初中数学创意教案
教案编写需要依据不同的学科和教学内容,选取合适的教学方法和手段,明确教学目标和教学计划,以确保教学质量。初中数学创意教案应该写成什么样的?快来看看初中数学创意教案,本文为你提供初中数学创意教案写作技巧和示例!
初中数学创意教案篇1
教学目标
1.了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算;
2.通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想;
3.通过加法运算练习,培养学生的运算能力。
教学建议
(一)重点、难点分析
本节课的重点是依据运算法则和运算律准确迅速地进行有理数的加减混合运算,难点是省略加号与括号的代数和的计算.
由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。了解运算符号和性质符号之间的关系,把任何一个含有有理数加、减混合运算的算式都看成和式,这是因为有理数加、减混合算式都看成和式,就可灵活运用加法运算律,简化计算.
(二)知识结构
(三)教法建议
1.通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能,讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正.
2.关于“去括号法则”,只要学生了解,并不要求追究所以然.
3.任意含加法、减法的算式,都可把运算符号理解为数的性质符号,看成省略加号的和式。这时,称这个和式为代数和。再例如
-3-4表示-3、-4两数的代数和,
-4+3表示-4、+3两数的代数和,
3+4表示3和+4的代数和
等。代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。
4.先把正数与负数分别相加,可以使运算简便。
5.在交换加数的位置时,要连同前面的符号一起交换。如
12-5+7应变成12+7-5,而不能变成12-7+5。
教学设计示例一
有理数的加减混合运算(一)
一、素质教育目标
(一)知识教学点
1.了解:代数和的概念.
2.理解:有理数加减法可以互相转化.
3.应用:会进行加减混合运算.
(二)能力训练点
培养学生的口头表达能力及计算的准确能力.
(三)德育渗透点
通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想.
(四)美育渗透点
学习了本节课就知道一切加减法运算都可以统一成加法运算.体现了数学的统一美.
二、学法引导
1.教学方法:采用尝试指导法,体现学生主体地位,每一环节,设置一定题目进行巩固练
习,步步为营,分散难点,解决关键问题.
2.学生写法:练习→寻找简单的一般性的方法→练习巩固.
三、重点、难点、疑点及解决办法
1.重点:把加减混合运算算式理解为加法算式.
2.难点:把省略括号和的形式直接按有理数加法进行计算.
四、课时安排
1课时
五、教具学具准备
投影仪或电脑、自制胶片.
六、师生互动活动设计
教师提出问题学生练习讨论,总结归纳加减混合运算的一般步骤,教师出示练习题,学生练习反馈.
七、教学步骤
(一)创设情境,复习引入
师:前面我们学习了有理数的加法和减法,同学们学得都很好!请同学们看以下题目:-9+(+6);(-11)-7.
师:(1)读出这两个算式.
(2)“+、-”读作什么?是哪种符号?
“+、-”又读作什么?是什么符号?
学生活动:口答教师提出的问题.
师继续提问:(1)这两个题目运算结果是多少?
(2)(-11)-7这题你根据什么运算法则计算的?
学生活动:口答以上两题(教师订正).
师小结:减法往往通过转化成加法后来运算.
【教法说明】为了进行有理数的`加减混合运算,必须先对有理数加法,特别是有理数减法的题目进行复习,为进一步学习加减混合运算奠定基础.这里特别指出“+、-”有时表示性质符号,有时是运算符号,为在混合运算时省略加号、括号时做必要的准备工作.
师:把两个算式-9+(+6)与(-11)-7之间加上减号就成了一个题目,这个题目中既有加法又有减法,就是我们今天学习的有理数的加减混合运算.(板书课题2.7有理数的加减混合运算(1))
教学说明:由复习的题目巧妙地填“-”号,就变成了今天将学的加减混合运算内容,使学生更形象、更深刻地明白了有理数加减混合运算题目组成.
(二)探索新知,讲授新课
1.讲评(-9)+(-6)-(-11)-7.
(1)省略括号和的形式
师:看到这个题你想怎样做?
学生活动:自己在练习本上计算.
教师针对学生所做的方法区别优劣.
【教法说明】题目出示后,教师不急于自己讲评,而是让学生尝试,给了学生一个展示自己的机会,这时,有的学生可能是按从左到右的顺序运算,有的同学可能是先把减法都转化成了加法,然后按加法的计算法则再计算??这样在不同的方法中,学生自己就会寻找到简单的、一般性的方法.
师:我们对此类题目经常采用先把减法转化为加法,这时就成了-9,+6,+11,-7的和,加号通常可以省略,括号也可以省略,即:
原式=(-9)+(+6)+(+11)+(-7)
=-9+6+11-7.
提出问题:虽然加号、括号省略了,但-9+6+11-7仍表示-9,+6,+11,-7的和,所以这个算式可以读成??
学生活动:先自己练习尝试用两种读法读,口答(教师纠正).
【教法说明】教师根据学生所做的方法,及时指出最具代表性的方法来给学生指明方向,在把算式写成省略括号代数和的形式后,通过让学生练习两种读法,可以加深对此算式的理解,以此来训练学生的观察能力及口头表达能力.
巩固练习:(出示投影1)
1.把下列算式写成省略括号和的形式,并把结果用两种读法读出来.
(1)(+9)-(+10)+(-2)-(-8)+3;
(2)+()-()-().
2.判断
式子-7+1-5-9的正确读法是().
A.负7、正1、负5、负9;
B.减7、加1、减5、减9;
C.负7、加1、负5、减9;
D.负7、加1、减5、减9;
学生活动:1题两个学生板演,两个学生用两种读法读出结果,其他同学自行演练,然后同桌读出互相纠正,2题抢答.
【教法说明】这两题旨意在巩固怎样把加减混合运算题目都转化成加法运算写成代数和的形式,这里特别注意了代数和形式的两种读法.
2.用加法运算律计算出结果
师:既然算式能看成几个数的和,我们可以运用加法的运算律进行计算,通常同号两数放在一起分别相加.
-9+6+11-7
=-9-7+6+11.
学生活动:按教师要求口答并读出结果.
巩固练习:(出示投影2)
填空:
1.-4+7-4=-______________-_______________+_______________
2.+6+9-15+3=_____________+_____________+_____________-_____________
3.-9-3+2-4=____________9____________3____________4____________2
4.____________________________________
学生活动:讨论后回答.
【教法说明】学生运用加法交换律时,很可能产生“-9+7+11-6”这样的错误,教师先让学生自己去做,然后纠正,又做一组巩固练习,使学生牢固掌握运用加法运算律把同号数放在一起时,一定要连同前面的符号一起交换这一知识点.
师:-9-7+6+11怎样计算?
学生活动:口答
[板书]
-9-7+6+11
=-16+17
=1
巩固练习:(出示投影3)
1.计算(1)-1+2-3-4+5;
(2).
2.做完前面两个题目计算:(1)(+9)-(+10)+(-2)-(-8)+3;
(2).
学生活动:四个同学板演,其他同学在练习本上做.
【教法说明】针对一道例题分成三部分,每一部分都有一组相应的巩固练习,这样每一步学生都掌握得较牢固,这时教师一定要总结有理数加减混合运算的方法,使分散的知识有相对的集中.
师小结:有理数加减法混合运算的题目的步骤为:
1.减法转化成加法;
2.省略加号括号;
3.运用加法交换律使同号两数分别相加;
4.按有理数加法法则计算.
(三)反馈练习
(出示投影4)
计算:(1)12-(-18)+(-7)-15;
(2).
学生活动:可采用同桌互相测验的方法,以达到纠正错误的目的.
【教法说明】这两个题目是本节课的重点.采用测验的方式来达到及时反馈.
(四)归纳小结
师:1.怎样做加减混合运算题目?
2.省略括号和的形式的两种读法?
学生活动:口答.
【教法说明】小结不是教师单纯的总结,而是让学生参与回答,在学生思考回答的过程中将本节的重点知识纳入知识系统.
八、随堂练习
1.把下列各式写成省略括号的和的形式
(1)(-5)+(+7)-(-3)-(+1);
(2)10+(-8)-(+18)-(-5)+(+6).
