也发现5在0右边,5比0大;10在5右边,10比5大,初步感受在数轴上原点右边的两个数,右边的数总比左边的数大。教师趁机追问,原点左边的数也有这样的规律吗?从而激发学生探索知识的欲望,进一步验证了原点左边的数也有这样的规律。从而使学生亲身体验探索的乐趣,在探究中不知不觉获得了知识。)由小组讨论后,教师归纳得出结论:
在数轴上表示的两个数,右边的数总比左边的数大。
正数都大于零,负数都小于零,正数大于负数。
(二)应用新知,体验成功
1、练一练(师生共同完成例1后,学生完成随堂练习1)
例1:在数轴上表示数5,0,-4,-1,并比较它们的大小,将它们按从小到大的顺序用"<"号连接。(师生共同完成)
分析:本题意有几层含义?应分几步?
要点总结:小组讨论归纳,本题解题时的一般步骤:①画数轴②描点;③有序排列;④不等号连接。
随堂练习: P19 T1
2、做一做
(1)在数轴上表示下列各对数,并比较它们的大小
①2和7 ②-6和-1 ③-6和-36 ④-和-1.5
(2)求出图中各对数的绝对值,并比较它们的大小。
(3)由①、②从中你发现了什么?
(学生小组讨论后,代表站起来发言,口述自己组的发现,说明自己组发现的过程,逐步培养学生观察、归纳、用数学语言表达数学规律的能力。)
要点总结:两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小。
在学生讨论的基础上,由学生总结得出有理数大小的比较法则。
(1)正数都大于零,负数都小于零,正数大于负数。
(2)两个正数比较大小,绝对值大的数大。
(3)两个负数比较大小,绝对值大的数反而小。
3、师生共同完成例2后,学生完成随堂练习2、3、4。
例2比较下列每对数的大小,并说明理由:(师生共同完成)
(1)1与-10,(2)-0.001与0,(3)-8与+2;(4)-与-;(5)-(+)与-|-0.8|
分析:第(4)(5)题较难,第(4)题应先通分,第(5)题应先化简,再比较。同时在讲解时,要注意格式。
注:绝对值比较时,分母相同,分子大的数大;分子相同,则分母大的数反而小;分子分母都不相同时,则应先通分再比较,或把分子化相同再比较。
两个负数比较大小时的一般步骤:①求绝对值;②比较绝对值的大小;③比较负数的大小。
思考:还有别的方法吗?(分组讨论,积极思考)
4、想一想:我们有几种方法来判断有理数的大小?你认为它们各有什么特点?
由学生讨论后,得出比较有理数的大小共有两种方法,一种是法则,另一种是利用数轴,当两个数比较时一般选用第一种,当多个有理数比较大小时,一般选用第二种较好。
练一练:P19 T2、3、4
5、考考你:请你回答下列问题:
(1)有没有的有理数,有没有最小的有理数,为什么?
(2)有没有绝对值最小的有理数?若有,请把它写出来?
(3)在于-1.5且小于4.2的整数有_____个,它们分别是____。
(4)若a>0,b<0,a<|b|,则你能比较a、b、-a、-b这四个数的大小吗?(本题属提高题,不要求全体学生掌握)
(新颖的问题会激发学生的好奇心,通过合作交流,自主探究等活动,培养学生思维的习惯和数学语言的表达能力)
6、议一议,谈谈本节课你有哪些收获
(由师生共同完成本节课的小结)本节课主要学习了有理数大小比较的两种方法,一种是按照法则,两两比较,另一种是利用数轴,运用这种方法时,首先必须把要比较的数在数轴上表示出来,然后按照它们在数轴上的位置,从左到右(或从右到左)用"<"(或">")连接,这种方法在比较多个有理数大小时非常简便。
六、布置作业:P19 A组、B组
基础好的A、B两组都做
基础较差的同学选做A组。
初中数学教案篇22
教学目的
1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。
2.使学生会列一元一次方程解决一些简单的应用题。
3.会判断一个数是不是某个方程的解。
重点、难点
1.重点:会列一元一次方程解决一些简单的应用题。
2.难点:弄清题意,找出“相等关系”。
教学过程
一、复习提问
一本笔记本1.2元。小红有6元钱,那么她最多能买到几本这样的笔记本呢?
解:设小红能买到工本笔记本,那么根据题意,得
1.2x=6
因为1.2×5=6,所以小红能买到5本笔记本。
二、新授:
问题1:某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆?(让学生思考后,回答,教师再作讲评)
算术法:(328-64)÷44=264÷44=6(辆)
列方程:设需要租用x辆客车,可得。
44x+64=328(1)
解这个方程,就能得到所求的结果。
问:你会解这个方程吗?试试看?
问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”
通过分析,列出方程:13+x=(45+x)
问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?
把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,
因为左边=右边,所以x=3就是这个方程的解。
这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。
问:若把例2中的“三分之一”改为“二分之一”,那么答案是多少?动手试一试,大家发现了什么问题?
同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?
三、巩固练习
教科书第3页练习1、2。
四、小结。
本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。
五、作业。
教科书第3页,习题6.1第1、3题。
初中数学教案篇23
一、教师自我介绍。
1.静听上课铃声,养成良好预备习惯(教师提前1分钟,面带微笑走上讲台。)
师:亲爱的小朋友们,再过一分钟,我们就会听到上课铃声了,让我们静静地等待吧。(孩子们静静地倾听。)
铃声响过,师:这就是上课铃声,多响亮呀,它告诉我们:上课啦,上课啦,小朋友们坐好啦!身子快挺直,小手快放好,眼睛看前方,小嘴不吵闹。(教师示范,表扬做得好的孩子)
师:小朋友们可真聪明,一听就懂,一学就会,坐得多端正,听得多专心,对啦,铃声响起来,我们的心儿静下来,笑容露出来,快乐的学习开始啦!
2.通过识字,进行教师的自我介绍。
师:小朋友,你们知道我是谁吗?我是数学老师。(故作神秘)想不想知道我叫什么名字?我的名字里有三个字,我把它写在黑板上。(一笔一划写上自己的名字)小朋友,这就是汉字,读什么呢?不认识?没关系,我只要给它注上拼音,你们就知道读什么啦!(在名字上注上拼音)请几个小朋友读一读。小朋友的拼音学得不错呀!知道老师名字的小朋友举手,都知道啦?真了不起!不过在我们中国,为了表示对长辈的尊重,我们不能直接喊长辈的名字,老师也是你们的这个长辈,你们平时应该怎么和我打招呼呢?(孙老师好!)真是个懂礼貌的好孩子!(师生互相打招呼,例如:展鹏鹏,你好!孙老师好!)
3.教师展示自己的特长,给学生留下好的印象。
师:孙老师和小朋友们一样,平时也有很多爱好呢,请小朋友来猜猜看,老师喜欢什么?(教师根据自己的特点,画一些简单的符号。例如书(爱看书,说说自己看书的故事)音符(喜欢音乐)漂亮的字(爱好书法)
师:我还喜欢什么呢?对啦,孙老师最喜欢小朋友们!小朋友们,愿意和孙老师交朋友吗?呀,我真是太高兴啦,我多了那么多的朋友啦!那你们愿意跟着孙老师学本领吗?好的,朋友们,从今天起,让我们一起努力,好好学习,天天向上,把自己变得更棒!
二、熟悉校园,班级,激起学生成为小学生的自豪感。
1.歌曲引线,让学生体验成为一名小学生的自豪。
师:现在,让我们来听一首歌,会唱的小朋友可以跟着唱。小朋友们的歌声里充满了快乐,你们为什么会这么高兴呢?是呀,我们现在已经从幼儿园毕业了,上小学啦,我们有一个新的称呼,叫——小学生。开心吗?老师祝贺你们!(很庄重很认真地)成为一名小学生,就会学到更多的知识,会写字,会看书,会许多许多本领,多了不起!谁来神气地说说这句话:我是小学生!(你来说,多自信的小学生!我真喜欢这位小学生!)一起说说。,
2.知道学校名称、班级名称以及所在位置。
师:小朋友,我们的学校叫什么名字呀?(出示学校图片,教师讲解:位置,功能)我们是几年级几班呢?我们的教室在哪儿?
3.填写表格(拼音)。(反面印儿歌)
学校:奎屯市三小
姓名:
班级:一()
教室所在位置:南一楼
我的老师:孙老师
(请几名小朋友上来读读自己填写的内容)
三、上下课基本规则训练。
1.学习《上下课》儿歌。
上课下课歌
上课铃响,快进课堂。下课铃响,不慌不忙。
坐姿端正,专心听讲。做好准备,再出课堂。
积极动脑,发言响亮。走路轻轻,入厕及时。
自觉做好,人人夸奖。游戏文明,争做榜样。
师:要成为一名合格的小学生,上下课应该怎么做呢?我们来学习一首儿歌。
2.解读儿歌要求,细化上下课的规范。(注意时间安排,来不及可留待下节课再进行,切忌匆忙,每个规范要训练到位,在进行下个规范的训练)
下课铃响,及时上厕所,课间不在走廊里追逐打闹,做好下节课的准备工作,书本文具摆在什么位置,上课怎么站立和老师打招呼,举手发言姿势、下课和老师再见等方面的要求。
四、总结。
师:小结:小朋友们,我们是小学生啦,我们的学校又大又漂亮,有美丽的花坛,干净的操场,宽敞的教室,还有可亲的老师,可爱的小朋友,喜欢我们这个大家庭吗?让我们相亲相爱,在这个大家庭里开心地学习、生活吧!
其他要注意训练的要点(可选用,时间允许的话,可加入第一课时):
一、小朋友简单自我介绍(让孩子们互相认识,知道这是一个受欢迎的新集体。)
二、知道养成正确的读写姿势才能保护视力,初步学会正确的读写姿势,初步养成良好的读写习惯。(读书看书姿势,握笔姿势,坐姿,站姿)
三、继续进行坐姿训练、听课发言常规训练、课前准备和下课时的常规训练。
训练要求:
1.坐姿要求:小手平方桌面(右手在上),双脚平放地面,腰背挺直,眼睛看着黑板或老师。
2.听课发言要求:听课要专心,坐姿端正,不能教室里随意走动,不能同桌或边上的小朋友随便讲话,眼睛跟着老师转。别的同学发言,要认真倾听,如果有话要说,要先举起右手,得到老师的同意,起身,向右或向左轻移一步,站到凳子旁边,双手自然垂肩,腰背挺直,发言要响亮。
3.课前准备和上课规范训练要求:根据课表安排,拿出相对应学科的课本、作业本以及文具,按大的在下,小的在上的顺序整齐地摆在课桌的左上角(或右上角),动作要轻。师生问好,学生站姿参考发言时站立要求,坐下立刻端正坐姿。
4.下课训练要求:老师说下课,小朋友们再见,小朋友起立,说老师再见。然后轻轻收好课桌上的东西,把下节课要上课的课本文具轻轻摆好。轻轻走路,轻轻说话,及时入厕,安全游戏。
5.路队训练要求:安静,快速,整齐,和前面小朋友对齐,不能走到队伍外面,上下楼梯靠右行走,不能推挤。
初中数学教案篇24
第6.4因式分解的简单应用
背景材料:
因式分解是初中数学中的一个重点内容,也是一项重要的基本技能和基础知识,更是一种数学的变形方法,在今后的学习中有着重要的作用。因此,除了单纯的因式分解问题外,因式分解在解某些数学问题中有着广泛的作用,因式分解在三角形中的应用,因式分解可以用来证明代数问题,用于代数式的求值,用于求不定方程,用于解应用题解决有关复杂数值的计算,本节课的例题因式分解在数学题中的简单应用。
教材分析:
本节课是本章的最后一节,是学生学习因式分解初步应用,首先要使学生体会到因式分解在数学中应用,其次给学生提供更多机会体验主动学习和探索的“过程”与“经历”,使多数学里拥有一定问题解决的.经验。
教学目标:
1、在整除的情况下,会应用因式分解,进行多项式相除。
2、会应用因式分解解简单的一元二次方程。
3、体验数学问题中的矛盾转化思想。
4、培养观察和动手能力,自主探索与合作交流能力。
教学重点:
学会应用因式分解进行多项式除法和解简单一元二次方程。
教学难点:
应用因式分解解简单的一元二次方程。
设计理念:
根据本节课的内容特点,主要采用师生合作控讨式课堂教学方法,以教师为主导,学生为主体,动手实践训练为主线,创新思维为核心,态度情感能力为目标,引导学生自主探索,动手实践,合作交流。注重使学生经办观察、操作、推理等探索过程。这种教学理念,反映了时代精神,有利于提高学生的数学素养,能有效地激发学生的思维积极性,学生在学习过程中调动各种感官,进行观察与抽象、操作与思考、自主与交流等,进而改进学生的学习方法。
教学过程:
一、创设情境,复习提问
1、将正式各式因式分解
(1)(a+b)2-10(a+b)+25(2)-xy+2x2y+x3y
(3)2a2b-8a2b(4)4x2-9
[四位同学到黑板上演板,本课时用复习“练习引入”也不失为一种好方法,既先复习因式分解的提取分因式和公式法,又为下面解决多项式除法运算作铺垫]
教师订正
提出问题:怎样计算(2a2b-8a2b)÷(4a-b)
二、导入新课,探索新知
(先让学生思考上面所提出的问题,教师从旁启发)
师:如果出现竖式计算,教师可以给予肯定;可能出现(2a2b-8a2b)÷(4a-b)=ab-8a2追问学生怎么得来的,运算的依据是什么?这样暴露学生的思维,让学生自己发现错误之处;观察2a2b-8a2b=2ab(b-4a),其中一个因式正好是除式4a-b的相反数,如果用“换元”思想,我们就可以把问题转化为单项式除以单项式。
(2a2b-8a2b)÷(4a-b)
=-2ab(4a-b)÷(4a-b)
=-2ab
(让学生自己比较哪种方法好)
利用上面的数学解题思路,同学们尝试计算
(4x2-9)÷(3-2x)
学生总结解题步骤:1、因式分解;2、约去公因式)
(全体学生动手动脑,然后叫学生回答,及时表扬,讲练结合,[运用多项式的因式分解和换元的思想,可以把两个多项式相除,转化为单项式的除法]
练习计算
(1)(a2-4)÷(a+2)
(2)(x2+2xy+y2)÷(x+y)
(3)[(a-b)2+2(b-a)]÷(a-b)
三、合作学习
1、以四人为一组讨论下列问题
若A?B=0,下面两个结论对吗?
