教案吧 > 小学教案 > 四年级教案 >

四年级下册数学教案汇总

时间: 新华 四年级教案

一份优秀的教案应该采用多种教学方法和手段,例如讲解、实验、讨论等,以激发学生的学习兴趣并提高教学效果。想知道如何写出优秀的四年级下册数学教案汇总吗?这里为大家分享四年级下册数学教案汇总,快来学习吧!

四年级下册数学教案汇总篇1

学情分析:

鸡兔同笼问题是我国民间流传下来的一类数学妙题,它集题型的趣味性、解法的多样性、应用的广泛性于一体,具有训练智能的教育功能和价值,是实施开放式教学的好题材。教材呈现三种解题思路:列表尝试法、假设法和方程法。列表尝试法能直观反映数据的变化,学生容易接受,但数据较大时比较繁琐不宜采用;假设法是一种算术方法,计算比较简便,但理解算理有一定难度;方程法容易建立数量关系,有利于培养学生的分析能力,但求解过程对多数小学生而言较难。因此,本课设计的重点放在理解假设法的算理上。列表尝试法虽然有局限性,但它是假设法和方程法的基础,因此在引导学生用列表尝试法解决问题时,就要有意识地作好铺垫,为下面的教学埋下伏笔。在掌握解决问题的方法后,引导学生反思提升,通过鸡兔同笼问题与生活中类似问题的比较,帮助学生建立“鸡兔同笼”结构特点和解决模型。

教学目标:

1、知识与技能:使学生了解“鸡兔同笼”问题的结构特点,掌握用列表法、假设法、方程法解决问题,初步形成解决此类问题的一般性策略。

2、过程与方法:通过自主探索,合作交流,让学生经历用不同的方法解决“鸡兔同笼”问题的过程,使学生体会解题策略的多样性。渗透化繁为简的思想。

3、情感态度与价值观:使学生感受古代数学问题的趣味性,体会到“鸡兔同笼”问题在生活中的广泛应用,提高学习数学的兴趣。

教学重点:

尝试用不同的方法解决“鸡兔同笼”问题,体会用列表法和假设法解决问题的优越性。

教学难点:

理解用假设法解决“鸡兔同笼”问题的算理。

教学过程:

一、以史激趣,导入新课:

同学们,你们知道吗?数学是思维的体操,它可以让我们的头脑越来越聪明。我们中国人自古以来就喜欢数学并且研究数学,早在1500年前就有一部数学著作《孙子算经》,那里面记载了许多有趣的数学名题,今天我们就一起研究其中的鸡兔同笼问题。(板书:鸡兔同笼)

二、独立探索,构建新知:

(课件出示例题,指名读)鸡兔同笼,有20个头,54条腿,鸡兔各有多少只?

你从这道题中,找到了什么数学信息?

(鸡的只数+兔的只数=20只,一只鸡2条腿,一只兔4条腿,鸡的腿数+兔的腿数=54条……)

这样一道1000多年前的数学名题要大家短时间内找到答案,确实不容易,就让我们先来猜测猜测。(板书:猜测)

谁先来猜一猜,鸡可能多少只?兔可能多少只?(鸡8只,兔12只)

能说说你猜测的依据吗?(鸡的只数+兔的只数=20只)

有了猜测的依据,还有谁想继续猜?(……)

给老师一个机会,我猜鸡是1只,那兔有几只?(19只)

怎么知道我猜得对不对?(通过计算来验证)

(板书并验证)计算的腿的条数是78条和实际的腿的条数不相符,说明我的猜测怎么样?(失败了)

虽然我的猜测失败了,但如果继续猜测下去,我的这次失败的猜测和验证对以后的猜测有什么启示和帮助吗?(因为78条腿比54条腿多,这就说明兔的只数多了,再猜测应该减少兔的只数,增加鸡的只数。)

现在,就请同学们在你的练习本上,继续老师黑板上的猜测,如果你有更简单的猜测方法,也可以重新列举一个猜测。

四年级下册数学教案汇总篇2

教学目标

1.知识与能力:能根据一组相关的数据,绘制折线统计图。

2.过程与方法:经历处理实验数据的过程,了解折线统计图的特点;从折线统计图上,获取数据变化的信息,并进行简单预测。

3.情感态度价值观:培养规范有序的解决问题的步骤。

学习重点

能根据一组相关的数据,绘制折线统计图。

学习难点

从折线统计图上,获取数据变化的信息,并进行简单预测。

教学过程

一、知识回顾。

上节课我们学习了条形统计图,条形统计图有什么优点?