2.说出式子-3+5-6+1的两种读法.
3.计算
(1)0-10-(-8)+(-2);
(2)-4.5+1.8-6.5+3-4;
(3).
九、布置作业
(一)必做题:1.计算:(1)-8+12-16-23;
(2);
(3)-40-28-(-19)+(-24)-(-32);
(4)-2.7+(-3.2)-(1.8)-2.2;
(二)选做题:(1)当时,,,哪个最大,哪个最小?
(2)当时,,,哪个最大,哪个最小?
十、板书设计
初中数学创意教案篇2
【教材分析】
一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。通过一元二次方程的学习,可以对已学过实数、一元一次方程、因式分解、二次根式等知识加以巩固,同时又是今后学习可化为一元二次方程的其它高元方程、一元二次不等式、二次函数等知识的基础。此外,学习一元二次方程对其它学科有重要意义。本节课是一元二次方程的概念,是通过丰富的实例,让学生建立一元二次方程,并通过观察归纳出一元二次方程的概念。
【教学目标】
1、理解一元二次方程的概念,能熟练地把一元二次方程整理成一般形式(≠0)并知道各项及其系数。
2、在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的进一步认识。
【教学重点与难点】
理解一元二次方程的概念及一般形式,会正确识别一般式中的“项”及“系数”。
【教法、学法】
因为学生已经学习了一元一次方程及相关概念,所以本节课我主要采用启发式、类比法教学。教学中力求体现“问题情景---数学模型-----概念归纳”的模式。本节课借助多媒体辅助教学,指导学生从具体的问题情景中抽象出数学问题,建立数学方程,从而突破难点。同时学生在现实的生活情景中,经历数学建模,经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力。
【教学过程】
一、复习旧知,类比新知
1、一元一次方程的概念
像这样的等号两边都是整式,只含有一个未知数(一元),并且未知数的次数是1(一次)的方程叫做一元一次方程
2、一般形式:
是常数且
设计意图:复习一元一次方程,让学生回忆起一元一次方程的概念,回忆起“项”及“系数”的概念,通过类比,让学生能更好的理解一元二次方程的概念。
二、生活情境,自主学习
(1)正方形桌面的面积是2m,设正方形桌面的边长是xm,可得方程
(2)矩形花圃一面靠墙,另外三面所围的栅栏的总长度是19米。如果花圃的面积是24m2,设花圃的宽是xm则花圃的长是m,可得方程
(3)一张面积是600cm2的长方形纸片,把它的一边剪短10cm,恰好得到一个正方形。设这个正方形的边长是xcm,可得方程
(4)长5米的梯子斜靠在墙上,梯子的底端与墙的距离比梯子的顶端到地面的距离多1m,设梯子的底端到墙面的距离是xm,可得方程
设计意图:因为数学来源与生活,所以以学生的实际生活背景为素材创设情景,易于被学生接受、感知。让学生从实际问题中提炼出数学问题,初步培养学生的空间概念和抽象能力。情景分析中学生自然会想到用方程来解决问题,但所列的方程不是以前学过的`,从而激发学生的求知欲望,顺利地进入新课。
三、探究学习:
1、概念得出
讨论交流:以上所列方程有哪些共同特征?
设计意图:英国一位著名的数学教育心理学家曾说:概念的教学要从大量实例出发,通过实例帮助完成定义,而不是教定义。让学生充分感受所列方程的特点,再通过类比的方法得到定义,从而达到真正理解定义的目的.
2、巩固概念
下列方程中那些是一元二次方程。
设计意图:
这组练习目的在于巩固学生对一元二次方程定义中3个特征的理解.题目的设置,目的在于进一步加深学生对定义的掌握,提高学生对变式的理解能力.此环节采取抢答的形式,提高学生学习数学的兴趣和积极性.
3、一元二次方程的一般形式:
设计意图:此环节让学生通过自主探究,类比一元一次方程一般形式,得出一元二次方程一般形式和项,系数的概念,从而达到真正理解并掌握的目的.
4.典型例题
例将下列方程化为一元二次方程的一般形式,并分别指出它们的二次项系数、一次项系数和常数项
设计意图:此题设置的目的在于加深学生对一般形式的理解。
5.巩固练习
把下列方程化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项
设计意图:此题设置的目的在于加深学生对一般形式的理解
6、拓展应用
(1)、若是关于x的一元二次方程,则()
p为任意实数B、p=0C、p≠0D、p=0或1
(2)、若关于x的方程mx-2x+1=2x(x-1)是一元二次方程,那么m的取值范围是
(3)、若方程是关于x的一元二次方程,则m的值为
设计意图:此题让学生进行思考,讨论,让学生进行讲解,教师作适当归纳,可留疑,让学生课下思考。此题需进行分类讨论,开拓学生思维,体现数学的严谨性。
7.课堂小结
设计意图:小结反思中,不同学生有不同的体会,要尊重学生的个体差异,激发学生主动参与意识,.为每个学生都创造了数学活动中获得活动经验的机会。
【课后作业】
1、下列方程中哪些是一元二次方程?试说明理由。
2、将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项:
初中数学创意教案篇3
相反数
一、学习目标
1了解相反数的概念。
2给一个数,能求出它的相反数。
3根据a的相反数是-a,能把多重符号化成单一符号。
二、教学过程
师:请同学们画一条数轴,在数轴上找出表示+6和-6的点,看一看表示这两个数的点有什么特点,这两个数本身有什么特点。先独立思考,然后在小组里交流。
生:人人动用手画数轴,独立思考后,在小组内进行交流。
师:深入了解各小组的交流情况,讨论结束后,提问1、2人,帮助全班同学理清思考问题的思路。
师:请同学们阅读课本,知道什么叫相反数,给出一个数能求出它的相反数。
生:阅读课本第59页,并完成练习一第(1)~(4)题。
师:提问检查学生的学习情况,强调“0的相反数是0”也是相反数定义的`一部分。
师:请同学们先想一想,a可以表示一个什么数,a与-a有什么关系。然后阅读课本第60页,并完成剩余的练习题,由小组长负责检查练习情况。
师:认真了解各小组的学习情况,特别是对简化符号的题和学习困难的学生,要重点对待。
生:认真思考,阅读课本,完成练习。小组长、教师对学习困难生及时进行辅导。
师:请同学们先小结一下本节课的学习内容。然后,看一看习题2.3中,哪些题你能不动笔说出结果,请在四人小组里互相说一说。(除A组第2题外都可以直接说出结果)
生:小结。完成习题1.3中的有关练习。
练习
1在下列各式中分别填上适当的符号,使等号左右两端的数相等;
-(+19)=____________19;
____________10.2=+(+10.2);
____________(+12)=-12;
____________(-25)=+25。
2把下面的多重符号化成单一符号:
-[-(-0.3)]=____________;
-[-(+4)]=____________;
+[+(+5)]=____________;
-[+(-50)]=____________。
3根据a+(-a)=0,那么(-8)+x=0可得x=________________________;由y+(+3.75)=0,可得y=____________。
4下面的说法对不对?请举列说明。
(1)一个有理数的相反数的相反数就是这个有理数本身。
(2)一个有理数的相反数一定比原来的有理数小。
(3)-a是一个负数。
作业
在数轴上记出2,-4.5,0各数与它们的相反数,并指出表示这些数的点离开原点的距离是多少。
初中数学创意教案篇4
一、说教材
1、本课在在教材中的地位和作用《分式的加减》这节课是代数运算的基础,分两课时完成,我所设计的是第一课时的教学,主要内容是同分母的分式相加减及简单的异分母的分式相加减。学生已掌握了分数的加减法运算,同时也学习过分式的基本性质,这为本节课的学习打下了基础,而掌握好本节课的知识,将为《分式的加减》第二课时以及《分式方程》的学习做好必备的知识储备。
2、教学目标
①知识与技能:会进行简单的分式加减运算,具有一定的代数化归能力,能解决一些简单的实际问题;
②过程与方法:使学生经历探索分式加减运算法则的过程,理解其算理;
3、情感态度与价值观:培养学生大胆猜想,积极探究的学习态度,发展学生有条理思考及代数表达能力,体会其价值。
4、重点、难点
①重点:掌握分式的加减运算
②难点:异分母的分式加减运算及简单的分式混合运算
二、说教法
本课我主要以“创设情景——引导探究——类比归纳——拓展延伸”为主线,启发和引导贯穿教学始终,通过师生共同研究探讨,体现以教为主导、学为主体、练为主线的教学过程。
三、说学法
根据学生的认知水平,我设计了“自主探索、合作交流、猜想归纳和巩固提高”四个层次的学法。四、说教学过程
(一)创设情境,导入新知
第一环节:提出问题
问题1:甲工程队完成一项工程需n天,乙工程队要比甲队多用3天才能完成这项工程,两队共同工作一天完成这项工程的几分之几?