(1)A和B同时都为零,即A=0且B=0
(2)A和B至少有一个为零即A=0或B=0
[合作学习,四个小组讨论,教师逐步引导,让学生讲自己的想法,及解题步骤,培养语言表达能力,体会运用因式分解的实际运用作用,增加学习兴趣]
2、你能用上面的结论解方程
(1)(2x+3)(2x-3)=0(2)2x2+x=0
解:
∵(2x+3)(2x-3)=0
∴2x+3=0或2x-3=0
∴方程的解为x=-3/2或x=3/2
解:x(2x+1)=0
则x=0或2x+1=0
∴原方程的解是x1=0,x2=-1/2
[让学生先独立完成,再组织交流,最后教师针对性地讲解,让学生总结步骤:1、移项,使方程一边变形为零;2、等式左边因式分解;3、转化为解一元一次方程]
3、练习,解下列方程
(1)x2-2x=04x2=(x-1)2
四、小结
(1)应用因式分解和换元思想可以把某些多项式除法转化为单项式除法。
(2)如果方程的等号一边是零,另一边含有未知数x的多项式可以分解成若干个x的一次式的积,那么就可以应用因式分解把原方程转化成几个一元一次方程来解。
设计理念:
根据本节课的内容特点,主要采用师生合作讨论式课堂教学方法,以教师为主导,学生为主体,动手实践训练为主线,创新思维为核心,态度情感能力为目标,引导学生自主探索,动手实践,合作交流。注重使学生经办观察、操作、推理等探索过程。这种教学理念,反映了时代精神,有利于提高学生的数学素养,能有效地激发学生的思维积极性,学生在学习过程中调动各种感官,进行观察与抽象、操作与思考、自主与交流等,进而改进学生的学习方法。
初中数学教案篇25
教学目的 知识技能使学生会用列一元二次方程的方法解决有关面积、体积方面和经济方面的问题.
数学思考 提高将实际问题转化为数学问题的能力以及用数学的意识,渗透转化的思想、方程的思想及数形结合的思想.
解决问题通过列一元二次方程的方法解决日常生活及生产实际中遇到的有关面积、体积方面和经济方面的问题.
情感态度 通过探究性学习,抓住问题的关键,揭示它的规律性,展示解题的简洁性的数学美.
教学难点 审题,从文字语言中挖掘有价值的信息.
知识重点 会用列一元二次方程的方法解有关面积、体积方面和经济方面的问题.
教学过程设计意图
教学过程
问题一:列方程解应用题的一般步骤?
师生共同回忆
列方程解应用题的步骤:
(1)审题;(2)设未知数;
(3)列方程;(4)求解;
(5)检验;(6)答.
问题二:矩形的周长和面积?长方体的体积?
问题三:如图,某小区内有一块长、宽比为1:2的矩形空地,计划在该空地上修筑两条宽均为2m的互相垂直的小路,余下的四块小矩形空地铺成草坪,如果四块草坪的面积之和为312m2,请求出原来大矩形空地的长和宽.
教师活动:引导学生读题,找到题目中的关键语句.
学生活动:在关键语句中找到反映相等关系的语句,探究解决办法.
教师活动:用多媒体演示分析,解题方法.
做一做
如图,有一块长80cm,宽60cm的硬纸片,在四个角各剪去一个同样的小正方形,用剩余部分做成一个底面积为1500cm2的无盖的长方体盒子.求剪去的小正方形的边长.
课堂练习:将一个长方形的长缩短5cm,宽增长3cm,正好得到一个正方形.已知原长方形的面积是正方形面积的,求这个正方形的边长.
问题四:某商场销售一种服装,平均每天可售出20件,每件赢利40元.经市场调查发现:如果每件服装降价1元,平均每天能多售出2件.在国庆节期间,商场决定采取降价促销的措施,以达到减少库存、扩大销售量的目的.如果销售这种服装每天赢利1200元,那么每件服装应降价多少元?
学生活动:在众多的文字中,找到关键语句,分析相等关系.
教师活动:用多媒体帮助学生分析试题.提示学生检验解的合理性.
课堂练习:1.经销商以每双21元的价格从厂家购进一批运动鞋,如果每双鞋售价为a元,那么可以卖出这种运动鞋(350-10a)双.物价局限定每双鞋的售价不得超过进价的120%.如果商店要赚400元,每双鞋的售价应定为多少元?需要卖出多少双鞋?
2.某商店从厂家以每件18元的价格购进一批商品,该商店可以自行定价.据市场调查,该商品的售价与销售量的关系是:若每件售价a元,则可卖出(320-10a)件,但物价部门限定每件商品加价不能超过进货价25%的.如果商店计划要获利400元,则每件商品的售价应定为多少元?需要卖出这种商品多少件?(每件商品的利润=售价进货价)
复习列方程解应用题的一般步骤.
本题为后面解决有关面积、体积方面问题做铺垫.
提高学生的审题能力.使学生会解决有关面积的问题.
解决体积问题的问题
培养学生用数学的意识以及渗透转化和方程的思想方法.
强调对方程的解进行双重检验.
小结与作业
课堂
小结利用一元二次方程解决实际问题时,要注意通过实际要求检验根的合理性,要注意审题能力的培养.
本课
作业课本第43页习题2
课后随笔(课堂设计理念,实际教学效果及改进设想)
初中数学教案篇26
教学目标:
1、通过解题,使学生了解到数学是具有趣味性的。
2、培养学生勤于动脑的习惯。
教学过程:
一、出示趣味题
师:老师这里有一些有趣的问题,希望大家开动脑筋,积极思考。
1、小卫到文具店买文具,他买毛笔用去了所带钱的一半,买铅笔用去了剩下钱的一半,最后用去剩下的8分,问小卫原有()钱?
2、苹苹做加法,把一个加数22错写成12,算出结果是48,问正确结果是()。
3、小明做减法,把减数30写成20,这样他算出的得数比正确得数多(),如果小明算出的结果是10,正确结果是()。
4、同学们种树,要把9棵树分3行种,每一行都是4棵,你能想出几种
办法来用△表示。
5、把一段布5米,一次剪下1米,全部剪下要()次。
6、李小松有10本本子,送给小刚2本后,两人本子数同样多,小刚原来
有()本本子。
二、小组讨论
三、指名讲解
四、评价
1、同学互评
2、老师点评
五、小结
师:通过今天的学习,你有哪些收获呢?
初中数学教案篇27
一、素质教育目标
(一)知识教学点
使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实、
(二)能力训练点
逐步培养学生会观察、比较、分析、概括等逻辑思维能力、
(三)德育渗透点
引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯、
二、教学重点、难点
1、重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实、
2、难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论、
三、教学步骤
(一)明确目标
1、如图6—1,长5米的梯子架在高为3米的墙上,则A、B间距离为多少米?
2、长5米的梯子以倾斜角∠CAB为30°靠在墙上,则A、B间的距离为多少?
3、若长5米的梯子以倾斜角40°架在墙上,则A、B间距离为多少?
4、若长5米的梯子靠在墙上,使A、B间距为2米,则倾斜角∠CAB为多少度?
前两个问题学生很容易回答、这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识、但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用、同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30°角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的知识全部求出来、
通过四个例子引出课题、
(二)整体感知
1、请每一位同学拿出自己的三角板,分别测量并计算30°、45°、60°角的对边、邻边与斜边的比值、
学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值、程度较好的学生还会想到,以后在这些特殊直角三角形中,只要知道其中一边长,就可求出其他未知边的长、
2、请同学画一个含40°角的直角三角形,并测量、计算40°角的对边、邻边与斜边的比值,学生又高兴地发现,不论三角形大小如何,所求的比值是固定的大部分学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗?
这样做,在培养学生动手能力的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探索新知、
(三)重点、难点的学习与目标完成过程
1、通过动手实验,学生会猜想到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”、但是怎样证明这个命题呢?学生这时的思维很活跃、对于这个问题,部分学生可能能解决它、因此教师此时应让学生展开讨论,独立完成、
2、学生经过研究,也许能解决这个问题、若不能解决,教师可适当引导:
若一组直角三角形有一个锐角相等,可以把其
顶点A1,A2,A3重合在一起,记作A,并使直角边AC1,AC2,AC3……落在同一条直线上,则斜边AB1,AB2,AB3……落在另一条直线上、这样同学们能解决这个问题吗?引导学生独立证明:易知,B1C1∥B2C2∥B3C3……,∴△AB1C1∽△AB2C2∽△AB3C3∽……,∴
形中,∠A的对边、邻边与斜边的比值,是一个固定值、
通过引导,使学生自己独立掌握了重点,达到知识教学目标,同时培养学生能力,进行了德育渗透、
而前面导课中动手实验的设计,实际上为突破难点而设计、这一设计同时起到培养学生思维能力的作用、
练习题为作了孕伏同时使学生知道任意锐角的对边与斜边的比值都能求出来、
(四)总结与扩展
1、引导学生作知识总结:本节课在复习勾股定理及含30°角直角三角形的性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的教师可适当补充:本节课经过同学们自己动手实验,大胆猜测和积极思考,我们发现了一个新的结论,相信大家的逻辑思维能力又有所提高,希望大家发扬这种创新精神,变被动学知识为主动发现问题,培养自己的创新意识、
2、扩展:当锐角为30°时,它的对边与斜边比值我们知道、今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了、看来这个比值很重要,下节课我们就着重研究这个“比值”,有兴趣的同学可以提前预习一下、通过这种扩展,不仅对正、余弦概念有了初步印象,同时又激发了学生的兴趣、
四、布置作业
本节课内容较少,而且是为正、余弦概念打基础的,因此课后应要求学生预习正余弦概念、
初中数学教案篇28
【地位作用】
《有理数的加法运算律》是人教版七年级数学上册第一章《有理数》第三节的内容。本节共计两课时,加法运算律是第二课时的内容,依据教材的安排本节课应是让学生在理解有理数的加法法则的基础上来运用加法运算律,最终能熟练地进行有理数的加法运算,并能用运算律简化运算。加、减法可以统一成为加法,因此加法的运算是本小节的关键,而加法又是学生初中阶段接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于本一节的学习。
【教学目标】
知识与技能
通过有理数加法运算法则,使学生掌握有理数加法的运算律,并能用有理数加法进行简化运算。
过程与方法
培养学生观察能力、归纳能力,通过分类结合思想渗透,提高学生运算能力,尤其是简便计算能力的提高。
情感态度与价值观
培养学生把实际问题抽象成数学问题的能力
【教学重点、难点】
重点:有理数加法运算律
难点:灵活运用有理数运算律简便运算
重难点的突破:
1、处理好知识之间的联系。适时复习,以旧带新,相互对比。
2、给出大量具体的例子。让学生亲身经历观察思考、抽象概括、补充完善的过程,从不同的问题情境中抽象出相同的数学模型。
【学情分析】
认知:七年级的学生年龄和认知水平还较低,学生爱表现、有较强的好胜心理等特征,因此,在教学过程中善于结合学生的这些特征是上好这节课的关键所在。
能力:1.学生对正数加正数,正数加零的情况较为熟练,但计算准确率不高。
2.对异号两数相加确定符号,绝对值大减小掌握不好。
3.学生善于形象思维,思维活跃,能积极参与讨论。
【教法与学法】
教法:以引导法为主,辅之以直观演示法、小组讨论法,向学生提供充分从事数学活动的机会,激发学生的学习主动性,使学生主动参与课堂活动的全过程。
学法:在学生的学习方式上,采用动手实践,自主探究与合作交流相结合的方式使学习过程直观化、形象化。通过PK赛的形式调动学生的学习热情,从而掌握简便运算的技巧
【教学过程分析】
回顾复习,承前启后
例题讲解,合作学习
应用练习,巩固新知
归纳总结,反思提高
作业布置
初中数学教案篇29
学习目标:
1、使学生会用列一元二次方程的方法解决有关增长率的应用题;
2、进一步培养学生分析问题、解决问题的能力。
学习重点:
会列一元二次方程解关于增长率问题的应用题。
学习难点:
如何分析题意,找出等量关系,列方程。
学习过程:
一、复习提问:
列一元二次方程解应用题的一般步骤是什么?
二、探索新知
1.情境导入
问题:“坡耕地退耕还林还草”是国家为了解决西部地区水土流失生态问题、帮助广大农民脱贫致富的一项战略措施,某村村长为带领全村群众自觉投入“坡耕地退耕还林还草”行动,率先示范.2002年将自家的坡耕地全部退耕,并于当年承包了30亩耕地的还林还草及管理任务,而实际完成的亩数比承包数增加的百分率为x,并保持这一增长率不变,2003年村长完成了36.3亩坡耕地还林还草任务,求①增长率x是多少?②该村有50户人家,每户均地村长2003年完成的亩数为准,国家按每亩耕地500斤粮食给予补助,则国家将对该村投入补助粮食多少万斤?
2.合作探究、师生互动
教师引导学生分析关于环保的情境导入问题,这是一个平均增长率问题,它的基数是30亩,平均增长的百分率为x,那么第一次增长后,即2002年实际完成的亩数是30(1+x),第二次增长后,即2003年实际完成的亩数是30(1+x)2,而这一年村长完成的亩数正好是36.3亩.
教师引导学生运用方程解决问题:
①30(1+x)2=36.3;(1+x)2=1.21;1+x=±1.1;x1=0.1=10%,x2=-2.1(舍去),所以增长的百分率为10%.
②全村坡耕地还林还草为50×36.3=1815(亩),国家将补助粮食1815×500=907500(斤)=90.75(万斤).
三、例题学习
说明:题目中求平均每月增长的百分率,直接设增长的百分率为x,好处在于计算简便且直接得出所求。
例、某产品原来每件是600元,由于连续两次降价,现价为384元,如果两降价的百分率相同,求每次降价百分之几?
(小组合作交流教师点拨)
时间基数降价降价后价钱
第一次600600x600(1-x)
第二次600(1-x)600(1-x)x600(1-x)2
(由学生写出解答过程)
四、巩固练习
一商店1月份的利润是2500元,3月份的利润达到3000元,这两个月的利润平均增长的百分率是多少(精确到0.1%)?
五、课堂总结:
1、善于将实际问题转化为数学问题,严格审题,弄清各数据间相互关系,正确列出方程。
2、注意解方程中的巧算和方程两个根的取舍问题。
六、反馈练习:
1.某商品计划经过两个月的时间将售价提高20%,设每月平均增长率为x,则列出的方程为()
A.x+(1+x)x=20%B.(1+x)2=20%
C.(1+x)2=1.2D.(1+x%)2=1+20%
2.某工厂计划两年内降低成本36%,则平均每年降低成本的百分率是()
3.某种药剂原售价为4元,经过两次降价,现在每瓶售价为2.56元,问平均每次降低百分之几?
初中数学教案篇30
教学目标
1、知识与技能
能应用所学的函数知识解决现实生活中的问题,会建构函数“模型”。
2、过程与方法
经历探索一次函数的应用问题,发展抽象思维。
3、情感、态度与价值观
培养变量与对应的思想,形成良好的函数观点,体会一次函数的应用价值。
重、难点与关键
1、重点:一次函数的应用。
2、难点:一次函数的应用。
3、关键:从数形结合分析思路入手,提升应用思维。
教学方法
采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的.应用。
教学过程
一、范例点击,应用所学
【例5】小芳以200米/分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分,试写出这段时间里她的跑步速度y(单位:米/分)随跑步时间x(单位:分)变化的函数关系式,并画出函数图象。
y=
【例6】A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡。从A城往C、D两乡运肥料的费用分别为每吨20元和25元;从B城往C、D两乡运肥料的费用分别为每吨15元和24元,现C乡需要肥料240吨,D乡需要肥料260吨,怎样调运总运费最少?