问题2:2001年,2002年,2003年某地的森林面积(单位:公顷)分别是S1,S2,S3,2003年与2002年相比,森林面积增长率提高了多少?
老师活动:组织学生分组讨论,再共同研究学生活动:小组讨论、探究、发言设计意图:通过创设这两个问题情境,引入分式的加减运算,既体现了分式加减运算的意义,又让学生经历从实际问题建立分式模型的过程,并在此基础上激发学生寻求解决问题的方法。
第二环节:同分母分式相加减
想一想:(1)同分母的分数如何加减?如:2/3+5/3=(2+5)/3,:2/3—5/3=(2—5)/3;(2)思考:类比分数的加减法则,你能归纳出分式的加减法则吗?老师活动:鼓励学生通过类比、探究并大胆猜想分式的加减运算法则学生活动:分组进行讨论、交流,并多举类似例子进行类比,而后,小组发表意见,说明自己的推测。
在学生通过交流得到猜想的基础上出示做一做:做一做:(1)1/a+2/a=_____________2(2)x/(x—2)–4/(x—2)=___________(3)(x+2)/(x+1)–(x—1)/(x+1)+(x—3)/(x+1)=___________教师通过让学生练习“做一做”的题目,加以验证和领悟,法则的形成打下基础,并导出分式加减运算法则:同分母的`分式相加减,分母不变,把分子相加减老师活动:引入习题“做一做”,适当纠正学生的语言,并板书法则学生活动:通过个体练习,领悟规律,再小组交流,形成法则设计意图:引导学生通过类比分数运算方法,大胆猜想分式的加减法则
(二)主动探究,拓展延伸
第三环节:异分母的分式相加减想一想:
(1)异分母的分数如何相加减?如:1/2+2/3=?:1/2—2/3=?。
(2)你认为异分母的分式应该如何加减?如:1/a+2/b=?老师活动:提出问题,引导、启发学生通过异分母分数相加减的方法类比得到异分母分式相加减的方法学生活动:参与交流、讨论、归纳异分母分式加减的方法设计意图:进一步锻炼学生的类比思想;同时通过讨论解决分式的通分,使学生掌握异分母分式转化为同分母分式的方法,培养学生的转化思想,为下节课做好准备
(三)例题教学
第四环节:解决问题
(1)回到开始提出的两个问题:s3?s2s2?s111?问题一:(?)s2s1nn?3问题二:
(2)例题1:计算(课本P81页)老师活动:出示习题,巡视、引导、纠正学生活动:自主完成
设计意图:进一步提高学生对异分母分式的加减运算能力
(四)随堂练习
第五环节:巩固深化
老师活动:巡视、引导学生活动:个体练习、板演设计意图:检验学生是否掌握分式的加减运算方法(五)课堂小结第六环节:提高认识老师活动:本节课我们学了哪些知识?在运用过程中需要注意些什么?你有什么收获?学生活动
归纳总结
(1)同分母分式加减法则
(2)简单异分母分式的加减设计意图:锻炼学生及时总结的良好习惯和归纳能力(六)作业布置第七环节:反思提炼课本P27第1、2题五、板书设计
初中数学创意教案篇5
学习目标:
1、能借助数轴初步理解绝对值的概念,会求一个数的绝对值。
2、正确理解绝对值的代数意义和几何意义,渗透数形结合与分类讨论思想。重点和难点:理解绝对值的概念,能求一个数的绝对值。
学习过程:
任务一、复习旧知:
1、什么叫互为相反数?在数轴上表示互为相反数的两点和原点的位置关系怎样?
2、数轴上与原点的距离是2的点表示的数有_____个,他们表示的数是_____;与原点的距离是5的点有____个、任务二、新知理解:
1、自读课本p11-p12,体会绝对值的意义。
绝对值的几何意义:____________________________________、
a的绝对值记作_______,如5的绝对值记作______,结果是_____、
试一试:(1)+6=______,0、2=________,+8、2=_______
(2)0=_______;
(3)-3=_____,-0、2=_____,-8、2=________、
绝对值的代数意义:(1)一个正数的绝对值是__________;
(2)一个负数的绝对值是___________(3)0的绝对值是___________。
上述可以用式子表示为:(1)当a是正数时,a=_______,
(2)当a是负数时,a=_______,(2)当a=0时,a=________,
任务三:巩固练习
1、求下列各数的绝对值:?7
12,?
110
,?4、75,10、5
2.计算-2++834??815
-20??45
3、绝对值是3的数是_______,有____个绝对值是1、5的数?4、判断:(1)有理数的绝对值一定是正数;
(2)如果一个数是正数,那么这个数的绝对值是它本身;(3)如果一个数的绝对值是它本身,那么这个数是正数(4)一个数的绝对值越大,表示它的点在数轴上越靠右。归纳:(1)不论有理数a取何值,它的绝对值总是______。
(2)两个互为相反数的绝对值____。能力提升:
(1)-35、6=________;a=_____(a<0);若x=5,则x=______(2)绝对值小于4的整数有________;绝对值大于2小于5的整数有________;
(3)绝对值等于本身的数是_______,绝对值等于它的相反数的数是_________,绝对值最小的有理数是_______、(
4)若a-2=3,则a=______
归纳总结:
略
初中数学创意教案篇6
【关键词】函数;函数思想方法;初中数学
函数概念,首先出现在初中数学课本.初中课本对函数概念是这样描述的:“设在一个变化过程中,有两个变量x和y,如果对于变量x的每一个确定的值,变量y都有唯一确定的值与它对应,那么就说,x是自变量,y是x的函数.”
函数概念的出现,开始了变量教学的新起点,打破了在此之前的常量教学的旧格局,许许多多的数学问题都可以利用函数概念来解析,利用函数思想方法来处理,甚至对于一些数学难题,一旦用上了函数思想方法,即迎刃而解,达到非常好的效果.因此,我们必须十分重视函数概念的教学,重视函数思想方法的应用.
一、函数思想方法的特性
函数思想方法,就是用运动和变化的观点,分析和研究具体问题中的数量关系,通过函数的形式,把这种关系表示出来并加以研究,从而获得问题的解决办法.函数思想方法,作为中学数学的思想方法,它具有以下特性:
1.函数概念的抽象性引起函数思想方法的复杂性
函数概念,体现一个变量与另一个变量的一种对应,也体现一个集合到另一个集合的一种映射,在初中数学来讲,则是一个变数与另一个变数的一种关系.什么叫对应,什么叫映射,什么叫关系,对初中生来说,是非常陌生的,这些抽象词汇,造成了学生对函数概念理解上的困难.因此,函数思想方法作为函数概念的外延,就显得非常复杂了.一个连函数概念都不理解的人,怎么能掌握函数思想方法呢?函数与图像的亲密对应,引发了数形结合方法;函数的等价变换,引发了化归思想方法;还有其他的,如换元法、配方法、综合法、分析法等.正确认识函数思想方法的复杂性,使教师更加重视函数概念的教学,更加重视函数思想方法的研究,提高教学的责任心.
2.函数概念的生活性引起函数思想方法的广阔性
函数概念虽然很抽象,但函数的具体应用却渗透到我们生活中的各个领域.可以说,我们的生活离不开函数,我们的每一个生产活动也离不开函数,许多关于数量的科学研究问题,只有引入函数才能表达清楚.生活中的每一个问题,只要引入变量,就可以与函数联系起来,而函数的变化千姿百态,目不暇接,于是,就产生千姿百态的函数思想方法.例如初中数学的路程问题、浓度问题、一次方程和二次方程的解法问题,高中数学体现在生产中的增产节支问题、生产的成本核算问题、一次不等式和二次不等式的求解问题、解三角形问题、面积问题、体积问题等,都可以引入变量,转变为函数问题.这一转变,使人们的函数思想方法打开了更为广阔的前景,解决问题思路也就左右逢源.
3.函数变化的奇异性引起函数思想方法的多样性
函数的变化经常出现奇妙的效果,三角形的边与角的关系通过三角式联系得天衣无缝,懂得了这些道理,不上山者能测山高,不过河者能测河宽,就显得不足为奇了.二次函数与抛物线的联系也是如胶似漆,看见二次函数就应该想到抛物线,看见抛物线也应该想到二次函数,二次函数的变化便引起抛物线的运动,而抛物线的运动又使二次函数变得奇异无穷.一次函数与直线的关系也是如此,一次函数的变化与直线的运动,引出许多美妙的数学问题,呈现出多姿多彩的思维效果.本来是生活中的实际问题、如产值最大问题、原料最省问题,还有生产设计问题、最优决策问题,列出了函数,掌握了函数与函数图像的变化规律,那么,解决问题就如囊中取物.
二、函数思想方法在初中数学教学中的应用
函数概念是初中数学概念的灵魂,函数思想方法是数学方法的主线,它能把数学概念、数学命题、数学原则、数学方法贯穿起来,使得数学内容达到更高层次的和谐与统一.因此,函数概念和函数思想方法在初中数学教学中起到了统帅的作用.数学教师若能抓住函数思想方法这条主线,再把其他思想方法连贯起来,应用于教学的各个环节,可以肯定地说,教学效果是很好的.我们在这方面作了一些有价值的探索.
1.函数思想方法应用于数学教学的全过程
函数的概念是动态的概念,函数思想方法是一种动态的思想方法,这正符合动态式的数学教学的要求.引进函数概念之后,实现了数与点的结合、函数与图形的结合,还实现了数与形的灵活转换、符号语言与图形语言的灵活转换.我们要帮助学生从局部的、静止的、割裂的认知结构中解放出来,学会运用动态的、变化的、联系的观点来理解数学知识,这乃是提高数学质量的重要途径.正是考虑到动态教学的新理念,于是,应该把体现动态思想方法的函数思想方法应用于教学的全过程,在课堂教学、课外作业、科研辅导等教学环节,只要能用函数思想方法来处理的,都应运用.这需要毅力,需要创造,需要教师从现有教材中挖掘与函数概念有关系的数学知识点,然后考虑运用函数思想方法解决它.
例1若关于实数x的不等式(k2-2k-3)x2-(k-3)x-1<0恒成立,求k的取值范围.
这不是一个简单的一元二次不等式,而是已知这个不等式恒成立,反过来求k的取值范围.这与函数概念有关吗?诚然,不等式的左边可以看做关于变量x的函数,记为y=(k2-2k-3)x2-(k-3)x-1,它的图像是抛物线,按题意,不等式恒成立,也就是说,函数值y恒小于零,则函数的图像,即抛物线总在x轴的下方,并且与x轴没有交点.根据抛物线的这个特点,可以确定,抛物线开口向下,二次项系数a=k2-2k-3<0,又可以确定,抛物线全部落在下半平面,与x轴没有交点,则二次方程没有实数根,Δ=(k-3)2+4(k2-2k-3)<0.这是一次成功的转化,把题意转化为解下列不等式组:
a=k2-2k-3<0,Δ=(k-3)2+4(k2-2k-3)<0
(k+1)(k-3)<0①(5k+1)(k-3)<0②-<k<3.
故k的取值范围是-<k<3.
这个数学问题的解决,确实是运用了函数思想,把不等式问题转化为函数问题,再把函数问题转化为图形问题,最后又把图形的特征转化为另一个不等式组的计算,这样的一条龙似的解题过程相当流畅,不仅充分体现了函数思想与方程思想、数形结合思想、转化思想的高度统一,同时也是函数思想方法解决问题的一个典型范例.
例2已知(1-2x)7=a0+a1x+…+a7x7,求代数式a1+a2+…+a7的值.
这个问题初中生能解决吗?初看起来,有点像二项展开式,是高中的问题.按高中知识来做,那就得把左边按二项式定理展开,对比两边系数,分别求出a1,a2,…,a7的值,最后把它们加起来,就得代数式a1+a2+…+a7的值,难度不小啊!
认真观察一下,这也是一个函数问题.把已知问题看做函数,记为y=(1-2x)7=a0+a1x+…+a7x7.
当x=0时,y=(1-2×0)7=a0=1;
当x=1时,y=(1-2×1)7=a0+a1+…+a7=-1,
所以a1+a2+…+a7=(a0+a1+…+a7)-a0=-1-1=-2.
一个看起来似乎是高中的数学问题,用了函数思想方法,却变成了初中生也能接受的数学问题.函数思想方法的功能不小啊!
2.函数思想方法要与其他数学知识紧密结合
函数思想方法确实是解决数学问题的有力武器,但绝不是万能武器.不是说所有数学问题都能用函数思想方法解决,而是说,凡能转化为函数问题的,就应该尽量转化.这也体现函数概念与其他数学知识的紧密结合.
3.函数思想方法应用于解决实际数学问题
我们的生活空间是一个巨大的数学空间,生活中的每一个实际问题大都能转化为数学问题,其中相当大的部分可以用函数思想方法来处理.为了强化函数思想方法的应用,更为了培养学生运用函数思想方法解决实际问题的能力,让学生学会解决身边发生的经济问题,学会解决经济发展过程中的一些社会问题.为此,我们应该努力创设良好的学习环境,使学生在学习中得到锻炼.
例3数学竞赛队的3位教师和若干名参赛学生准备乘飞机到北京参加全国性比赛,按当地飞机票价,乘飞机往返每人需交3000元.但民航服务站对师生乘坐飞机有优惠的临时规定:第一种优惠方案是教师买全票,学生买半票;第二种优惠方案为师生一律按六折优惠购票.你认为,应采取哪一种优惠方案?
这是发生在学生身边的与经济有关的生活问题,采取哪种方案,当然应以节约为原则,哪种方案为竞赛队节约开支,就采取哪种方案.考虑把旅费与学生人数建立函数关系,若设学生人数为x,两种优惠方案的旅费分别为y1和y2,则
y1=3000×3+1500x=9000+1500x,
y2=3000×0.6×(x+3)=1800×(x+3).
y1<y2?圳9000+1500x<1800x+5400?圳x>12;
y1>y2?圳9000+1500x>1800x+5400?圳x<12;
y1=y2?圳9000+1500x=1800x+5400?圳x=12.
当学生人数多于12人时,采取第一种优惠方案;当学生人数少于12人时,采取第二种优惠方案;当学生人数等于12人时,采取哪种优惠方案都可以.
函数思想方法在解决数学问题中的确起到非常重要的作用,我们应加强这一方法的教学探讨和学习训练,把数学教学推向新水平.
【参考文献】
初中数学创意教案篇7
①结合你对一元一次方程中的一次的理解,说一说你对一次函数中的“一次”的理解.②k可以是怎样的`数?
③你怎样认识一次函数和正比例函数的关系?