解:设总运费为y元,A城往运C乡的肥料量为x吨,则运往D乡的肥料量为(200—x)吨。B城运往C、D乡的肥料量分别为(240—x)吨与(60+x)吨。y与x的关系式为:y=20x+25(200—x)+15(240—x)+24(60+x),即y=4x+10040(0≤x≤200)。
由图象可看出:当x=0时,y有最小值10040,因此,从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值为10040元。
拓展:若A城有肥料300吨,B城有肥料200吨,其他条件不变,又应怎样调运?
二、随堂练习,巩固深化
课本P119练习。
三、课堂总结,发展潜能
由学生自我评价本节课的表现。
四、布置作业,专题突破
课本P120习题14.2第9,10,11题。
板书设计
1、一次函数的应用例:
初中数学教案篇31
我说课的题目是冀教版小学数学教材四年级下册第六单元时《垂线》。下面我从四个方面进行说课:
一、教学设计:
主要包括三个方面
1、教材分析:
垂线在生产、生活中有着广泛的应用,垂线的概念、性质是学生今后进一步学习数学的基础,在教材上起着承上启下的作用。
大多数学生感到数学枯燥,学习兴趣不高。我所教的班一直采用小组合作学习,学生基本养成了良好的预习习惯。这节课利用普通的多媒体教室,灵活运用现代教育技术,通过实例的展示及动画演示,让学生充分感知图形中蕴含的垂线特征,使知识的生成过程更直观更形象。对学生的认知、理解以及教学重难点突破起到了关键作用。
2、根据以上分析,我确定本节课的教学目标是:
知识与技能包括垂直的定义垂线的画法与性质。
数学思考包括
探索垂线的性质,发展学生的几何直觉,培养学生的猜想能力。并通过“做数学”,让学生对猜想进行检验,作出正确判断。
解决问题包括
培养学生数学语言表达能力,培养学生解决问题时的合作意识和习惯。
情感与态度包括
让学生体验数学充满着探索和创造,感受数学趣味,获得发现的喜悦。
鼓励学生感想敢说,让学生体验成功的快乐,树立学好数学的信心。
3、教学重难点:
教学重点:
垂直概念的建立、垂线的画法与性质。
教学难点:
用数学语言描述垂直的定义以及学生猜想能力的培养。
二、教学过程设计:
根据这节课的特点,我把整堂课分为课题导入、合作探究、课堂小结、拓展创新四个环节,灵活运用现代教育技术,突出重点,化解难点。为培养学生课前预习的习惯,设立了预习导航,准备了大量有关本节课的学习资料,并鼓励学生自己到网上查阅资料,提高学生的信息素养。
1、课题导入
课题导入运用多媒体展示学生熟悉的马路、篱笆、小棒等实物形象,并提出问题:仔细观察各组图形中两条直线的位置关系有什么共同点?让学生感到数学贴近生活,激发学生的表达欲望。
2、合作探究凸现学生的主体地位,让学生在学习中学会质疑、学会发现。合作探究分为垂直的定义、课堂练习、试试身手、垂线性质、你来当老师、走进生活五个小版块。其中,垂线的定义鼓励学生自己概括,并积极与大家交流。课堂练习梯度明显,答案灵活,尽量让每一个学生都有收获。“试试身手”让学生走上讲台,展示自己的发现,学生在轻松愉悦中很容易发现垂线的性质。“你来当老师”、“各抒己见”鼓励学生积极主动的发表自己的见解,营造平等、民主的学习氛围。激发学生探求的欲望,给学生一份自信,让学生在学习中学会质疑、学会发现。“走进生活”借助多媒体把学生的生活体验真实的再现给学生,让学生体验学有用的数学,增强学生学习数学的兴趣。
3、“课堂小结”让学生自己总结,谈本节课的收获、体会、本节课还有什么问题、新发现。鼓励学生大胆发言、锻炼学生的数学表达能力、语言概括能力。
4、探究创新:“创新园”让学生利用本节课所学知识,课后去思考、去动手制作、去创新发现。既能激发学生课后去学习、去探索的欲望,又能让学生感悟数学来源于生活,并反作用于生活的道理。培养学生学数学、用数学的创新意识,我想,只要我们教师用心,精心培育,创新园一定能育出创新果。
初中数学教案篇32
关键词:有效教学;案例;一次函数;口诀记忆法
在全面贯彻落实“减负提质”教育政策的背景下,实施有效课堂教学就显得非常重要。要想开展有效数学课堂教学,教师必须想方设法使自己的教学能够最大限度地吸引学生,其中的关键点就是教师要对所授数学知识加以整合以提高课堂效率。在知识整合过程中起重要作用的是对所学知识结构的概括。只有经过概括的知识结构,才能准确地辨别出新旧知识间本质上的差异或相似程度。也只有经过概括的知识结构,才具有稳定的、清晰的概念。在初中数学中有很多的知识点都是在原有知识点上构建的,那就需要教师充分地把握教材,对相关数学知识加以概括总结。下面我就对一次函数性质的教学做法进行总结以供大家参考。
一次函数是初中数学的重要内容,在多年的教学当中我发现学生在理解和运用这个知识点时经常混淆,甚至有的同学觉得无从下手。纵观近几年中考试题可知,考察一次函数的题目形式多种多样,有选择、有填空,有的渗透在解答题中,有的出现在压轴题中。为了让同学们不再对一次函数性质觉得迷茫,我对一次函数的性质进行归纳,编成口诀,便于理解记忆。
一次函数的一般式y=kx+b(k≠0),它的图像所经过的象限由系数k和b的符号决定,而它的增减性也由k的符号决定,所以不用取点画图,直接根据k和b的符号就可以知道它的所有性质。
在表达式y=kx+b(k≠0)中,k在前,b在后,故分类是先将k分类,分k>0和k<0两类,在这两类条件下再将b分类,有b>0、b=0和b<0三类,而当b=0时,一次函数成了特殊的正比例函数,另当别论,所以共有以下四类。如下表:
在记忆时,只需记口诀“k为正时渐变大,k为负时渐变小。同正不经四象限,同负不经一象限;先正后负不经二,先负后正不经三”即可。
例1:函数y=7x-4经过的象限是。
分析:不需要取点画图,根据它的k=7>0为正,b=-4<0为负,“有先正后负不经二”,即该函数不经过第二象限,所以它只经过第一、三、四象限。
例2:有这样一道开放性题目:写出一个经过二、三、四象限的一次函数。
分析:只经过二、三、四象限的,就不经过第一象限,有口诀“同负不经一象限”,只要k和b都取负数即可,答案不唯一。
例3:已知一次函数y=kx-k,若y随x的增大而减小,则该函数经过象限。
分析:根据口诀“k为负时渐变小”,得知k为负,则-k为正。有“先负后正不经三”,即该函数不经过第三象限,所以它只经过第一、二、四象限。
例4:已知直线y=(1-2m)x+(4m-1),分别根据下列条件求m的值或m的取值范围:(1)这条直线经过原点;(2)这条直线经过第一、二、三象限。
分析:(1)直线经过原点的,b是0,即4m-1=0,解得m=0.25;(2)直线经过一、二、三象限的,就不经过四象限,有“同正不经四”,得1-2m>0和4m-1>0。解得m<0.5和m>0.25。
初中数学教案篇33
数学教案:相反数
教学目标
1借助数轴理解相反数的概念,会求一个数的相反数;
2培养学生观察、猜想、归纳的能力,初步形成数形结合的思想。
重点难点
重点:理解相反数的概念和求一个数的相反数
难点:相反数概念的理解
教学过程
一激情引趣,导入新课
思考:
⑴数轴上与原点距离是2的点有______个,这些点表示的数是_____;与原点的距离是5的点有______个,这些点表示的数是_______
(2)数轴上与原点的距离是0.5的点有_____个,这些点表示的数是______,数轴上与原点的距离是的点有____个,这些点表示的&39;数是_______
一般地,设a是一个正数,数轴上与原点的距离是a的点有___个,它们分别在原点的____,表示____和____,我们说这两点关于原点对称。
二合作交流,探究新知。
相反数的概念
观察:+3.6和-3.6,6和-6,,和-每对数,有什么相同和不同?
归纳:像+3.6和-3.6、6和-6、,和-只有符号不同的两个数,叫互为相反数。其中一个叫另一个的相反数.
考考你:
(1)-8的相反数是___,7是____的相反数。
(2)a的相反数是_____.-a的相反数是____
(3)怎样表示一个数的相反数?
在这个数的前面添上“-”,就可表示这个数的相反数。如12的相反数是____,-9的相反数是_____,如果在这个数的前面添上“+”表示____.
(4)有人说一个数的前面带有“-”号这个数必是负数,你认为对吗?如果不对,请举一个反例。
(5)互为相反数在轴上的位置有什么特点?
(6)零的相反数是____.
三应用迁移,拓展提高
1关于相反数的概念
例1判断下列说明是否正确
(1)-(-3)表示-3的相反数,(2)-2.5的相反数是2.5()
(3)2.7与-3.7是互为相反数()(4)-π是相反数。
2求一个数的相反数
例2分别写出下列各数的相反数:1.3、-6、-、-(-3)、π-1
3理解-(-a)的含义
例3填空:(1)-(-0.8)=___,(2)–(-)=____,(3)+(+4)=____,(4)–(-11)=_____
四冲刺奥赛,培养智力
例4已经:a+b=0,b+c=0,c+d=0,d+f=0,则a,b,c,d四个数中,哪些数是互为相反数?哪些数相等?
例5若数与互为相反数,求a的相反数。
变式:如果x与互为相反数,且y≠0,则x的倒数是()
A2yBC-2yD
例6有理数a等于它的倒数,有理数b等于它的相反数,则等于()
A0B1C-1D2(第9届“希望杯”初一第2试)
四课堂练习,巩固提高
1.-1.6是____的相反数,___的相反数是0.3.
2.下列几对数中互为相反数的一对为().
A.-(-8)和-(+8)B.-(-8)与-(+8)C.+(-8)与+(+8)D-(-8)与+(-8)
3.5的相反数是____;x+1的相反数是___;的相a-b的反数是____.
4.若a=-13,则-a=_____若-a=7,则a=_____
5.若a是负数,则-a是___数;若-a是负数,则a是______数.
6有如下三个结论:
甲:a、b、c中至少有两个互为相反数,则a+b+c=0
乙:a、b、c中至少有两个互为相反数,则
丙:a、b、c中至少有两个互为相反数,则
其中正确结论的个数是()
A0B1C2D3
五反思小结,巩固升华
1什么叫互为相反数?
2一对互为相反数有什么特点?
3怎样表示一个数的相反数?
作业:作业评价,相反数
初中数学教案篇34
关键词:初中数学教学一次函数问题案例行知合一
我国著名教育家陶行知曾经提出“生活即教育”的“行知合一”教学理念,倡导“知”通过“行”进行检验、提升和丰富。教育实践学研究认为,学生学习新知、解答问题的过程,就是运用现有知识经验、解题技能进行问题探索、解答的发展过程。在此过程中,只有将探知所获得的“知”与问题解答活动的“行”进行有效融合,才能实现“教学相长”。一次函数章节是初中数学学科代数部分章节体系中重要的架构“分支”,是数学语言与平面图形有效结合的整体,在整个数学学科教学中占据重要的地位。在一次函数章节问题案例教学实践中,我对知识教学与能力培养内在关系进行了研究和探索,现将教学体会和策略进行论述。
一、设置展示教材内容精髓的问题案例
问题案例作为问题教学活动开展的对象,是教学活动目标要求进行展示的重要载体。针对性、典型性问题案例的设置,能够对问题教学活动的开展,问题教学效能的提升,起到推波助澜的作用。在一次函数问题课教学中,教师一方面要认真“备教材”,钻研教材内容,准确把握教材目标要求,做到教学重点和难点把握准确。另一方面要认真“备学生”,贴近学生学习实际,设置具有针对性的问题案例,使问题紧扣教材、贴近学生,利于问题教学活动的深入开展。
如在“一次函数图像和性质”问题教学中,在问题案例设置时,我抓住一次函数图像和性质教学目标内容,以及学生学习的重难点,将一次函数图像和性质教学作为本节课问题教学的“重中之重”,设置出如下问题:“如图1所示,l■反映了某公司的销售收入与销售量的关系,l■反映了该公司产品的销售成本与销售量的关系,当该公司赢利(收入大于成本)时,销售量是多少吨?”、“如果点A(-2,a)在函数y=-■x+3的图像上,那么a的值等于多少?”让学生能够将探知学习活动中的“学”有效运用到典型问题案例的解答中,为“行知合一”提供载体和条件。
二、开展能力培养目标主旨的问题教学
能力培养,是新课程标准下学科教育教学的重要目标和要求,也是教学活动开展的出发点和落脚点,数学学科教学同样如此。同时,学习能力作为技能型人才所必备的基本素养,已成为衡量教学活动效能的重要标尺。一次函数问题案例教学活动,也应将“能力培养”作为重要目标和根本追求,提供给学生实践探究的时机,传授问题解答的方法策略,指导学生开展问题解答活动,将一次函数问题教学过程变为学生能力锻炼和提升的过程。
如我在“红星果园基地对购买3000千克以上(含3000千克)的情况有两种方案。甲方案是由基地送货上门,但每千克售价为9元。乙方案是如果顾客自己租车运回,每千克价格为8元,如果某公司要买4500千克水果,现在租车从基地到公司的运输费需要3500元。(1)分别写出该公司两种购买方案的付款y(元)与购买的水果量x(千克)之间的函数关系式,并写自变量x的取值范围。(2)当购买量在什么范围时,选择哪种购买方案付款最少?并说明理由。”一次函数问题案例教学活动中,发挥学生能动探究的主体特性,采用学生自主探究式教学策略,将该问题解答的任务留给学生完成,自己则做好学生对探究过程的引导和点拨工作。学生在分析问题条件时,认为解答该问题的方法应该是利用一次函数图像和性质,作出两种方案的一次函数图像,然后采用观察图形方法进行问题案例的解答。在探寻问题解题方法的过程中,有部分学生对问题2的解答方法探寻出现了“卡壳”。这时我向学生指出:要付款最少实际上就是求解x在什么情况下,y的值最小。最后向学生指出,解答一次函数问题的关键,就是要对一次函数图像和性质有准确的把握和正确的运用。学生在自主探究过程中,主体特性得到了充分展示,学习能力和素养在实践探究中得到了锻炼和提升。
三、实施检验学习活动效能的教学环节
在一次函数问题案例教学中,由于初中生思维分析能力,探寻问题方法,以及解答问题技能等方面水平较低,在一定程度上影响和制约了“行”的成效和质量,容易出现解题不完整、结果不周密、方法不科学等问题。我在一次函数教学中,利用巩固练习环节,通过师生、生生之间的评价辨析,使学生形成正确的解题方法和思想,实现解题效能的提升。
问题:用画函数图像的方法解不等式5x+4
初中数学教案篇35
一、说教材
本节内容是人民教育出版社的义务教育数学课程标准实验教科书《数学》初二下册第16章第二节第二课时《分式的加减法》,属于数与代数领域的知识。它是代数运算的基础,分两课时完成,我所设计的是第一课时的教学,主要内容是同分母的分式相加减及简单的异分母的分式相加减。
在此之前,学生已经学习了分数的加减法运算,同时也学习过分式的基本性质,这为本节课的学习打下了基础。而掌握好本节课的知识,将为《分式的加减法》第二课时以及《分式方程》的学习做好必备的知识储备。因此,在分式的学习中,占据重要的地位。本节课中掌握分式的加减运算法则是重点,运用法则计算分式的加减是难点,掌握计算的一般解题步骤是解决问题是关键。基于以上对教材的认识,考虑到学生已有的认识和结构与心理特征,我制定如下的教学目标。
二、说目标
根据学生已有的认识基础及本课教材的.地位和作用,依据新课程标准制定如下:知识与技能:会进行简单的分式加减运算,具有一定解决问题计算的能力;过程与方法:使学生经历探索分式加减运算法则的过程,理解其算理;情感态度与价值观:培养学生大胆猜想,积极探究的学习态度,发展学生有条理思考及代数表达能力,体会其价值。为突出重点,突破难点,抓住关键使学生能达到本节设定的教学目标,我载从教法和学法上谈谈设计思路。
三、说教学方法
教法选择与手段:本课我主要以“复习旧知,导入新知,例题讲解,拓展延伸”为主线,启发和引导贯穿教学始终,通过师生共同研究探讨,体现以教为主导、学为主体、练为主线的教学过程。学法指导:根据学生的认知水平,我设计了“观察思考、猜想归纳、例题学习和巩固提高”四个层次的学法。最后,我来具体谈一谈本节课的教学过程。
四、说教学过程
在分析教材、确定教学目标、合理选择教法与学法的基础上,我预设的教学过程是:观察导入、例题示范、习题巩固、归纳小结和作业布置。
五、分层作业
各位老师,以上所说只是我预设的一种方案,但课堂是千变万化的,会随着学生和教师的灵活发挥而随机生成的,预设效果如何,最终还有待于课堂教学实践的检验。
初中数学教案篇36
一、教学目标
1、了解推理、证明的格式,理解判定定理的证法、
2、掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证、
3、通过第二个判定定理的推导,培养学生分析问题、进行推理的能力、
4、使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进行学习目的的&39;教育、
二、学法引导
1、教师教法:启发式引导发现法、
2、学生学法:积极参与、主动发现、发展思维、
三、重点、难点及解决办法
(一)重点
判定定理的推导和例题的解答、
(二)难点
使用符号语言进行推理、
(三)解决办法
1、通过教师正确引导,学生积极思维,发现定理,解决重点、
2、通过教师指导,学生自行完成推理过程,解决难点及疑点、
四、课时安排
1课时
五、教具学具准备
三角板、投影仪、自制胶片、
六、师生互动活动设计
1、通过设计练习,复习基础,创造情境,引入新课、
2、通过教师指导,学生探索新知,练习巩固,完成新授、
3、通过学生自己总结完成小结、
七、教学步骤
(一)明确目标
掌握平行线的第二个定理的推理,并能运用其进行简单的证明,培养学生的逻辑思维能力、
(二)整体感知
以情境创设,设计悬念,引出课题,以引导学生的思维,发现新知,以变式训练巩固新知、
(三)教学过程
创设情境,复习引入
师:上节课我们学习了平行线的判定公理和一种判定方法,根据所学看下面的问题(出示投影)、
学生活动:学生口答第1、2题、
师:你能说出有什么条件,就可以判定两条直线平行呢?
学生活动:由第l、2题,学生思考分析,只要有同位角相等或内错角相等,就可以判定两条直线平行、
教师将第3题图形画在黑板上、
学生活动:学生口答理由,同角的补角相等、
师:要求学生写出符号推理过程,并板书、
教法说明:本节课是前一节课的继续,是在前一节课的基础上进行学习的,所以通过第1、2两题复习上节课所学平行线判定的两个方法,使学生明确,只要有同位角相等或内错角相等,就可以判定两条直线平行、第3题是为推导本节到定定理做铺垫,即如果同旁内角互补,则可以推出同位角相等,也可以推出内错角相等,为定理的推理论证,分散了难点、
师:第4题是一个实际问题,题目中已知的两个角是什么位置关系角?
学生活动:同分内角、
师:它们有什么关系、
学生活动:互补、
师:这个问题就是知道同分内角互补了,那么两条直线是不是平行的呢?这就是这节课我们要研究的问题、
初中数学教案篇37
一、教材分析
1.教材的地位和作用
(1)函数是初等数学中最基本的概念之一,贯穿于整个初等数学体系之中,也是实际生活中数学建模的重要工具之一,二次函数在初中函数的教学中有重要地位,它不仅是初中代数内容的引申,也是初中数学教学的重点和难点之一,更为高中学习一元二次不等式和圆锥曲线奠定基础。在历届佛山市中考试题中,二次函数都是必不可少的内容。
(2)二次函数的图像和性质体现了数形结合的数学思想,对学生基本数学思想和素养的形成起推动作用。
(3)二次函数与一元二次方程、不等式等知识的联系,使学生能更好地将所学知识融会贯通。
2.课标要求:
①通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。
②会用描点法画出二次函数的图象,能从图象上认识二次函数的性质。
③会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导)。
④会根据二次函数的性质解决简单的实际问题。
3.学情分析:
(1)初三学生在新课的学习中已掌握二次函数的定义、图像及性质等基本知识。
(2)学生的分析、理解能力较学习新课时有明显提高。
(3)学生学习数学的热情很高,思维敏捷,具有一定的自主探究和合作学习的能力。
(4)学生能力差异较大,两极分化明显。
4.教学目标
◆认知目标
(1)掌握二次函数y=图像与系数符号之间的关系。通过复习,掌握各类形式的二次函数解析式求解方法和思路,能够一题多解,发散提高学生的创造思维能力。
◆能力目标
提高学生对知识的整合能力和分析能力。
◆情感目标
制作动画增加直观效果,激发学生兴趣,感受数学之美。在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会感受探索与创造,体验成功的喜悦。
5.教学重点与难点:
重点:(1)掌握二次函数y=图像与系数符号之间的关系。
(2)各类形式的二次函数解析式的求解方法和思路。
(3)本节课主要目的,对历届中考题中的二次函数题目进行类比分析,达到融会贯通的作用。
难点:(1)已知二次函数的解析式说出函数性质
(2)运用数形结合思想,选用恰当的数学关系式解决几何问题.
二、教学方法:
1.运用多媒体进行辅助教学,既直观、生动地反映图形变换,增强教学的条理性和形象性,又丰富了课堂的内容,有利于突出重点、分散难点,更好地提高课堂效率。
2.将知识点分类,让学生通过这个框架结构很容易看出不同解析式表示的二次函数的内在联系,让学生形成一个清晰、系统、完整的知识网络。
3.师生互动探究式教学,以课标为依据,渗透新的教育理念,遵循教师为主导、学生为主体的原则,结合初三学生的求知心理和已有的认知水平开展教学.形成学生自动、生生助动、师生互动,教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教,让每一个学生都能获得知识,能力得到提高。
三、学法指导:
1.学法引导
“授人之鱼,不如授人之渔”在教学过程中,不但要传授学生基本知识,还要培育学生主动思考,亲自动手,自我发现等能力,增强学生的综合素质,从而达到教学终极目标。
2.学法分析:新课标明确提出要培养“可持续发展的学生”,因此教师有组织、有目的、有针对性的引导学生并参入到学习活动中,鼓励学生采用自主学习,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使学生真正成为学习的主人。
3、设计理念:《课标》要求,对于课程实施和教学过程,教师在教学过程中应与学生积极互动、共同发展,要处理好传授知识与培养能力的关系,关注个体差异,满足不同学生的学习需要.”
4、设计思路:不把复习课简单地看作知识点的复习和习题的训练,而是通过复习旧知识,拓展学生思维,提高学生学习能力,增强学生分析问题,解决问题的能力。
四、教学过程:
1、教学环节设计:
根据教材的结构特点,紧紧抓住新旧知识的内在联系,运用类比、联想、转化的思想,突破难点.
本节课的教学设计环节:
◆创设情境,引入新知:复习旧知识的目的是对学生新课应具备的“认知前提能力”和“情感前提特征进行检测判断”。学生自主完成,不仅体现学生的自主学习意识,调动学生学习积极性,也能为课堂教学扫清障碍。为了更好地理解、掌握二次函数图像与系数之间的关系,根据不同学生的学习需要,按照分层递进的教学原则,设计安排了6个由浅入深的题型,让每一个学生都能为下一步的探究做好准备。
◆自主探究,合作交流:本环节通过开放性题的设置,发散学生思维,学生对二次函数的性质作出全面分析。让学生在教师的引导下,独立思考,相互交流,培养学生自主探索,合作探究的能力。通过学生观察、思考、交流,经历发现过程,加深对重点知识的理解。
◆运用知识,体验成功:根据不同层次的学生,同时配有两个由低到高、层次不同的巩固性习题,体现渐进性原则,希望学生能将知识转化为技能。让每一个学生获得成功,感受成功的喜悦。
安排三个层次的练习。
(一)从定义出发的简单题目。
(二)典型例题分析,通过反馈使学生掌握重点内容。
(三)综合应用能力提高。
既培养学生运用知识的能力,又培养学生的创新意识。引导学生对学习内容进行梳理,将知识系统化,条理化,网络化,对在获取新知识中体现出来的`数学思想、方法、策略进行反思,从而加深对知识的理解。并增强学生分析问题,运用知识的能力。
(四)方法与小结
由总结、归纳、反思,加深对知识的理解,并且能熟练运用所学知识解决问题。
2、作业设计:(见课件)
3、板书设计:(见课件)
五、评价分析:
本节课的设计,我以学生活动为主线,通过“观察、分析、探索、交流”等过程,让学生在复习中温故而知新,在应用中获得发展,从而使知识转化为能力。本节教学过程主要由创设情境,引入新知――合作交流;探究新知――运用知识,体验成功;知识深化――应用提高;归纳小结――形成结构等环节构成,环环相扣,紧密联系,体现了让学生成为行为主体即“动手实践、自主探索、合作交流“的《数学新课标》要求。本设计同时还注重发挥多媒体的辅助作用,使学生更好地理解数学知识;贯穿整个课堂教学的活动设计,让学生在活动、合作、开放、探究、交流中,愉悦地参与数学活动的数学教学。
初中数学教案篇38
一、学习目标:
1、什么是数轴?数轴上的点和有理数的对应关系?
2、你会用数轴上的点表示给定的有理数吗?会根据数轴上的点读出所表示的有理数吗?
二、学习重点:
会说出数轴上已知点所表示的数,能将已知数在数轴上表示出来。
三、学习难点:
利用数轴比较有理数的大小
四、学习过程:
(一)自主学习课本,回答问题:
1、像这样规定了、和的直线叫做数轴
2、数轴与温度计作类比,真像一个平放的________+3用数轴上位于原点___边___个单位的点表示,-4用数轴上位于原点___边___个单位的点表示,原点右边个单位的点表示____,原点左边1.5个单位的点表示_____.
(二)精讲点拨
1、完成例1
2、请画一条数轴表示下列有理数
+4,-1/2,1/2,-1.25,-4,0。
3、完成第10页第1、2题.
(三)、寻找规律,探究新知
1.观察以上数轴,哪些数在原点的左边,哪些数在原点的右边,由此你有什么发现?
2.在数轴上,表示4与-4的点到原点的距离各是多少?表示-1/2与1/2的点到原点的距离各是多少?由此你又有什么发现?
3.什么是绝对值?绝对值怎么表示?
(四)、巩固练习:
1.完成课本第11页练习1、2、3两题
2.在数轴上,表示数-3、2.6、+2、0、-1的点中,在原点左边的点有个。
教学引入
师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。
动画演示:
场景一:正方形折叠演示
师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。
[学生活动:各自测量。]
鼓励学生将测量结果与邻近同学进行比较,找出共同点。
讲授新课
找一两个学生表述其结论,表述是要注意纠正其语言的规范性。
动画演示:
场景二:正方形的性质
师:这些性质里那些是矩形的性质?
[学生活动:寻找矩形性质。]
动画演示:
场景三:矩形的性质
师:同样在这些性质里寻找属于菱形的性质。
[学生活动;寻找菱形性质。]
动画演示:
场景四:菱形的性质
师:这说明正方形具有矩形和菱形的全部性质。
及时提出问题,引导学生进行思考。
师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?
[学生活动:积极思考,有同学做跃跃欲试状。]
师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。
学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:
“有一组邻边相等的矩形叫做正方形。”
“有一个角是直角的菱形叫做正方形。”
“有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”
[学生活动:讨论这三个定义正确不正确?三个定义之间有什么共同和不同的地方?这出教材中采用的是第三种定义方式。]
师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。
3.与原点距离等于4的点有个?其表示的数是。
4.在数轴上,点A、B分别表示-5和2,则线段AB的长度是。
5.在数轴上点A表示-4,如果把原点O向负方向移动1个单位,那么在新数轴上点A表示的数是()
A.-5,B.-4C.-3D.-2
6.你觉得数轴上的点表示数的大小与点的位置有关吗?为什么?
五、谈谈你这堂课的学习体会
六、课后作业:
1、在数轴上表示-4的点位于原点的___边,与原点的距离是___个
单位长度。
2、在数轴上点A表示的数是-3,与点A相距两个单位的点表示的数是
3、数轴上与原点距离是5的点有___个,表示的数是___。
4、从数轴上表示-1的点出发,向左移动两个单位长度到点B,则点B表示的数是____,再向右移动两个单位长度到达点C,则点C表示的数
是____。
5、数轴上的点A表示-3,将点A先向右移动7个单位长度,再向左移
动5个单位长度,那么终点到原点的距离是_____个单位长度
6、在数轴上P点表示2,现在将P点向右移动两个单位长度后再向左移
动5个单位长度,这时P点必须向___移动___个单位到达表
示-3的点
7.在数轴上表示-2的点离开原点的距离等于()
A、2B、-2C、±2D、4
8.请画一条数轴表示下列有理数
+3,-4,-3.5,-1.25,2,0。
更多精彩内容请点击:初中>初二>数学>初二数学教案
正数与负数导学案
一.学习目标:
1.什么是正负数?生活中有哪些相反意义的量?
2.有理数是怎样分类的?
二.学习重点难点:
1.重点:会用正负数表示实际生活中具有相反意义的量
2.难点:正负数的概念,有理数的分类。
三.学习过程
(一)、自学课本1--5页,回答以下问题?
1.举例说明正数和负数概念,写法及读法?
2.正数和负数可以表示生活中具有意义的量。例如,又如。
3.0这个数特别吗?为什么?
4.完成课本第6页练习第1题的1、2、3小题。
5.完成课本第6页练习第2题的1、2小题
6.飞机上升以正数表示,下降以负数表示,若飞机在1200米高空两次记录升降情况是+300米,-600米,这时飞机实际高度是米。
(二)、精讲点拨。
1、完成例1
交流你能举出一些用正负数表示数量的实例吗?