一个常数b的和即Y=kx+b定义:一般地,形
如
Y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数,当
b=0时,
Y=kx+b即Y=kx,所以说正比例函数是一种特殊的一次函数。
例1、下列函数中,Y是X的一次函数的是()①Y=X-6②Y=3X③Y=X2④Y=7-X
学生独立
A①②③B①③④C①②④D①②③④
例2、写出下列各题中x与y之间的关系式,并判
解释与应用
断,y是否为x的一次函数?是否为正比例函数?①汽车以60千米/时的速度匀速行驶,行驶路程中y(千米)与行驶时间(时)之间的关系式;②圆的面积y(厘米2)与他的半径x(厘米)之间的关系:③一棵树现在高50厘米,每个月长高2厘米,x月后这棵树的高度y(厘米)之间的关系式
初中数学创意教案篇8
1.初中数学教案模板
1.课题
填写课题名称(初中代数类课题)
2.教学目标
(1)知识与技能:
通过本节课的学习,掌握......知识,提高学生解决实际问题的能力;
(2)过程与方法:
通过......(讨论、发现、探究)的过程,提高......(分析、归纳、比较和概括)的能力;
(3)情感态度与价值观:
通过本节课的学习,增强学生的学习兴趣,将数学应用到实际生活中,增加学生数学学习的乐趣。
3.教学重难点
(1)教学重点:本节课的知识重点
(2)教学难点:易错点、难以理解的知识点
4.教学方法(一般从中选择3个就可以了)
(1)讨论法
(2)情景教学法
(3)问答法
(4)发现法
(5)讲授法
5.教学过程
(1)导入
简单叙述导入课题的方式和方法(例:复习、类比、情境导出本节课的课题)
(2)新授课程(一般分为三个小步骤)
①简单讲解本节课基础知识点(例:类比一元一次方程的解法,讲解一元一次不等式的解法和步骤)。
②归纳总结该课题中的重点知识内容,尤其对该注意的一些情况设置易错点,进行强调。可以设计分组讨论环节(例:分组讨论一元一次不等式的解法,归纳总结一元一次不等式的方法步骤,设置系数化为一,负号要变号的易错点)。
③拓展延伸,将所学知识拓展延伸到实际题目中,去解决实际生活中的问题(例:设置一元一次不等式的应用题,学生再次体会一元一次不等式解决实际问题,并且再次巩固不等式的解法)。
(3)课堂小结
教师提问,学生回答本节课的收获。
(4)作业提高
布置作业(尽量与实际生活相联系,有所创新)。
6.教学板书
2.初中数学教案格式
课程编码:______________________________________
总学时/周学时:/
开课时间:年月日第周至第周
授课年级、专业、班级:___________________________
使用教材:_______________________________________
授课教师:_______________________________________
1.章节名称
2.教学目的
3.课时安排
4.教学重点、难点
5.教学过程(包括教学内容、教师活动、学生活动、教学方法等)
6.复习巩固与作业要求
7.教学环境及教具准备
8.教学参考资料
9.教学后记
3.初中数学教案范文
教学目的
1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。
2.使学生会列一元一次方程解决一些简单的应用题。
3.会判断一个数是不是某个方程的解。
重点、难点
1.重点:会列一元一次方程解决一些简单的应用题。
2.难点:弄清题意,找出“相等关系”。
教学过程
一、复习提问
一本笔记本1.2元。小红有6元钱,那么她最多能买到几本这样的笔记本呢?
解:设小红能买到工本笔记本,那么根据题意,得1.2x=6
因为1.2×5=6,所以小红能买到5本笔记本。
二、新授
问题1:某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆?(让学生思考后,回答,教师再作讲评)
算术法:(328-64)÷44=264÷44=6(辆)
列方程:设需要租用x辆客车,可得44x+64=328
解这个方程,就能得到所求的结果。
问:你会解这个方程吗?试试看?
问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”
通过分析,列出方程:13+x=(45+x)
问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?
把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,
因为左边=右边,所以x=3就是这个方程的解。
这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。
问:若把例2中的“三分之一”改为“二分之一”,那么答案是多少?动手试一试,大家发现了什么问题?
同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?
三、巩固练习
教科书第3页练习1、2。
四、小结
本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。
五、作业
教科书第3页,习题6.1第1、3题。
初中数学创意教案篇9
一、说教材
(五)教材的地位和作用
《绝对值》是选自人教版初一数学第一章第二节第四部分的内容。这部分内容之前已经学习了有理数、数轴、相反数的内容,这是本节课学习的基础。绝对值的内容主要包括含义及有理数之间的大小比较,这也为后面学习有理数的加减法奠定了基础。
(六)教学目标
根据对教材内容的分析,以及在新课改理念的指导下,制定了如下三维目标:
(一)知识与技能
理解、掌握绝对值的含义,并且会比较有理数之间的大小。
(二)过程与方法
运用数轴来推理数的绝对值,并在推理的过程中清晰的阐述自己的观点,从而逐步发展发生的抽象思维。
(三)情感态度与价值观
体验数学活动的探索性和创造性,感受数学的严谨性以及数学结论的确定性。
教学重难点
通过以上对教材内容及教学目标的分析,以及学生已有的知识水平,本节课的教学重难点如下:
重点:绝对值的理解以及有理数的比较
难点:负数的绝对值的理解及比较
二、说学情
以上就是我对教材的分析,由于教学目标及重难点的确定也是在学生情况的基础上进行的,所以下面我对学情进行分析。
初一学生的抽象思维开始有了一定的发展,但还需一定的感性材料作支撑,同时思维比较活跃和积极,所以教学过程中会注重直观材料的运用,然后引导学生自主思考并理解知识,以激发学生的学习兴趣,调动学生的积极性和主动性。
三、说教材
基于以上对教材、学情的分析,以及新课改的要求,我在本课中采用的教法有:讲授法、演示法和引导归纳法。演示法中需要的教具有多媒体和温度计。
四、说教法
新课改理念告诉我们,学生不仅要学到具体的知识,更重要的是学生要学会怎样自己学习,为终身学习奠定扎实的基础。所以本课中我将引导学生通过自主探究、合作交流的学法来更好的掌握本节课的内容。
五、说教学程序
为了更好的实现三维目标、突破重难点,我将本课的教学程序设计为以下五个环节:
(一)情境导入
出示温度计,"北方某一城市的温度是零下15摄氏度,南方某一城市的温度是15摄氏度",学生在稿纸上画一条数轴,标出这两个温度,并请一位学生画在黑板上。
数轴的两个数值是相反数,是上节课的内容,0到-15°和0到15°的变化温度分别是15°,那么两个相同的变化温度,怎么用数学符号表示出来呢?
(二)新授
1、从上面的问题中,我引出今天的"绝对值"概念,然后和学生一起从数轴上推导出绝对值。
2、使用多媒体呈现一组数字,包括几个正数,几个负数。让大家在数轴上画出,并写出每个数字的绝对值。然后学生来依次说出每个绝对值,以巩固概念的掌握。
3、和大家一起写出这些绝对值,把负数、正数、0的绝对值分别写在三个地方,引导学生观察这些绝对值,并思考其中的规律,然后和学生一起得出结论,即正数的绝对值是本身,负数的绝对值是它的相反数,0的绝对值的0、得出这个结论后顺势提问:数a的绝对值是多少?进行分组讨论,在讨论一段时间后提醒学生刚刚的结论。
4、在每组的回答后,和学生一起总结出数a的绝对值,分三种情况,当a大于0,绝对值为a;等于0时,为0;小于0时,为-a、这三种情况的分析后,学生就充分理解了绝对值的含义。
5、回到大家画的数轴,大家很容易比较出原点0右边的正数的大小,那么左边的.负数的大小怎么比较呢?提出这个问题后不急于让学生回答,而是把学生引入一个情境,即把数轴上的数都看成是温度,比较温度的大小就比较容易,然后回到数的比较。在这个引导后,得出的结论是:离0越远的数,越小;也可以说绝对值越大的负数越小。
(三)巩固练习
在PPT上呈现一些数的绝对值,以及一些负数、正数、绝对值之间的比较的题。
(四)小结
引导学生总结出今天的学习内容,培养学生的归纳以及逻辑思维能力。
(五)布置作业
布置作业不是目的,目的是学生能够更好的掌握并运用本节课的内容。所以我会布置这样一个作业:请学生回家可以在父母的帮助下,找出南方和北方分别三个城市的温度,比较这些温度的大小,并写出每个温度的绝对值并进行比较。
(六)说板书设计
为了学生能够更清晰的掌握内容,我用写关键词的方式来有逻辑性的呈现我的板书。
以上就是我说课的全部内容,谢谢!