2、思考:
有理数
3、完成例2
初中数学教案篇39
1.知识结构
2.重点和难点分析
重点:本节的重点是平行四边形的概念和性质.虽然平行四边形的概念在小学学过,但对于概念本质属性的理解并不深刻,为了加深学生对概念的理解,为以后学习特殊的平行四边形打下基础,所以教师不要忽视平行四边形的概念教学.平行四边形的性质是以后证明四边形问题的基础,也是学好全章的关键.尤其是平行四边形性质定理的推论,推论的应用有两个条件:
一个是夹在两条平行线间;
一个是平行线段,具备这两个条件才能得出一个结论平行线段相等,缺少任何一个条件结论都不成立,这也是学生容易犯错的地方,教师要反复强调.
难点:本节的难点是平行四边形性质定理的灵活应用.为了能熟练的应用性质定理及其推论,要把性质定理和推论的条件和结论给学生讲清楚,哪几个条件,决定哪个结论,如何用数学符号表示即书写格式,都要在讲练中反复强化.
3.教法建议
(1)教科书一开始就给出了平行四边形的定义,我感觉这样引入新课,不利于调动学生的积极性.自己设计了一个动画,建议老师们用它作为本节的引入,既可以激发学生的学习兴趣,又可以激活学生的思维.
(2)在生产或生活中,平行四边形是常见图形之一,教师可以多给学生提供一些平行四边形的图片,增加学生的感性认识,然后,让他们自己总结出平行四边形的定义,教师最后做总结.平行四边形是特殊的四边形,要判定一个四边形是不是平行四边形,要判断两点:首先是四边形,然后四边形的两组对边分别平行.平行四边形的定义既是平行四边形的一个判定方法,又是平行四边形的一个性质.
(3)对于教师来说讲课固然重要,但讲完课后有目的的强化训练也是不可缺少的,通过做题,帮助学生更好的理解所讲内容,也就是我们平时说的要反思回顾,总结深化.
平行四边形及其性质第一课时
一、素质教育目标
(一)知识教学点
1.使学生掌握平行四边形的概念,理解两条平行线间的距离的概念.
2.掌握平行四边形的性质定理1、2.
3.并能运用这些知识进行有关的证明或计算.
(二)能力训练点
1.知道解决平行四边形问题的基本思想是化为三角形问题来处理,渗透转化思想.
2.通过推导平行四边形的性质定理的过程,培养学生的推导、论证能力和逻辑思维能力.
(三)德育渗透点
通过要求学生书写规范,培养学生科学严谨的学风.
(四)美育渗透点
通过学习,渗透几何方法美和几何语言美及图形内在美和结构美
二、学法引导
阅读、思考、讲解、分析、转化
三、重点·难点·疑点及解决办法
1.教学重点:平行四边形性质定理的应用
2.教学难点:正确理解两条平行线间的距离的概念和运用性质定理2的推论;在计算或证明中综合应用本节前一章的知识.
3.疑点及解决办法:关于性质定理2的推论;两点的距离,点到直线的距离,两平行直线中间的距离的区别与联系,注重对概念的教学,使学生深刻理解上述概念,搞清它们之间的关系;平行四边形的高有关问题.
四、课时安排
2课时
五、教具学具准备
教具(做两个全等的三角形),投影仪,投影胶片,小黑板,常用画图工具
六、师生互动活动设计
教师复习提问,学习思考口答;教师设疑引思,学生讨论分析;师生共同总结结论,教师示范讲解,学生达标练习
第一课时
七、教学步骤
【复习提问】
1.什么叫做四边形?什么叫四边形的一组对边?
2.四边形的两组对边在位置上有几种可能?
(教师随着学生回答画出图1)
图1
【引入新课】
在四边形中,我们常见的实用价值最大的就是平行四边形,如汽车的防护链,无轨电车的击电杆都是平行四边形的形象,平行四边形有什么性质呢?这是这节课研究的主要内容(写出课题).
【讲解新课】
1.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.
注意:一个四边形必须具备有两组对边分别平行才是平行四边形,反过来,平行四边形就一定是有“两组对边分别平行”的一个四边形.因此定义既是平行四边形的一个判定方法(定义判定法)又是平行四边形的一个性质.
2.平行四边形的表示:平行四边形用符号“
”表示,如图1就是平行四边形
,记作“
”.
align=middle>
图1
3.平行四边形的性质
讲解平行四边形性质前必须使学生明确平行四边形从属于四边形,因此它具有四边形的一切性质(共性),同时它又是特殊的四边形,当然还有其特性(个性),下面介绍的性质就是其特性,这是一般四边形所不具有的.
平行四边形性质定理1:平行四边形的对角相等.
平行四边形性质定理2:平行四边形对边相等.
(教具用两个全等的三角形拼凑的平行四边形演示,由此得到证明以上两个定理的方法.如图2)
图2如图3
所以四边形是平行四边形,所以.由此得到
推论:夹在两条平行线间的平行线段相等.
图3
要注意:必须有两个平行,即夹两条平行线段的两条直线平行,被夹的两条线段平行,缺一不可,如图4中的几种情况都不可以推出图4
4.平行线间的距离
从推论可以知道,如果两条直线平行,那么从一条直线上所有各点到另一条直线的距离相等,如图5.
我们把两条平行线中一条直线上任意一点到另一条直线的距离,叫做平行线的距离.
图5
注意:(1)两相交直线无距离可言.
(2)连结两点间的线段的长度叫两点间的距离,从直线外一点到一条直线的垂线段的长,叫点到直线的距离.两条平行线中一条直线上任意一点到另一条直线的距离,叫做这两条平行线的距离,一定要注意这些概念之间的区别与联系.
例1已知:如图1,
初中数学教案篇40
预习要求:看教科书第2—3页,做一做练习一第1-3题。
教学目标:
1.通过把长方形或正方形折、剪、拼等活动,直观认识三角形和平行四边形,知道这两个图形的名称;并能识别三角形和平行四边形,初步知道它们在日常生活中的应用。
2.在折图形、剪图形、拼图形等活动中,体会图形的变换,发展对图形的空间想象能力。
3.在学习活动中积累对数学的兴趣,增强与同学交往、合作的意识。
教学重点:
直观认识三角形和平行四边形,知道它们的名称,并能识别这些图形,知道它们在日常生活中的应用。
教学难点:
让学生动手在钉子板上围、用小棒拼平行四边形。
教学用具:
长方形模型、长方形和正方形的纸、课件、小棒。
教学过程:
一、复习铺垫
出示长方形问“小朋友们,谁愿意来介绍一下这位老朋友?他介绍得对吗?”接着出示第二个图形(正方形),问:“这个老朋友又是谁呢?”再出示圆:“它叫什么名字?这是我们已经认识的长方形、正方形和圆三位老朋友。我发现你们很喜欢折纸,是吗?今天我特意为大家准备了一个折纸的游戏,高兴吗?
二、启发思维、引出新知
1.认识三角形
(1)教师出示一张正方形纸,提问:这是什么图形?
学生回答:这是正方形。
师:你能把一张正方形纸对折成一样的两部分吗?
学生活动,教师巡视,了解学生折纸的情况。
组织学生交流你是怎样折的,折出了什么图形?
师:我们现在折出来的是一个什么图形呢?
生答:三角形。
师:小朋友们一下就认识了我们的新朋友。对了,这就是三角形。出示并贴上三角形。
板书:三角形
(2)提问:这样的图形好像在哪儿也看到过?想一想?
先在小组里交流。学生回答。
老师也带来了几个三角形。
师小结:在我们的生活中有许多物体的面是三角形面,只要小朋友多观察,就会有更多的发现。
2.认识平行四边形
(1)这是一张什么形状的纸?(演示长方形纸)怎样折一下,把它折成两个完全一样的三角形?
(2)学生先想一想,然后同桌商量着试折。教师巡视
(3)交流。你们会像他一样折吗?
(4)折好后把两个三角形剪下来。要想知道这两个三角形是不是完全一样,你能有什么办法?(把它们叠在一起)这就是完全一样。
(5)现在我们手里都有这样两个一样的三角形,用它们拼一拼,看看能拼出什么图形?学生分组活动,教师巡视。
交流探讨。同学们可能拼出以下几种图形:三角形、长方形、四边形、平行四边形。每出现一种拼法,请一位同学在投影仪上向大家展示。
师:这个图形真漂亮,它叫什么名字呀!这个图形就是我们要认识的另一个新朋友——平行四边形。(出示图形,并板书:平行四边形)(板书)
出示一个长方形的模型,提问:“这个图形的面是一个什么图形?”学生回答后,老师将这个长方形轻轻拉动,这时出现的是一个平行四边形。提问:“现在这个图形的面变成了一个什么图形?”
小结:我们已经认识了长方形,其实只要把它稍微变一变,就是一个平行四边形了,你看:(演示长方形变平行四边形)。对我们生活中有很多地方就利用了平行四边形可以变的特点制作了很多东西,如:篱笆、楼梯、伸缩门、可拉伸的衣架等。
三、体验深化
(P3做一做2)画出自己喜欢的图形
三、练习巩固
(1)练习一第1题。教师在大屏幕上出示练习一第1题图,学生分组找学过的平面图形并涂一涂,最后全班交流;
(2)练习一第2、3题。学生独立完成。
板书设计
初中数学教案篇41
一、素质教育目标
(一)知识教学点
1、能根据一个数的绝对值表示"距离",初步理解绝对值的概念。
2、给出一个数,能求它的绝对值。
(二)能力训练点
在把绝对值的代数定义转化成数学式子的过程中,培养学生运用数学转化思想指导思维活动的能力。
(三)德育渗透点
1、通过解释绝对值的几何意义,渗透数形结合的思想。
2、从上节课学的相反数到本节的绝对值,使学生感知数学知识具有普遍的联系性。
(四)美育渗透点
通过数形结合理解绝对值的意义和相反数与绝对值的联系,使学生进一步领略数学的和谐美。
二、学法引导
1、教学方法:采用引导发现法,辅之以讲授,学生讨论,力求体现"教为主导,学为主体"的教学要求,注意创设问题情境,使学生自得知识,自觅规律。
2、学生学法:研究+6和-6的不同点和相同点→绝对值概念→巩固练习→归纳小结(绝对值代数意义)
三、重点、难点、疑点及解决办法
1、重点:给出一个数会求出它的绝对值。
2、难点:绝对值的几何意义,代数定义的导出。
3、疑点:负数的绝对值是它的相反数。
四、课时安排
2课时
五、教具学具准备
投影仪(电脑)、三角板、自制胶片。
六、师生互动活动设计
教师提出+6和-6有何相同点和不同点,学生研究讨论得出绝对值概念;教师出示练习题,学生讨论解答归纳出绝对值代数意义。
七、教学步骤
(一)创设情境,复习导入
师:以上我们学习了数轴、相反数。在练习本上画一个数轴,并标出表示-6,0及它们的相反数的点。
学生活动:一个学生板演,其他学生在练习本上画。
【教法说明】绝对值的学习是以相反数为基础的,在学生动手画数轴的同时,把相反数的知识进行复习,同时也为绝对值概念的引入奠定了基础,这里老师不包办代替,让学生自己练习。
(二)探索新知,导入新课
师:同学们做得非常好!-6与6是相反数,它们只有符号不同,它们什么相同呢?
学生活动:思考讨论,很难得出答案。
师:在数轴上标出到原点距离是6个单位长度的点。
学生活动:一个学生板演,其他学生在练习本上做。
师:显然A点(表示6的点)到原点的距离是6,B点(表示-6的点)到原点距离是6个单位长吗?
学生活动:产生疑问,讨论。
师:+6与-6虽然符号不同,但表示这两个数的点到原点的距离都是6,是相同的。我们把这个距离叫+6与-6的绝对值。
2、4绝对值(1)
【教法说明】针对"互为相反数的两数只有符号不同"提出问题:"它们什么相同呢?"在学生头脑中产生疑问,激发了学生探索知识的欲望,但这时学生很难回答出此问题,这时教师注意引导再提出要求:"找到原点距离是6个单位长度的点"这时学生就有了一个攀登的台阶,自然而然地想到表示+6,-6的点到原点的距离相同,从而引出了绝对值的概念,这样一环紧扣一环,时而紧张时而轻松,不知不觉学生已获得了知识。
师:-6的绝对值是表示-6的点到原点的距离,-6的绝对值是6;6的绝对值是表示6的点到原点的距离,6的绝对值是6、
提出问题:
(1)-3的绝对值表示什么?
(2)3的绝对值呢?
(3)a的绝对值呢?
学生活动:(1)(2)题根据教师的引导学生口答,(3)题讨论后口答。
一个数a的绝对值是数轴上表示数a的点到原点的距离。
数a的绝对值是a
【教法说明】由-6,6,-3,这些特殊的数的绝对值引出数的绝对值,逐层铺垫,由学生得出绝对值的几何意义,既理解了一个数的绝对值的含义也训练了学生口头表达能力,突破了难点。
(三)尝试反馈,巩固练习
师:字母可以表示任意数,若把a换成,9,0,-1,-0、4观察数轴,它们的绝对值各是多少?
学生活动:口答:,,,,
师:你在自己画的数轴上标出五个数,让同桌指出它们的绝对值。
学生活动:按教师要求自己又当"小老师"又当"学生"、教师找一组学生回答,并及时纠正出现的错误。
(出示投影1)
例求8,-8的绝对值。
师:观察数轴做出此题。
学生活动:口答
师:由此题目你能想到什么规律?
学生活动:讨论得出—互为相反数的两数绝对值相同。
【教法说明】这一环节是对绝对值的几何定义的巩固。这里对于绝对值定义的理解不能空谈"5的绝对值、-7的绝对值是多少"?而是与数轴相结合,始终利用表示这数的点到原点的距离是这个数的绝对值这一概念。教师先阐明这个字母可表示任意数,再把换成一组数,学生自己又把换成了一些数,指出它们的绝对值,这样既理解了数所表示的广泛含义,又巩固了绝对值的定义。然后,通过例题总结出了互为相反数的两数的绝对值相等这一规律,既呼应了前面内容,又升华了绝对值的概念。
师:观察数轴,在原点右边的点表示的数(正数)的绝对值有什么特点?
在原点左边的点表示的数(负数)的绝对值呢?
生:思考,不能轻易回答出来。
师:再看前面我们所求的,你能得出什么规律吗?
学生活动:思考后一学生口答。
教师纠正并板书:
正数的绝对值是它本身。
负数的绝对值是它的相反数。
0的绝对值是0。
师:字母可表示任意的数,可以表示正数,也可以表示负数,也可以表示0。
教师引导学生用数学式子表示正数、负数、0,并再提问:这时的绝对值分别是多少?
学生活动:分组讨论,教师加入讨论,学生互相补充回答。
教师板书:
师强调:这种表示方法就相当于前面三句话,比较起来后者更通俗易懂。
【教法说明】用字母表示规律是难点。这时教师放手,让学生有目的地考虑、分析,共同得出结论。
(四)归纳小结
师:这节课我们学习了绝对值。
(1)一个数的绝对值是在数轴上表示这个数的点到原点的距离;(2)求一个数的绝对值必须先判断是正数还是负数。
回顾反馈:
(出示投影2)
1、-3的绝对值是在_____________上表示-3的点到__________的距离,-3的绝对值是____________。
2、绝对值是3的数有____________个,各是___________;绝对值是2、7的数有___________个,各是___________;绝对值是0的数有____________个,是____________。
绝对值是-2的数有没有?
八、随堂练习
1、判断题
(1)数的绝对值就是数轴上表示数的点与原点的距离()(2)负数没有绝对值()
(3)绝对值最小的数是0()
(4)如果甲数的绝对值比乙数的绝对值大,那么甲数一定比乙数大()(5)如果数的绝对值等于,那么一定是正数
2、填表
九、布置作业
课本第50页2、4。
初中数学教案篇42
学习目标
1. 理解三线八角中没有公共顶点的角的位置关系 ,知道什么是同位角、内错角、同旁内角.毛
2. 通过比较、观察、掌握同位角、内错角、同旁内角的特征,能正确识别图形中的同位角、内错角和同旁内角.
重点难点
同位角、内错角、同旁内角的特征
教学过程
一·导入
1.指出右图中所有的邻补角和对顶角?
2. 图中的∠1与∠5,∠3与∠5,∠3与∠6 是邻补角或对顶角吗?
若都不是,请自学课本P6内容后回答它们各是什么关系的角?
二·问题导学
1.如图⑴,将木条,与木条c钉在一起,若把它们看成三条直 线则该图可说成"直线 和直线 与直线 相交" 也可以说成"两条直线 , 被第三条直线 所截".构成了小于平角的角共有 个,通常将这种图形称作为"三线八角"。其中直线 , 称为两被截线,直线 称为截线。
2. 如图⑶是"直线 , 被直线 所截"形成的图形
(1)∠1与∠5这对角在两被截线AB,CD的 ,在截线EF 的 ,形如" " 字型.具有这种关系的一对角叫同位角。
(2)∠3与∠5这对角在两被截线AB,CD的 ,在截线EF的 ,形如" " 字型.具有这种关系的一对角叫内错角。
(3)∠3与∠6这对角在两被截线AB,CD的 ,在截线EF的 ,形如" " 字型.具有这种关系的一对角叫同旁内角。
3.找出图⑶中所有的同位角、内错角、同旁内角
4.讨论与交流:
(1)"同位角、内错角、同旁内角"与"邻补角、对顶角"在识别方法上有什么区别?
(2)归纳总结同位角、内错角、同旁内角的特征:
同位角:"F" 字型,"同旁同侧"
"三线八角" 内错角:"Z" 字型,"之间两侧"
同旁内角:"U" 字型,"之间同侧"
三·典题训练
例1. 如图⑵中∠1与∠2,∠3与∠4, ∠1与∠4分别是哪两条直线被哪一条直线所截形成的什么角?
小结 将左右手的大拇指和食指各组成一个角,两食指相对成一条直线,两个大拇指反向的时候,组成内错角;
两食指相对成一条直线,两个大拇指同向的时候,组成同旁内角;
自我检测
⒈如图⑷,下列说法不正确的是( )
A、∠1与∠2是同位角 B、∠2与∠3是同位角
C、∠1与∠3是同位角 D、∠1与∠4不是同位角
⒉如图⑸,直线AB、CD被直线EF所截,∠A和 是同位角,∠A和 是内错角,∠A和 是同旁内角.
⒊如图⑹, 直线DE截AB, AC, 构成八个角:
① 指出图中所有的同位角、内错角、同旁内角.
②∠A与∠5, ∠A与∠6, ∠A与∠8, 分别是哪一条直线截哪两条直线而成的什么角?
⒋如图⑺,在直角ABC中,∠C=90°,DE⊥AC于E,交AB于D .
①指出当BC、DE被AB所截时,∠3的同位角、内错角和同旁内角.
②试说明∠1=∠2=∠3的理由.(提示:三角形内角和是1800)
相交线与平行线练习
课型:复习课: 备课人:徐新齐 审核人:霍红超
一.基础知识填空
1、如图,∵AB⊥CD(已知)
∴∠BOC=90°( )
2、如图,∵∠AOC=90°(已知)
∴AB⊥CD( )
3、∵a∥b,a∥c(已知)
∴b∥c( )
4、∵a⊥b,a⊥c(已知)
∴b∥c( )
5、如图,∵∠D=∠DCF(已知)
∴_____//______( )
6、如图,∵∠D+∠BAD=180°(已知)
∴_____//______( )
(第1、2题) (第5、6题) (第7题) (第9题)
7、如图,∵ ∠2 = ∠3( )
∠1 = ∠2(已知)
∴∠1 = ∠3( )
∴CD____EF ( )
8、∵∠1+∠2 =180°,∠2+∠3=180°(已知)
∴∠1 = ∠3( )
9、∵a//b(已知)
∴∠1=∠2( )
∠2=∠3( )
∠2+∠4=180°( )
10.如图,CD⊥AB于D,E是BC上一点,EF⊥AB于F,∠1=∠2.试说明∠BDG+∠B=180°.
二.基础过关题:
1、如图:已知∠A=∠F,∠C=∠D,求证:BD∥CE 。
证明:∵∠A=∠F ( 已知 )
∴AC∥DF ( )
∴∠D=∠ ( )
又∵∠C=∠D ( 已知 ),
∴∠1=∠C ( 等量代换 )
∴BD∥CE( )。
2、如图:已知∠B=∠BGD,∠DGF=∠F,求证:∠B + ∠F =180°。
证明:∵∠B=∠BGD ( 已知 )
∴AB∥CD ( )
∵∠DGF=∠F;( 已知 )
∴CD∥EF ( )
∵AB∥EF ( )
∴∠B + ∠F =180°( )。
3、如图,已知AB∥CD,EF交AB,CD于G、H, GM、HN分别平分∠AGF,∠EHD,试说明GM ∥HN.
初中数学教案篇43
4.1二元一次方程
【教学目标】
知识与技能目标
1、通过与一元一次方程的比较,能说出二元一次方程的概念,并会辨别一个方程是不是
二元一次方程;
2、通过探索交流,会辨别一个解是不是二元一次方程的解,能写出给定的二元一次方程的解,了解方程解的不唯一性;
3、会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。过程与方法目标经历观察、比较、猜想、验证等数学学习活动,培养分析问题的能力和数学说理能力;
情感与态度目标
1、通过与一元一次方程的类比,探究二元一次方程及其解的概念,进一步培养运用类比转化的思想解决问题的能力;
2、通过对实际问题的分析,培养关注生活,进一步体会方程是刻画现实世界的有效数学模型,培养良好的数学应用意识。
【重点、难点】
重点:二元一次方程的概念及二元一次方程的解的概念。
难点1、了解二元一次方程的解的不唯一性和相关性。即了解二元一次方程的解有无数个,
但不是任意的两个数是它的解。
2、把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。
【教学方法与教学手段】
1、通过创设问题情境,让学生在寻求问题解决的过程中认识二元一次方程,了解二元一
次方程的特点,体会到二元一次方程的引入是解决实际问题的需要。
2、通过观察、思考、交流等活动,激发学习情绪,营造学习气氛,给学生一定的时间和
空间,自主探讨,了解二元一次方程的解的不唯一性和相关性。
3、通过学练结合,以游戏的形式让学生及时巩固所学知识。
【教学过程】
一、创设情境导入新课
1、一个数的3倍比这个数大6,这个数是多少?
2、写有数字5的黄卡和写有数字2的蓝卡若干张,问黄卡和蓝卡各取几张,才能使取到的卡片上的数字之和为22?
思考:这个问题中,有几个未知数?能列一元一次方程求解吗?
如果设黄卡取x张,蓝卡取y张,你能列出方程吗?
3、在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米。如果设轿车的速度是a千米/时,卡车的速度是b千米/时,你能列出怎样的方程?
二、师生互动探索新知
1、推陈出新发现新知
引导学生观察所列的方程:5x?2y?22,2a?3b?20,这两个方程有哪些共同特征?这些特征与一元一次方程比较,哪些是相同的,哪些是不同的?你能给它们取个名字吗?
(板书:二元一次方程)
根据它们的共同特征,你认为怎样的方程叫做二元一次方程?(二元一次方程的定义:含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程。)
2、小试牛刀巩固新知
判断下列各式是不是二元一次方程
(1)x2?y?0(2)12a?b?2b?0(3)y?x(4)x??123y
3、师生互动再探新知
(1)什么是方程的解?(使方程两边的值相等的`未知数的值,叫做方程的解。)
(2)你能给二元一次方程的解下一个定义吗?(使二元一次方程两边的值相等的一对未
知数的值,叫做二元一次方程的一个解。)
?若未知数设为x,y,记做x?,若未知数设为a,b,记做
?y?
4、再试牛刀检验新知
(1)检验下列各组数是不是方程2a?3b?20的解:(学生感悟二元一次方程解的不唯一性)
a?4a?5a?0a?100
b?3b??1020b??b?6033
(2)你能写出方程x-y=1的一个解吗?(再一次让学生感悟二元一次方程的解的不唯一性)
5、自我挑战三探新知
有3张写有相同数字的蓝卡和2张写有相同数字的黄卡,这五张卡片上的数字之和为10。设蓝卡上的数字为x,黄卡上的数字为y,根据题意列方程。3x?2y?10
请找出这个方程的一个解,并写出你得到这个解的过程。
学生在解二元一次方程的过程中体验和了解二元一次方程解的不唯一性。
6、动动笔头巩固新知
独立完成课本第81页课内练习2
三、你说我说清点收获
比较一元一次方程和二元一次方程的相同点和不同点
相同点:方程两边都是整式
含有未知数的项的次数都是一次
如何求一个二元一次方程的解
四、知识巩固
1、必答题
(1)填空题:若mxy?9x?3yn?1?7是关于x,y的二元一次方程,则m?n?x?2y?5变形正确的有2
10?__?10①x?5?4y②x?10?4y③y?④y?44
(3x?7是方程2x?y?15的解。()(2)多选题:方程
y?1
x?7
(4)判断题:方程2x?y?15的解是。()y?1
2、抢答题
是方程2x?3y?5的一个解,求a的值。(1)已知x??2
y?a
(2)写出一个解为x?3的二元一次方程。
y?1
3、个人魅力题
写有数字5的黄卡和写有数字2的蓝卡若干张,问黄卡和蓝卡各取几张,才能使取到的卡片上的数字之和为22?设黄卡取x张,蓝卡取y张,根据题意列方程:5x?2y?22你能完成这道题目吗?
五、布置作业
初中数学教案篇44
一、运用数形结合解答二次函数章节问题
“数形结合百般好,隔裂分家万事非.”数形结合思想抓住了数学学科数学语言的抽象性和平面图形的直观性特征,通过“数”“形”互补,使复杂问题简单化,抽象问题具体化.通过对二次函数章节内容的整体研析发现,二次函数章节知识点的抽象内容,通过图象的直观画面进行展示,同时借助图象反映出来的性质内容,进行二次函数问题的有效解答,达到变繁为简,优化解题途径的目的.
图1问题1:有一座抛物线型拱桥,桥下面在正常水位AB时宽20m.水位上升3m,就达到警戒线CD,这时,水面宽度为10m.若洪水到来时,水位以每小时0.2m的速度上升,从警戒线开始,再持续多少小时才能到拱桥顶?
在该问题的教学活动中,如果单纯对问题条件内容进行分析,学生在理解抽象性的数学语言符号时,解决问题就有一定的难度.此时,教师利用数形结合的解题思想,根据问题条件内容,采用“以形补数”的形式,做出如图1所示的图形,这样,学生可以借助于图形的直观性和语言的精确性等特性,在对问题条件及解题策略的分析和找寻中变得更加“简便”、“易行”.
二、运用分类讨论解题思想解答二次函数章节问题
分类讨论思想是解决问题的一种逻辑方法,本质就是“化整为零,积零为整”,增加题设条件的解题策略,它能够有效提升学生思维活动的严密性、科学性和全面性.在二次函数问题案例教学中,分类讨论的解题思想有着深刻的运用.如在确定二次函数一般式y=ax2+bx+c图象与x轴的交点个数时,就运用到了分类讨论的解题思想:Δ=b2-4ac,当Δ>0时,二次函数一般式图象与x轴交于两点;当Δ=0,图象与x轴交于一点;当Δ
图2问题2:如图2所示,平面直角坐标系中,四边形OABC为矩形,点A,B的坐标分别是(6,0),(6,8),动点M,N分别从O,B同时出发,以每秒一个单位的速度前进,其中,点M沿OA向终点A运动,点N沿BC向终点C运动,过点N作NP垂直于BC,交AC于点P,连结MP,设运动时间为t秒.(1)求点P的坐标;(用含t的字母代数式表示);(2)试求MPA的面积最大值,并且求此时t的值;(3)请你探究:当t为何值时,MPA是一个等腰三角形?你发现了几种情况?写出你的探究成果.
分析:上述问题案例的第三小问题的解答过程中,实际就是蕴含了分类讨论的解题思想,需要对MPA的三边情况分类讨论,分别确定当MP=PA时、PA=AM时以及MP=AM时的三种情况下,t的取值范围.
三、利用函数特性,运用函数方程解题思想解答二次函数章节问题
二次函数章节作为函数教学的重要组成部分,它不仅是一次函数、反比例函数的有效延伸,更是三角函数、指数函数等高中阶段函数知识的有效基础.同时,通过对二次函数章节内容的整体分析,可以发现,二次函数与一元二次方程、二元一次不等式之间有着密切的联系.在解答该类型问题中,教师可以渗透函数方程解题思想策略进行解答问题活动.
问题3:设关于x的方程x2-mx+4=0在[-1,1]上有解,求实数m的取值范围.
分析:令f(x)=x2-mx+4,则问题转化为抛物线f(x)=x2-mx+4与x数轴在x∈[-1,1]上有交点的问题,将方程的问题转化为函数图象问题来解决的可将m看成x的函数.因为x≠0,所以有m=x+4/x,问题转化为求函数的值域问题.
解:因为x≠0,所以m=x+4/x此函数显然是奇函数,易证函数m在(0,1]上为减函数.所以当x∈(0,1]时,在x=1函数有最小值,m小=1+4=5,m∈[5,+∞)同理,当x∈[-1,0]时,在x=-1时,函数有最大值,m大=-5,m∈(-∞,-5].
故实数m的取值范围为(-∞,-5]∪[5,+∞).
问题4:若x、y∈R且(2x+y)13+x13+3x+y
证明:将条件化为(2x+y)13+(2x+y)
令f(t)=t13+t,则有f(2x+y)
又f(t)为奇函数,f(-x)=-f(t)
所以f(2x+y)
所以2x+y
评析:将方程的问题转化为函数图象或函数值域问题,可使方程问题迎刃而解.其中利用函数值域问题求解则更为简捷.