初中数学创意教案篇10
教学目标
1、经历不同的拼图方法验证公式的过程,在此过程中加深对因式分解、整式运算、面积等的认识。
2、通过验证过程中数与形的结合,体会数形结合的思想以及数学知识之间内在联系,每一部分知识并不是孤立的。
3、通过丰富有趣的拼图活动,经历观察、比较、拼图、计算、推理交流等过程,发展空间观念和有条理地思考和表达的能力,获得一些研究问题与合作交流方法与经验。
4、通过获得成功的体验和克服困难的经历,增进数学学习的信心。通过丰富有趣拼的图活动增强对数学学习的兴趣。
重点
1、通过综合运用已有知识解决问题的过程,加深对因式分解、整式运算、面积等的认识。
2、通过拼图验证公式的过程,使学习获得一些研究问题与合作交流的方法与经验。
难点:利用数形结合的方法验证公式
教学方法:动手操作,合作探究课型新授课教具投影仪
情景设置:
你已知道的关于验证公式的拼图方法有哪些?(教师在此给予学生独立思考和讨论的时间,让学生回想前面拼图。)
新课讲解:
把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子。美国第二十任总统伽菲尔德就由这个图(由两个边长分别为a、b、c的直角三角形和一个两条直角边都是c的直角三角形拼成一个新的图形)得出:c2=a2+b2他的证法在数学史上被传为佳话。他是这样分析的,如图所示:
教师接着在介绍教材第94页例题的拼法及相关公式
提问:还能通过怎样拼图来解决以下问题
(1)任意选取若干块这样的硬纸片,尝试拼成一个长方形,计算它的面积,并写出相应的等式;
(2)任意写出一个关于a、b的二次三项式,如a2+4ab+3b2
试用拼一个长方形的方法,把这个二次三项式因式分解。
这个问题要给予学生充足的时间和空间进行讨论和拼图,教师在这要引导适度,不要限制学生思维,同时鼓励学生在拼图过程中进行交流合作
了解学生拼图的情况及利用自己的拼图验证的情况。教师在巡视过程中,及时指导,并让学生展示自己的拼图及让学生讲解验证公式的方法,并根据不同学生的不同状况给予适当的引导,引导学生整理结论。
小结:
从这节课中你有哪些收获?
(教师应给予学生充分的时间鼓励学生畅所欲言,只要是学生的感受和想法,教师要多鼓励、多肯定。最后,教师要对学生所说的进行全面的总结。)
学生回答
a(b+c+d)=ab+ac+ad
(a+b)(c+d)=ac+ad+bc+bd
(a+b)2=a2+2ab+b2
学生拿出准备好的硬纸板制作
给学生充分的时间进行拼图、思考、交流经验,对于有困难的学生教师要给予适当引导。
初中数学创意教案篇11
我说课的题目是冀教版小学数学教材四年级下册第六单元时《垂线》。下面我从四个方面进行说课:
一、教学设计:
主要包括三个方面
1、教材分析:
垂线在生产、生活中有着广泛的应用,垂线的概念、性质是学生今后进一步学习数学的基础,在教材上起着承上启下的作用。
大多数学生感到数学枯燥,学习兴趣不高。我所教的班一直采用小组合作学习,学生基本养成了良好的预习习惯。这节课利用普通的多媒体教室,灵活运用现代教育技术,通过实例的展示及动画演示,让学生充分感知图形中蕴含的垂线特征,使知识的生成过程更直观更形象。对学生的认知、理解以及教学重难点突破起到了关键作用。
2、根据以上分析,我确定本节课的教学目标是:
知识与技能包括垂直的定义垂线的画法与性质。
数学思考包括
探索垂线的性质,发展学生的几何直觉,培养学生的猜想能力。并通过“做数学”,让学生对猜想进行检验,作出正确判断。
解决问题包括
培养学生数学语言表达能力,培养学生解决问题时的合作意识和习惯。
情感与态度包括
让学生体验数学充满着探索和创造,感受数学趣味,获得发现的喜悦。
鼓励学生感想敢说,让学生体验成功的快乐,树立学好数学的信心。
3、教学重难点:
教学重点:
垂直概念的建立、垂线的画法与性质。
教学难点:
用数学语言描述垂直的定义以及学生猜想能力的培养。
二、教学过程设计:
根据这节课的特点,我把整堂课分为课题导入、合作探究、课堂小结、拓展创新四个环节,灵活运用现代教育技术,突出重点,化解难点。为培养学生课前预习的习惯,设立了预习导航,准备了大量有关本节课的学习资料,并鼓励学生自己到网上查阅资料,提高学生的信息素养。
1、课题导入
课题导入运用多媒体展示学生熟悉的马路、篱笆、小棒等实物形象,并提出问题:仔细观察各组图形中两条直线的位置关系有什么共同点?让学生感到数学贴近生活,激发学生的表达欲望。
2、合作探究凸现学生的主体地位,让学生在学习中学会质疑、学会发现。合作探究分为垂直的定义、课堂练习、试试身手、垂线性质、你来当老师、走进生活五个小版块。其中,垂线的定义鼓励学生自己概括,并积极与大家交流。课堂练习梯度明显,答案灵活,尽量让每一个学生都有收获。“试试身手”让学生走上讲台,展示自己的发现,学生在轻松愉悦中很容易发现垂线的性质。“你来当老师”、“各抒己见”鼓励学生积极主动的发表自己的见解,营造平等、民主的学习氛围。激发学生探求的欲望,给学生一份自信,让学生在学习中学会质疑、学会发现。“走进生活”借助多媒体把学生的生活体验真实的再现给学生,让学生体验学有用的数学,增强学生学习数学的兴趣。
3、“课堂小结”让学生自己总结,谈本节课的收获、体会、本节课还有什么问题、新发现。鼓励学生大胆发言、锻炼学生的数学表达能力、语言概括能力。
4、探究创新:“创新园”让学生利用本节课所学知识,课后去思考、去动手制作、去创新发现。既能激发学生课后去学习、去探索的欲望,又能让学生感悟数学来源于生活,并反作用于生活的道理。培养学生学数学、用数学的创新意识,我想,只要我们教师用心,精心培育,创新园一定能育出创新果。
初中数学创意教案篇12
总体说明:
完全平方公式则是对多项式乘法中出现的较为特殊的算式的一种归纳、总结.同时,完全平方公式的推导是初中数学中运用推理方法进行代数式恒等变形的开端,通过完全平方公式的学习对简化某些整式的运算、培养学生的求简意识有较大好处.而且完全平方公式是后继学习的必备基础,不仅对学生提高运算速度、准确率有较大作用,更是以后学习分解因式、分式运算、解一元二次方程以及二次函数的恒等变形的重要基础,同时也具有培养学生逐渐养成严密的逻辑推理能力的作用.因此学好完全平方公式对于代数知识的后继学习具有相当重要的意义.
本节是北师大版七年级数学下册第一章《整式的运算》的第8小节,占两个课时,这是第一课时,它主要让学生经历探索与推导完全平方公式的过程,培养学生的符号感与推理能力,让学生进一步体会数形结合的思想在数学中的作用.
一、学生学情分析
学生的技能基础:学生通过对本章前几节课的学习,已经学习了整式的概念、整式的加减、幂的运算、整式的乘法、平方差公式,这些基础知识的学习为本节课的学习奠定了基础.
学生活动经验基础:在平方差公式一节的学习中,学生已经经历了探索和应用的过程,获得了一些数学活动的经验,培养了一定的符号感和推理能力;同时在相关知识的学习过程中,学生经历了很多探究学习的过程,具有了一定的独立探究意识以及与同伴合作交流的能力.
二、教学目标
知识与技能:
(1)让学生会推导完全平方公式,并能进行简单的应用.
(2)了解完全平方公式的几何背景.
数学能力:
(1)由学生经历探索完全平方公式的过程,进一步发展学生的符号感与推理能力.
(2)发展学生的数形结合的数学思想.
情感与态度:
将学生头脑中的前概念暴露出来进行分析,避免形成教学上的“相异构想”.
三、教学重难点
教学重点:1、完全平方公式的推导;
2、完全平方公式的应用;
教学难点:1、消除学生头脑中的前概念,避免形成“相异构想”;
2、完全平方公式结构的认知及正确应用.
四、教学设计分析
本节课设计了十一个教学环节:学生练习、暴露问题——验证——推广到一般情况,形成公式——数形结合——进一步拓广——总结口诀——公式应用——学生反馈——学生PK——学生反思——巩固练习.
第一环节:学生练习、暴露问题
活动内容:计算:(a+2)2
设想学生的做法有以下几种可能:
①(a+2)2=a2+22
②(a+2)2=a2+2a+22
③正确做法;
针对这几种结果都将a=1代入计算,得出①②都是错误的,但③的做法是否一定正确呢?怎么验证?
活动目的:在很多学生的头脑中,认为两数和的完全平方与两数的平方和等同,即:
(a+2)2=a2+22,如果不将这种定式思维,就很难建立起一个正确的概念;这一环节的目的就是让学生的这种错误或其它错误充分暴露出来,并让学生充分认识到自己原有的定式思维是错误的,为下一步构建新的思维模式埋下伏笔.
第二环节:验证(a+2)2=a2–4a+22
活动内容:(a+2)2=(a+2)•(a+2)=a2+2a+2a+22
活动目的:在前一环节已经打破了学生的原有的思维定式的基础上,给学生建立正确的思维方法,避免形成“相异构想”.
第三环节:推广到一般情况,形成公式
活动内容:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2
活动目的:让学生经历从特殊到一般的探究过程,体验到发现的快乐.
第四环节:数形结合
活动内容:设问:在多项式的乘法中,很多公式都都可以用几何图形进行解释,那么完全平方公式怎样用几何图形解释呢?
展示动画,用几何图形诠释完全平方公式的几何意义.
学生思考:还有没有其它的方法来诠释完全平方公式?(课后思考)
活动目的:让学生进一步认识到数与形都不是孤立存在的,数与形是可以有机地结合在一起,从而发展学生的数形结合的数学思想.
第五环节:进一步拓广
活动内容:推导两数差的完全平方公式:(a–b)2=a2–2ab+b2
方法1:(a–b)2=(a–b)(a–b)=a2–ab–ab+b2=a2–2ab+b2
方法2:(a–b)2=[a+(–b)]2=a2+2a(–b)+(–b)2=a2–2ab+b2
活动目的:让学生经历由两数和的完全平方公式拓广到两数差的完全平方公式的过程,体会到符号差异带来的结果差异,由第二种推导方法体会到两数差的完全平方公式是两数和的完全平方公式的应用.
第六环节:总结口诀、认识特征
活动内容:比较两个公式的共同点与不同点:(a+b)2=a2+2ab+b2
(a–b)2=a2–2ab+b2
特征:①左边都是一个二项式的完全平方,两者仅有一个符号不同;右边都是二次三项式,其中第一、三项是公式左边二项式中每一项的平方,中间一项是左边二项式中两项乘积的两倍,两者也仅一个符号不同;
②公式中的a、b可以是任意一个代数式(数、字母、单项式、多项式)
口诀:首平方,尾平方,首尾相乘的两倍在中央.
活动目的:认识完全平方公式的特征,总结出完全平方公式的口诀,便于学生理解与记忆,避免学生在应用该公式中出现错误.
第七环节:公式应用
活动内容:例:计算:①(2x–3)2;②(4x+)2
解:①(2x–3)2=(2x)2–2•(2x)•3+32=4x2–12x+9
②(4x+)2=(4x)2+2•••••(4x)()+()2=16x2+2xy+
活动目的:在前几个环节中,学生对完全平方公式已经有了感性认识,通过本环节的讲解以及下一环节的练习,使学生逐步经历认识——模仿——再认识.从而上升到理性认识的阶段.
第八环节:随堂练习
活动内容:计算:①;②;③(n+1)2–n2
活动目的:通过学生的反馈练习,使教师能全面了解学生对完全平方公式的理解是否到位,完全平方公式的应用是否得当,以便教师能及时地进行查缺补漏.
第九环节:学生PK
活动内容:每个学生各出五道完全平方公式的计算题给自己的同桌解答,比一比谁的准确性率高,速度快.
活动目的:活跃课堂气氛,激起学生的好胜心,进一步巩固学生对完全平方公式的理解与应用.
第十环节:学生反思
活动内容:通过今天这堂课的学习,你有哪些收获?
收获1:认识了完全平方公式,并能简单应用;
收获2:了解了两数和与两数差的完全平方公式之间的差异;
收获3:感受到数形结合的数学思想在数学中的作用.
活动目的:通过对一堂课的归纳与总结,巩固学生对完全平方公式的认识,体会数学思想的精妙.
第十一环节:布置作业:
课本P43习题1.13
初中数学创意教案篇13
因式分解
教材分析
因式分解是进行代数式恒等变形的重要手段之一,因式分解是在学习整式四则运算的基础上进行的,它不仅仅在多项式的除法、简便运算中等有直接的应用,也为以后学习分式的约分与通分、解方程(组)及三解函数式的恒等变形带给了必要的基础,因此学好因式分解对于代数知识的后续学习,具有相当重要的好处。由于本节课后学习提取公因式法,运用公式法,分组分解法来进行因式分解,务必以理解因式分解的概念为前提,所以本节资料的重点是因式分解的概念。由整式乘法寻求因式分解的方法是一种逆向思维过程,而逆向思维对初一学生还比较生疏,理解起来有必须难度,再者本节还没涉及因式分解的具体方法,所以理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法是教学中的难点。
教学目标
认知目标:(1)理解因式分解的概念和好处
(2)认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。
潜力目标:由学生自行探求解题途径,培养学生观察、分析、决定潜力和创新潜力,发展学生智能,深化学生逆向思维潜力和综合运用潜力。
情感目标:培养学生理解矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度。
目标制定的思想
1.目标具体化、明确化,从学生实际出发,具有针对性和可行性,同时便于上课操作,便于检测和及时反馈。
2.课堂教学体现潜力立意。
3.寓德育教育于教学之中。
教学方法
1.采用以设疑探究的引课方式,激发学生的求知欲望,提高学生的学习兴趣和学习用心性。
2.把因式分解概念及其与整式乘法的关系作为主线,训练学生思维,以设疑——感知——概括——运用为教学程序,充分遵循学生的认知规律,使学生能顺利地掌握重点,突破难点,提高潜力。
3.在课堂教学中,引导学生体会知识的发生发展过程,坚持启发式,鼓励学生充分地动脑、动口、动手,用心参与到教学中来,充分体现了学生的主动性原则。
4.在充分尊重教材的前提下,融教材练习、想一想于教学过程中,增设了由浅入深、各不相同却又紧密相关的训练题目,为学生顺利掌握因式分解概念及其与整式乘法关系创造了有利条件。
5.改变传统言传身教的方式,利用计算机辅助教学手段进行教学,增大教学的容量和直观性,提高教学效率和教学质量。
教学过程安排
一、提出问题,创设情境
问题:看谁算得快?(计算机出示问题)
(1)若a=101,b=99,则a2—b2=(a+b)(a—b)=(101+99)(101—99)=400
(2)若a=99,b=—1,则a2—2ab+b2=(a—b)2=(99+1)2=10000
(3)若x=—3,则20x2+60x=20x(x+3)=20x(—3)(—3+3)=0
二、观察分析,探究新知
(1)请每题想得最快的同学谈思路,得出最佳解题方法(同时计算机出示答案)
(2)观察:a2—b2=(a+b)(a—b)①的左边是一个什么式子?右边又是什么形式?
a2—2ab+b2=(a—b)2②
20x2+60x=20x(x+3)③
(3)类比小学学过的因数分解概念,(例42=2×3×7④)得出因式分解概念。
板书课题:§7。1因式分解
1.因式分解概念:把一个多项式化成几个整式的积的形式叫做因式分解,也叫分解因式。
三、独立练习,巩固新知
练习
1.下列由左边到右边的变形,哪些是因式分解?哪些不是?为什么?(计算机演示)
①(x+2)(x—2)=x2—4
②x2—4=(x+2)(x—2)
③a2—2ab+b2=(a—b)2
④3a(a+2)=3a2+6a
⑤3a2+6a=3a(a+2)
⑥x2—4+3x=(x—2)(x+2)+3x
⑦k2++2=(k+)2
⑧x—2—1=(x—1+1)(x—1—1)
⑨18a3bc=3a2b·6ac
2.因式分解与整式乘法的关系:
因式分解
结合:a2—b2=========(a+b)(a—b)
整式乘法
说明:从左到右是因式分解其特点是:由和差形式(多项式)转化成整式的积的形式;从右到左是整式乘法其特点是:由整式积的形式转化成和差形式(多项式)。
结论:因式分解与整式乘法正好相反。
问题:你能利用因式分解与整式乘法正好相反这一关系,举出几个因式分解的例子吗?