初中数学教案篇45
一、说教材:
本章的主要内容包括:分式的概念,分式的基本性质,分式的约分与通分,分式的加、减、乘、除运算,整数指数幂的概念及运算性质,分式方程的概念及可化为一元一次方程的分式方程的解法。
全章共包括三节:
16.1分式
16.2分式的运算
16.3分式方程
其中,16.1节引进分式的概念,讨论分式的基本性质及约分、通分等分式变形,是全章的理论基础部分。16.2节讨论分式的四则运算法则,这是全章的一个重点内容,分式的四则混合运算也是本章教学中的一个难点,克服这一难点的关键是通过必要的练习掌握分式的各种运算法则及运算顺序。
在这一节中对指数概念的限制从正整数扩大到全体整数,这给运算带来便利。16.3节讨论分式方程的概念,主要涉及可以化为一元一次方程的分式方程。解方程中要应用分式的基本性质,并且出现了必须检验(验根)的环节,这是不同于解以前学习的方程的新问题。根据实际问题列出分式方程,是本章教学中的另一个难点,克服它的关键是提高分析问题中数量关系的能力。
分式是不同于整式的另一类有理式,是代数式中重要的基本概念;相应地,分式方程是一类有理方程,解分式方程的过程比解整式方程更复杂些。然而,分式或分式方程更适合作为某些类型的问题的数学模型,它们具有整式或整式方程不可替代的特殊作用。
借助对分数的认识学习分式的内容,是一种类比的认识方法,这在本章学习中经常使用。解分式方程时,化归思想很有用,分式方程一般要先化为整式方程再求解,并且要注意检验是必不可少的步骤。
二、说教学目标:
1、进一步掌握分式的有关概念,相关性质及运算法则,分式方程的解法。
2、会利用分式方程解决实际问题,培养分析问题,解决问题的能力和应用意识。
三、说教学重难点
重点:
1、能熟练的进行分式的约分、通分和分式的运算。
2、会解可化为一元一次方程的分式方程,了解产生增根的原因。
3、会用分式方程解决实际问题。
难点:用分式方程解决实际问题。
四、说教法学法
阅读教材,归纳知识点,疑难问题小组合作探究。
五、说教学过程:
学生在自主梳理课本内容的基础上,课堂上展示交流以下问题:
概念部分:
举例说明什么是分式、分式方程、分式的约分、通分和最简分式
分式:
分式方程:
分式的约分:
分式的通分:
最简分式:
性质部分
(1)什么是分式的基本性质?本章哪些内容用到了分式的基本性质?
(2)整数指数幂的运算性质有哪些?
法则部分
用自己的语言叙述分式的`加法、减法、乘法、除法及乘方的运算法则(各举一例说明这些法则)。
这部分内容由每个小组完成。目的是培养学生梳理知识的能力,同时也能更好的掌握本章的基础知识,学生完全可独立完成。这些基础知识也为分式的运算、化简、解方程奠定基础的所以学生必须学会这部分内容。为此让学生举例说明就更有必要了。
巩固训练,提升能力:
1.在式子,中
整式有;分式有。
2.若分式:有意义,则,x;若分式无意义,则x;若分式的值为零,则x=。
3.解分式方程的基本思想是把分式方程转化为方程,其步骤为:
(1)去分母在方程两边都,把分式方程转化为方程。
(2)解这个方程。
(3)检验,检验的方法是。
4.约分=,5.将5.62×
5、10用小数表示为()
A.0.00000000562B.0.0000000562
C.0.000000562D.0.000000000562
6.下列式子从左到右变形一定正确的是()
A.B.C.D.=
7.下列变形正确的是()
A.3a=B.C.D.
8.通分(1),(2)
9.(1)计算(2)解方程
10.计算
11.先化简:÷。再任选一个适当的x值代入求值。.
12已知:,试求A、B的值。
13.已知:求的值.
14.已知,求的值.
15.若关于x的分式方程有增根,求m的值.
16某工程队承接了3000米的修路任务,在修好600米后,引进了新设备,工作效率是原来的2倍,一共用30天完成了任务,求引进新设备前平均每天修路多少米?
17.学校要举行跳遗绳比赛,同学们都积极练习,甲同学跳180个所用时间,乙同学可以跳240个,又知甲每分钟比乙少跳5个,求每人每分钟各跳多少个?
18.探究题:探索规律:,个位数字是3;,个位数字是9;个位数字是7;,个位数字是1;,个位数字是3;,个位数字是9;的个位数字是;的个位数字是。
19.根据所给方程,联系生活实际编写一道应用题(要求:题目完整,题意清楚,不要求解方程.)
这部分编写的目的是运用基础知识解决实际问题从而达到解决问题的目的,提纲下发全体学生都做,然后针对检查情况把典型题写在黑板上然后由学生讲解,教师适时补充。最后19题是开放试题但教师要总结规律和方法,工程问题怎样编,行程问题怎样编,教给学生方法是关键。
六、教学反思:
自从实行学、教、测教学模式以来学生的能力得到真正的提高。在本章的教学中我主要是采用类比的教学方法,通过类比分数来学习分式效果非常好。
本节复习课让学生归纳知识体系真正培养了学生的归纳整理知识的能力。复习课注重习题方法的探究。学生思维能力的培养。类型题的规律的探究。在本节课中体现的还可以如果时间允许的话效果还能好一些。值得我们思考的是在今后的备课中还应注意时间的分配和重点问题的处理。同时数学课上应该多交给学生解题方法、解题技巧、规律探索、思维能力的训练等。
初中数学教案篇46
(一)本节内容在教材中的地位与作用。
对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。它是两三角形间最简单、最常见的关系。本节《探索三角形全等的条件》是学生在认识三角形的基础上,在了解全等图形和全等三角形以后进行学习的,它既是前面所学知识的延伸与拓展,又是后继学习探索相似形的条件的基础,并且是用以说明线段相等、两角相等的重要依据。因此,本节课的知识具有承上启下的作用。同时,苏科版教材将“边角边”这一识别方法作为五个基本事实之一,说明本节的内容对学生学习几何说理来说具有举足轻重的作用。
(二)教学目标
在本课的教学中,不仅要让学生学会“边角边”这一全等三角形的识别方法,更主要地是要让学生掌握研究问题的方法,初步领悟分类讨论的数学思想。同时,还要让学生感受到数学来源于生活,又服务于生活的基本事实,从而激发学生学习数学的兴趣。为此,我确立如下教学目标:
(1)经历探索三角形全等条件的过程,体会分析问题的方法,积累数学活动的经验。
(2)掌握“边角边”这一三角形全等的识别方法,并能利用这些条件判别两个三角形是否全等,解决一些简单的实际问题。
(3)培养学生勇于探索、团结协作的精神。
(三)教材重难点
由于本节课是第一次探索三角形全等的条件,故我确立了以“探究全等三角形的必要条件的个数及探究边角边这一识别方法作为教学的重点,而将其发现过程以及边边角的辨析作为教学的难点。同时,我将采用让学生动手操作、合作探究、媒体演示的方式以及渗透分类讨论的数学思想方法教学来突出重点、突破难点。
(四)教学具准备,教具:相关多媒体课件;学具:剪刀、纸片、直尺。画有相关图片的作业纸。
二、教法选择与学法指导
本节课主要是“边角边”这一基本事实的发现,故我在课堂教学中将尽量为学生提供“做中学”的时空,让学生进行小组合作学习,在“做”的过程中潜移默化地渗透分类讨论的数学思想方法,遵循“教是为了不教”的原则,让学生自得知识、自寻方法、自觅规律、自悟原理。
三、教学流程
(一)创设情景,激发求知欲望
首先,我出示一个实际问题:
问题:皮皮公司接到一批三角形架的加工任务,客户的要求是所有的三角形必须全等。质检部门为了使产品顺利过关,提出了明确的要求:要逐一检查三角形的三条边、三个角是不是都相等。技术科的毛毛提出了质疑:分别检查三条边、三个角这6个数据固然可以。但为了提高我们的效率,是不是可以找到一个更优化的方法,只量一个数据可以吗?两个呢?……
然后,教师提出问题:毛毛已提出了这么一个设想,同学们是否可以和毛毛一起来攻克这个难题呢?
这样设计的目的是既交代了本节课要研究和学习的主要问题,又能较好地激发学生求知与探索的欲望,同时也为本节课的教学做好了铺垫。
(二)引导活动,揭示知识产生过程
数学教学的本质就是数学活动的教学,为此,本节课我设计了如下的系列活动,旨在让学生通过动手操作、合作探究来揭示“边角边”判定三角形全等这一知识的产生过程。
活动一:让学生通过画图或者举例说明,只量一个数据,即一条边或一个角不能判断两个三角形全等。
活动二:让学生就测量两个数据展开讨论。先让学生分析有几种情况:即边边、边角、角角。再由各小组自行探索。同样可以让学生举反例说明,也可以通过画图说明。
活动三:在两个条件不能判定的基础上,只能再添加一个条件。先让学生讨论分几种情况,教师在启发学生有序思考,避免漏解。如:
边
1
2
3
角
3
2
1
教师提出3个角不能判定两三角形全等,实质我们已经讨论过了。明确今天的任务:讨论两条边一个角是否可以判定两三角形全等。师生再共同探讨两边一角又分为两边一夹角与两边一对角两种情况。
活动四:讨论第一种情况:各小组每人用一张长方形纸剪一个直角三角形(只用直尺和剪刀),怎样才能使各小组内部剪下的直角三角形都全等呢?主要是让学生体验研究问题通常可以先从特殊情况考虑,再延伸到一般情况。
活动五:出示课本上的3幅图,让学生通过观察、进行猜想,再测量或剪下来验证。并说说全等的图形之间有什么共同点。
活动六:小组竞赛:每人画一个三角形,其中一个角是30°,有两条边分别是7cm、5cm,看哪组先完成,并且小组内是全等的。这样既调动了学生的积极性,又便于发现边角边的识别方法。
最后教师再用几何画板演示,学生进行观察、比较后,师生共同分析、归纳出“边角边”这一识别方法。
若有小组画成边边角的形式,则顺势引出下面的探究活动。否则提出:若两个三角形有两条边及其中一边的对角对应相等,则这两个三角形一定全等吗?
活动七:在给出的画有的图上,让学生自主探究(其中另一条边为5cm),看画出的三角形是否一定全等。让学生在给出的图上研究是为了减小探索的麻木性。
教师用几何画板演示,让学生在辨析中再次认识边角边。同时完成课后练习第一题。
(三)例题教学,发挥示范功能
例题教学是课堂教学的一个重要环节,因此,如何充分地发挥好例题的教学功能是十分重要的。为此,我将充分利用好这道例题,培养学生有条理的说理能力,同时,通过对例题的变式与引伸培养学生发散思维能力。
首先,我将出示课本例1,并设计下列系列问题,让学生一步一步地走向“知识获得与应用”的理想彼岸。
问题1:请说说本例已知了哪些条件,还差一个什么条件,怎么办?(让学生学会找隐含条件)。
问题2:你能用“因为……根据……所以……”的表达形式说说本题的说理过程吗?
问题3:ADC可以看成是由ABC经过怎样的图形变换得到的?
在探索完上述3个问题的基础上,对例题作如下的变式与引伸:
ABC与ADC全等了,你又能得到哪些结论?连接BD交AC于O,你能说明BOC与DOC全等吗?若全等,你又能得到哪些结论?
这样设计的目的在于体现“数学教学不仅仅是数学知识的教学,更重要的发展学生数学思维的教学”这一思想。
在例题教学的基础上,为了及时的反馈教学效果,也为提高学生知识应用的水平,达到及时巩固的目的,我设计了如下两个练习:
(1)基础知识应用。完成教材P139练一练2。
(2)已知如图:,请你添加一些适当的条件,再根据SAS的识别方法说明两个三角形全等。对学生进行逆向思维训练,同时让学生发现对顶角这一隐含条件。
(四)课堂小结,建立知识体系。
(1)本节课你有哪些收获:重点是将研究问题的方法进行一次梳理,对边角边的识别方法进行一次回顾。
(2)你还有哪些疑问?
附板书设计:
三角
探索三角形全等的条件
两角一边
探究活动一:两个三角形全等至少要几个条件
一角两边
一个条件行不通两个条件行不通三个条件
三边
探究活动二:全等三角形的识别方法:
特殊------一般
初中数学教案篇47
一、说教材
(五)教材的地位和作用
《绝对值》是选自人教版初一数学第一章第二节第四部分的内容。这部分内容之前已经学习了有理数、数轴、相反数的内容,这是本节课学习的基础。绝对值的内容主要包括含义及有理数之间的大小比较,这也为后面学习有理数的加减法奠定了基础。
(六)教学目标
根据对教材内容的分析,以及在新课改理念的指导下,制定了如下三维目标:
(一)知识与技能
理解、掌握绝对值的含义,并且会比较有理数之间的大小。
(二)过程与方法
运用数轴来推理数的绝对值,并在推理的过程中清晰的阐述自己的观点,从而逐步发展发生的抽象思维。
(三)情感态度与价值观
体验数学活动的探索性和创造性,感受数学的严谨性以及数学结论的确定性。
教学重难点
通过以上对教材内容及教学目标的分析,以及学生已有的知识水平,本节课的教学重难点如下:
重点:绝对值的理解以及有理数的比较
难点:负数的绝对值的理解及比较
二、说学情
以上就是我对教材的分析,由于教学目标及重难点的确定也是在学生情况的基础上进行的,所以下面我对学情进行分析。
初一学生的抽象思维开始有了一定的发展,但还需一定的感性材料作支撑,同时思维比较活跃和积极,所以教学过程中会注重直观材料的运用,然后引导学生自主思考并理解知识,以激发学生的学习兴趣,调动学生的积极性和主动性。
三、说教材
基于以上对教材、学情的分析,以及新课改的要求,我在本课中采用的教法有:讲授法、演示法和引导归纳法。演示法中需要的教具有多媒体和温度计。
四、说教法
新课改理念告诉我们,学生不仅要学到具体的知识,更重要的是学生要学会怎样自己学习,为终身学习奠定扎实的基础。所以本课中我将引导学生通过自主探究、合作交流的学法来更好的掌握本节课的内容。
五、说教学程序
为了更好的实现三维目标、突破重难点,我将本课的教学程序设计为以下五个环节:
(一)情境导入
出示温度计,"北方某一城市的温度是零下15摄氏度,南方某一城市的温度是15摄氏度",学生在稿纸上画一条数轴,标出这两个温度,并请一位学生画在黑板上。
数轴的两个数值是相反数,是上节课的内容,0到-15°和0到15°的变化温度分别是15°,那么两个相同的变化温度,怎么用数学符号表示出来呢?