(如:由(x+1)(x—1)=x2—1得x2—1=(x+1)(x—1)
由(x+2)(x—1)=x2+x—2得x2+x—2=(x+2)(x—1)等等)
四、例题教学,运用新知:
例:把下列各式分解因式:(计算机演示)
(1)am+bm(2)a2—9(3)a2+2ab+b2
(4)2ab—a2—b2(5)8a3+b6
练习2:填空:(计算机演示)
(1)∵2xy=2x2y—6xy2
∴2x2y—6xy2=2xy
(2)∵xy=2x2y—6xy2
∴2x2y—6xy2=xy
(3)∵2x=2x2y—6xy2
∴2x2y—6xy2=2x
五、强化训练,掌握新知:
练习3:把下列各式分解因式:(计算机演示)
(1)2ax+2ay(2)3mx—6nx(3)x2y+xy2
(4)x2+—x(5)x2—0。01(6)a3—1
(让学生上来板演)
六、变式训练,扩展新知(计算机演示)
1。若x2+mx—n能分解成(x—2)(x—5),则m=,n=
2.机动题:(填空)x2—8x+m=(x—4),且m=
七、整理知识,构成结构(即课堂小结)
1.因式分解的概念因式分解是整式中的一种恒等变形
2.因式分解与整式乘法是两种相反的恒等变形,也是思维方向相反的&39;两种思维方式,因此,因式分解的思维过程实际也是整式乘法的逆向思维的过程。
3.利用2中关系,能够从整式乘法探求因式分解的结果。
4.教学中渗透对立统一,以不变应万变的辩证唯物主义的思想方法。
八、布置作业
1.作业本(一)中§7。1节
2.选做题:①x2+x—m=(x+3),且m=。
②x2—3x+k=(x—5),且k=。
评价与反馈
1.透过由学生自己得出因式分解概念及其与整式乘法的关系的结论,了解学生观察、分析问题的潜力和逆向思维潜力及创新潜力。发现问题,及时反馈。
2.透过例题及练习,了解学生对概念的理解程度和实际运用潜力,最大限度地让学生暴露问题和认知误差,及时发现和弥补教与学中的遗漏和不足,从而及时调控教与学。
3.透过机动题,了解学生对概念的熟练程度和思维的灵敏性、深刻性、广阔性及探研创造潜力,及时评价,及时矫正。
4.透过课后作业,了解学生对知识的掌握状况与综合运用知识及灵活运用知识的潜力,教师及时批阅,及时反馈讲评,同时对个别学生面批作业,能够更及时、更准确地了解学生思维发展的状况,矫正的针对性更强。
5.透过课堂小结,了解学生对概念的熟悉程度和归纳概括潜力、语言表达潜力、知识运用潜力,教师恰当地给予引导和启迪。
6.课堂上反馈信息除了语言和练习外,学生神情也是信息来源,而且这些信息更真实。学生神态、表情、坐姿都反映出学生对教师教学资料的理解和理解程度。教师应用心捕捉学生在知识掌握、思维发展、潜力培养等各方面全方位的反馈信息,随时评价,及时矫正,随时调节教学。
初中数学创意教案篇14
教学目标
知识与技能:
了解勾股定理的一些证明方法,会简单应用勾股定理解决问题
过程与方法:
在充分观察、归纳、猜想的基础上,探究勾股定理,在探究的过程中,发展合情推理,体会数形结合、从特殊到一般等数学思想。
情感态度价值观:
通过对我国古代研究勾股定理的成就介绍,培养学生的民族自豪感。
教学过程
1、创设情境
问题1国际数学家大会是最高水平的全球性数学学科学术会议,被誉为数学界的“奥运会”。2002年在北京召开了第24届国际数学家大会。下图就是大会会徽的图案。你见过这个图案吗?它由哪些我们学习过的基本图形组成?这个图案有什么特别的含义?
师生活动:教师引导学生寻找图形中的直角三角形和正方形等,并引导学生发现直角三角形的全等关系,指出通过今天的学习,就能理解会徽图案的含义。
设计意图:本节课是本章的起始课,重视引言教学,从国际数学家大会的会徽说起,设置悬念,引入课题。
2、探究勾股定理
观看洋葱数学中关于勾股定理引入的视频,让我们一起走进神奇的数学世界
问题2相传2500多年前,毕达哥拉斯有一次在朋友家作客时,发现朋友家用转铺成的地面图案反应了直角三角形三边的某种数量关系,请你观察下图,你从中发现了什么数量关系?
师生活动:学生先独立观察思考一分钟后,小组交流合作分析图形中两个蓝色正方形与橙色正方形有哪些数量关系,教师参与学生的讨论
追问:由这三个正方形的边长构成的等腰直角三角形三条边长之间又有怎么样的关系?
师生活动:教师引导学生发现正方形的面积等于边长的平方,归纳出:等腰直角三角形两条直角边的平方和等于斜边的平方。
设计意图:从最特殊的等腰直角三角形入手,便于学生观察得到结论
问题3:数学研究遵循从特殊到一般的数学思想,既然我们得到了等腰直角三角形三边的这种特殊的数量关系,那我们不妨大胆猜测在一般的直角三角形(在下图的方格纸中,每个方格的面积是1)中,这种特殊的数量关系也同样成立。
师生活动:学生独立思考后小组讨论,难点是如何证明求以斜边为边长的正方形的面积,可由师生共同总结得出可以通过割、补两种方法,求出其面积。
初中数学创意教案篇15
数学课程教育叙事
引言:
数学是一门重要的学科,它不仅是升学考试的重要科目,更是培养学生逻辑思维和解决问题能力的关键。在本文中,我将分享一堂初中数学课程的教学叙事,以探讨如何更好地帮助学生掌握数学知识。
教学经历:
在一次初中数学课上,我讲解了“二次函数”这一知识点。为了让学生更好地理解这一概念,我设计了一个游戏——“猜数字”。游戏规则很简单:我随机选择一个数字,并让学生猜这个数字。学生可以通过计算平均数、方差等方式来猜测这个数字。通过这个游戏,学生能够直观地理解二次函数中“对称轴”、“开口方向”等概念。
反思与总结:
这次教学经历让我意识到,传统的教学方式往往过于注重知识的传授,而忽略了学生的学习体验。为了让学生更好地掌握数学知识,我们需要创造生动有趣的教学情境,激发学生的学习兴趣。在“猜数字”游戏中,学生不仅学会了二次函数的知识,还感受到了数学的趣味性和实用性。
此外,这次教学经历也让我意识到,教师应该不断学习和探索新的教学方法和手段。在信息化时代,我们可以利用多媒体、网络等现代教育技术来丰富课堂教学,提高学生的学习效果。
结论:
数学教育叙事是一种有益的教学方式,它能够让教师更好地了解学生的学习需求和困难,从而针对性地开展教学。通过创造生动有趣的教学情境和探索新的教学方法和手段,我们可以帮助学生更好地掌握数学知识,提高他们的逻辑思维和解决问题的能力。