(二)新授
1、从上面的问题中,我引出今天的"绝对值"概念,然后和学生一起从数轴上推导出绝对值。
2、使用多媒体呈现一组数字,包括几个正数,几个负数。让大家在数轴上画出,并写出每个数字的绝对值。然后学生来依次说出每个绝对值,以巩固概念的掌握。
3、和大家一起写出这些绝对值,把负数、正数、0的绝对值分别写在三个地方,引导学生观察这些绝对值,并思考其中的规律,然后和学生一起得出结论,即正数的绝对值是本身,负数的绝对值是它的相反数,0的绝对值的0、得出这个结论后顺势提问:数a的绝对值是多少?进行分组讨论,在讨论一段时间后提醒学生刚刚的结论。
4、在每组的回答后,和学生一起总结出数a的绝对值,分三种情况,当a大于0,绝对值为a;等于0时,为0;小于0时,为-a、这三种情况的分析后,学生就充分理解了绝对值的含义。
5、回到大家画的数轴,大家很容易比较出原点0右边的正数的大小,那么左边的.负数的大小怎么比较呢?提出这个问题后不急于让学生回答,而是把学生引入一个情境,即把数轴上的数都看成是温度,比较温度的大小就比较容易,然后回到数的比较。在这个引导后,得出的结论是:离0越远的数,越小;也可以说绝对值越大的负数越小。
(三)巩固练习
在PPT上呈现一些数的绝对值,以及一些负数、正数、绝对值之间的比较的题。
(四)小结
引导学生总结出今天的学习内容,培养学生的归纳以及逻辑思维能力。
(五)布置作业
布置作业不是目的,目的是学生能够更好的掌握并运用本节课的内容。所以我会布置这样一个作业:请学生回家可以在父母的帮助下,找出南方和北方分别三个城市的温度,比较这些温度的大小,并写出每个温度的绝对值并进行比较。
(六)说板书设计
为了学生能够更清晰的掌握内容,我用写关键词的方式来有逻辑性的呈现我的板书。
以上就是我说课的全部内容,谢谢!
初中数学教案篇48
一、教材分析
1、教材的地位和作用
本课位于人民教育出版社义务教育课程标准实验教科书七年级下册第五章第二节第一课时。主要内容是让学生在充分感性认识的基础上体会平行线的三种判定方法,它是空间与图形领域的基础知识,是《相交线与平行线》的重点,学习它会为后面的学行线性质、三角形、四边形等知识打下坚实的“基石”。同时,本节学习将为加深“角与平行线”的认识,建立空间观念,发展思维,并能让学生在活动的过程中交流分享探索的成果,体验成功的乐趣,提高运用数学的能力。
2、教学重难点
重 点 三种位置关系的角的特征;会根据三种位置关系的角来判断两直线平行的方法。
难 点 “转化”的数学思想的培养。
由“说点儿理”到“用符号表示推理”的逐层加深。
二、教学目标
知识目标 了解同位角、内错角、同旁内角等角的特征,认识“直线平行”的三个充分条件及在实际生活中的应用。
能力目标 ①通过观察、思考探索等活动归纳出三种判定方法,培养学生转化的数学思想,培养学生动手、分析、解决实际问题的能力。
②通过活动及实际问题的研究引导学生从数学角度发现和提出问题,并用数学方法探索、研究和解决问题。
情感目标 ①感受数学与生活的紧密联系,体会数学的价值,激发学生学习数学的兴趣,培养敢想、敢说、敢解决实际问题的学习习惯。
通过学生体验、猜想并证明,让学生体会数学充满着探索和创造,培养学生团结协作,勇于创新的精神。
②通过“转化”数学思想方法的运用,让学生认识事物之间是普遍联系,相互转化的辩证唯物主义思想。
三、教学方法
1、采用指导探究法进行教学,主要通过二个师生双边活动:①动——师生互动,共同探索。②导——知识类比,合理引导等突出学生主体地位,让教师成为学生学习的组织者、引导者、合作者,让学生亲自动手、动脑、动口参与数学活动,经历问题的发生、发展和解决过程,在解决问题的过程中完成教学目标。
2、根据学生实际情况,整堂课围绕“情景问题——学生体验——合作交流”模式,鼓励学生积极合作,充分交流,既满足了学生对新知识的强烈探索欲望,又排除学生学习几何方法的缺乏,和学无所用的思想顾虑。对学习有困难的学生及时给予帮助,让他们在学习的过程中获得愉快和进步。
3、利用课件辅助教学,突破教学重难点,扩大学生知识面,使每个学生稳步提高。
四、教学流程:
我的教学流程设计是:从创设情境,孕育新知开始,经历探索新知,构建模式;解释新知,落实新知;总结新知,布置作业等过程来完成教学。
创设情境,孕育新知:
①师生欣赏三幅图片,让学生观察、思考从几何图形上看有什么共同点。
②从学生经历过的事入手,让学生比较两张奖状粘贴的好坏,并说明理由,让学生留心实际生活,欣赏木工画平行线的方法。
③落实到学生是否会画平行线?本环节教师展示图片,学生观察思考,交流回答问题,了解实际生活中平行线的广泛应用。
设计意图:通过图片和动画展示,贴近学生生活,激发学生的学习兴趣。从学生经历过的事入手。让学生知道数学知识无处不在,应用数学无时不有。符合“数学教学应从生活经验出发”的新课程标准要求。
2、实验操作,探索新知1
①由学生是否会画平行线导入,用小学学过的方法过点P画直线AB的平行线CD,学生动手画并展示。
②学生思考三角尺起什么作用(教师点拨)?
③学生动手操作:用学具塑料条摆两条平行线被第三条直线所截的模型,并探讨图中角的关系(同位角)。
④教师把学生画平行线的过程和塑料条模型抽象成几何图形,指明同位角的位置关系是截线,被截线的同旁,
归纳:两直线平行条件1
教师展示一组练习,学生独立完成,巩固新知。
在这一环节中,教师应关注:
①学生能否画平行线,动手操作是否准确
②学生能否独立探究、参与、合作、交流
设计意图:复习提问,利用教具、学具让学生动手,提高学生学习兴趣,调动学生思考和积极性,提高学生合作交流的能力和质量,教师有的放矢,让学生掌握重点,培养学生自主探究的学习习惯和能力。及时练习巩固,,体现学以致用的观念,消除学生学无所用的思想顾虑。
3、大胆猜想,探究新知
⑴学生分组讨论:
①∠2和∠3是什么位置关系?
∠3和∠4是什么位置关系?
②直线CD绕O旋转是否还保持上述位置关系?
③∠2与∠3,∠2与∠4一定相等吗?猜想,展示讨论成果。
⑵学生探究:
问题:①∠2=∠3能得到AB∥CD吗?
②∠2+∠4=180可以判定AB∥CD吗?
学生用语言表述推理过程,教师深入学生中并点拨将未知的转化为已知,并规范推理过程。和学生一起归纳直线平行的条件2,3。
⑶学生独立完成练习。
本环节教师关注:
①学生能否主动参与数学活动,敢于发表个人观点。
②小组团结协作程度,创新意识。
③表扬优秀小组
设计意图:猜想、交流、归纳,符合知识的形成过程,培养学生转化的数学思想,学会将陌生的转化为熟悉的,将未知的转化为已知的。并用练习及时巩固,落实新知与方法,增强学生运用数学的能力。
4、解释运用,巩固新知
本环节共有五个练习,第一题落实同位角、内错角、同旁内角位置特征。第二、三题落实三种判定方法的应用。第四、五题是注重学生动手操作,解决实际问题的训练。
本环节教师应关注:
①深入学生当中,对学习有困难学生进行鼓励,帮助。
②学生的思维角度是否合理。
设计意图:加强学生运用新知的意识,培养学生解决实际问题的能力和学习数学的兴趣,让学生巩固所学内容,并进行自我评价,既面向全体学生,又照顾个别学有余力的学生,体现因材施教的原则。
5、总结新知,布置作业
通过设问回答补充的方式小结,学生自主回答三个问题,教师关注全体学生对本节课知识的程度,学生是否愿意表达自己的观点,采用必做题和选做题的方式布置作业。
设计意图:通过提问方式引导学生进行小结,养成学习——总结——再学习的良好习惯,发挥自我评价作用,同时可培养学生的语言表达能力。作业分层要求,做到面向全体学生,给基础好的学生充分的空间,满足他们的求知欲。
五、教学设计
初中数学教案篇49
教学目标:
知识与技能:会用计算器进行数的加、减、乘、除、乘方运算。
过程与方法:了解计算器的性能,并会操作和使用,能运用计算器进行较为复杂的运算。
情感态度与价值观:使学生能运用计算器探索一些有趣的数学规律。
教学重点:用计算器进行数的加、减、乘、除、乘方的运算。
教学难点:能用计算器进行数的乘方的运算。
教材分析:在日常生活中,经常会出现一些较为复杂的混合运算,这就要求使用科学计算器。因此,使学生会用计算器进行数加、减、乘、除、乘方的运算就成为本节的重点和难点。
教学方法:师生互动法。
课时安排:1课时。
教具:Powerpoint幻灯片、科学计算器。
环节教师活动学生活动设计意图
创设情境一、从问题情境入手,揭示课题。
(出示幻灯一)
在棋盘上放米,第一格放1粒米,第二格放2粒米,第三格放22粒米,然后是23粒、24粒、25粒……一直到64格,你能计算第64格应放多少粒米?有简单的计算方法吗
教师对学生的回答给予点评,并带着问题引入本节课题:
板书:3.4用计算器进行数的计算在教师的引导下,学生仔细观察、思考,积极回答。通过师生的相互探讨,使学生认识到学会使用计算器的必要性,并激发学生的求知欲。
探究活动一一、介绍计算器的使用方法。
(出示幻灯二)
B型计算器的面板示意图如下:
教师结合示意图介绍按键的使用方法。
学生根据教师的介绍,使用计算器进行实际操作。通过训练,使学生掌握计算器的按键操作,熟悉计算器的程序设计模式。
探究活动二二、用计算器进行加、减、乘、除、乘方运算
(出示幻灯三)
例1用计算器求下列各式的值
(1)(-3.75)+(-22.5)
(2)51.7(-7.2)
解:(1)
(-3.75)+(-22.5)=-26.25
学生相互交流,并用计算器进行实际操作。通过计算,使学生熟悉计算器的用法。
探究活动二(2)
51.7(-7.2)=-372.24
学生相互交流,并用计算器进行实际操作。
通过计算,使学生会用计算器进行有理数的加、减、乘、除运算。
探究活动二例2用计算器计算(精确到0.001)
(-0.45)5
(-0.45)5-0.018
相互讨论,并进行实际操作。通过计算,使学生会用计算器进行有理数的乘方运算。
探究活动二
例3用计算器求值
(1)(-6)2(2)-62
解:
思考:
注意观察它们的按键顺序有什么不同?
学生认真观察、讨论,得出结论。
通过对比,使学生能区分两种按键的不同,灵活运用计算器进行计算。
探究活动三三、随堂练习
(出示幻灯四)
用计算器求值
1.9.23+10.2
2.(-2.35)(-0.46)
3.(-3.45)3
4.-2.082
学生独立操作完成。通过训练,使学生能熟练地用计算器进行数的运算。
探究活动四四、实际应用,能力提高。
1.用计算器解决“创设情境”中提出的问题。
(出示幻灯五)
2.张老师在银行贷月息为0.456%的住房贷款50000元,满5年时共需付款50000(1+600.456%)元,其中包括贷款本金和贷款利息。张老师共需付利息多少元?在教师的引导下,分组讨论,互相交流,回答有关的信息,学生互评。通过实际应用,进一步提高学生运用计算器解决实际问题的能力。
学习总结五、学习总结
这节课你有哪些收获?有什么体会?
教师简要点评:
(1)由于受计算器显示数位的限制,计算结果是一个近似数。
(2)当计算结果很大时,计算器能将计算结果自动转化为科学记数法的.形式来显示。
学生相互交流自己的收获和体会,教师参与互动并给予鼓励性的评价。学生自由发表学习心得,能锻炼学生的语言表达能力和归纳概括能力。
课堂反馈
1.用计算器进行计算(略)
2.(1)用计算器计算下列各式:
1111,111111,11111111,1111111111。
(2)根据(1)的计算结果,你发现了什么规律?
(3)如果不用计算器,你能直接写出11111111111111的结果吗?让学生熟练运用计算器进行操作,学以致用。及时反馈,并使学生能运用计算器探究一些有趣的数学规律。
附:板书设计:
3.4用计算器进行数的计算
1.介绍计算器的使用方法;
2.运用计算器进行数的运算;
3.运用计算器探究数学规律。
教学反思:
1.只停留在powerpoint的使用上,有一定的局限性,如能演示使用计算器的方法,效果会更好。
2.更新教学观念,最好以学生自学使用计算器的方法为主,使学生主动参与探索,培养学生的创新精神。
3.教师主导课堂,忽视学生的学习主体作用,不利于创新思维及个性化发展。而通过网络或多媒体的教学过程中,往往易忽视教师的作用,过分的依赖于学习者的主观能动性,教学成本也大幅度提高。
初中数学教案篇50
教学目标
1、了解数轴的概念和数轴的画法,掌握数轴的三要素;
2、会用数轴上的点表示有理数,会利用数轴比较有理数的大小;
3、使学生初步了解数形结合的思想方法,培养学生相互联系的观点。
教学建议
一、重点、难点分析
本节的重点是初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数,并会比较有理数的大小。难点是正确理解有理数与数轴上点的对应关系。数轴的概念包含两个内容,一是数轴的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础。
二、知识结构
有了数轴,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的方法,本课知识要点如下表:
定义三要素应用
数形结合
规定了原点、正方向、单位长度的直线叫数轴原点
正方向
单位长度帮助理解有理数的概念,每个有理数都可用数轴上的点表示,但数轴上的点并非都是有理数比较有理数大小,数轴上右边的数总比左边的数要大
在理解并掌握数轴概念的基础之上,要会画出数轴,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数,要知道所有的有理数都可以用数轴上的点表示,会利用数轴比较有理数的大小。
三、教法建议
小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念。数轴是一条具有三个要素(原点、正方向、单位长度)的直线,这三个要素是判断一条直线是不是数轴的根本依据。数轴与它所在的位置无关,但为了教学上需要,一般水平放置的数轴,规定从原点向右为正方向。要注意原点位置选择的任意性。
关于有理数与数轴上的点的对应关系,应该明确的是有理数可以用数轴上的点表示,但数轴上的点与有理数并不存在一一对应的关系。根据几个有理数在数轴上所对应的点的相互位置关系,应该能够判断它们之间的大小关系。通过点与有理数的对应关系及其应用,逐步渗透数形结合的思想。
四、数轴的相关知识点
1、数轴的概念
(1)规定了原点、正方向和单位长度的直线叫做数轴。
这里包含两个内容:一是数轴的三要素:原点、正方向、单位长度缺一不可。二是这三个要素都是规定的。
(2)数轴能形象地表示数,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。
以数轴是理解有理数概念与运算的重要工具。有了数轴,数和形得到初步结合,数与表示数的图形(如数轴)相结合的思想是学习数学的思想。另外,数轴能直观地解释相反数,帮助理解绝对值的意义,还可以比较有理数的大小。因此,应重视对数轴的学习。
2、数轴的画法
(1)画直线(一般画成水平的)、定原点,标出原点“O”。
(2)取原点向右方向为正方向,并标出箭头。
(3)选适当的长度作为单位长度,并标出…,—3,—2,—1,1,2,3…各点。具体如下图。
(4)标注数字时,负数的次序不能写错,如下图。
3。用数轴比较有理数的大小
(1)在数轴上表示的两数,右边的数总比左边的数大。
(2)由正、负数在数轴上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。
(3)比较大小时,用不等号顺次连接三个数要防止出现“”的写法,正确应写成“”。
五、数轴定义的理解