二、自学指导。

1.情景导入:

(用蒜苗生长的动画图片引入新课)

2.由学生动手,演示笑笑的蒜苗生长情况统计表。

3.动画演示蒜苗生长情况折线统计图(要强调学生注意观察画折线统计图的步骤)。

让学生分析在格子图中画折线统计图可以分成哪两步。

三、习题巩固。

课本P89练一练1。

四、实践应用。

课本P89练一练2。

五、课堂小结。

1.折线统计图有什么优点呢?

折线统计图有利于直观了解事物的变化情况。

2.怎样画折线统计图呢?

(1)先在格子图中描点。

(2)连线。

3.统计图一般有几种形式呢?

统计图一般有条形统计图、折线统计图、扇形统计图三种形式。

4.进行预测时,先要找出数量变化趋势中的规律,再进行预测。

六、知识拓展。

为了寻找小玲跳绳成绩提高的秘密,笑笑帮助小玲记录了锻炼的情况,并制成了统计图。

(1)小玲跳绳中哪一阶段成绩提高最快?哪一阶段成绩提高比较缓慢?

答:小玲第5~10天成绩提高最快,第15~20天和20~25天成绩提高比较缓慢。

(3)估计小玲第8天的成绩大约是多少,达到每分135个大约是在第几天?

答:估计小玲第8天的成绩大约是118个,达到每分135个大约是在第12天。

七、目标检测。

1.要表示上海20__年全年每月降水量的变化情况,用()表示合适。

A.条形统计图

B.折线统计图

C.扇形统计图

2.统计图一般有_____________、_____________、_____________。

3.下面的折线统计图表示的是李明从9时到11时由甲地到乙地骑车行驶的情况。

(1)李明从甲地到乙地一共用了多长时间?甲乙两地的路程是多少千米?他平均每时行驶多少千米?

(2)李明在中途停留了吗?如果停留了,那么停留了多长时间?

(3)李明在最后30分里行驶了多少千米?比他骑车行驶全程的平均速度快多少?

八、实践作业。

根据十几天观察蒜苗得到的结论,写一篇《我的蒜苗长得快》数学实践小论文。

四年级下册数学教案汇总篇3

教学目标

1?经历在解决数学问题的情境中探索发现乘法分配律的过程。

2?理解并掌握乘法分配律,并能运用乘法运算律进行简便计算。

3?在解决数学问题中培养学生一题多解的发散思维能力,通过发现运算律培养探索、概括能力。

教学重、难点

探索发现乘法分配律,理解并能运用乘法运算律进行简便计算;对乘法分配律进行正向和逆向的理解。

教学过程

一、 创设情景,探索新知

出示例4。

(1)出示问题情景,解决问题。

你从情景图中获取了哪些数学信息?要解决"养鸡场共有多少只鸡?"该怎样列式计算?(学生口答信息,然后独立列式计算)

全班汇报解题思路和方法。

教师板书:

(50+30)×75  50×75+30×75

=80×75     =3750+2250

=6000(只)   =6000(只)

(2)比较两种解法,发现两种解法的相同点和不同点,并举出生活中的类似例子。

(小组讨论,全班交流)

教师板书: (50+30)×75=50×75+30×75

(3)在计算中比较并发现乘法分配律。

算一算,比一比。

(3+2)×35=3×35+2×35=  3×(4+6)=3×4+3×6=

(13+12)×4=13×4+12×4=

比较每排的两个算式有什么关系?每排的两个算式的计算结果相等吗?

学生独立计算验证自己的猜想。

(小组讨论,全班交流)

板书:

(3+2)×35=3×35+2×35  3×(4+6)=3×4+3×6

(13+12)×4=13×4+12×4

教师:谁还能举出符合这个规律的例子?(学生举例)

教师:谁能用自己的话来表达这几组算式所反映的规律?(学生回答)

教师小结:两个数的和与一个数相乘,可以把这两个数分别与这个数相乘,再将两个积相加,这叫乘法分配律。

(4)如果用a,b,c表示3个数,可以用怎样的式子表示乘法分配律呢?

(学生独立写出,然后全班交流)

教师整理并板书:(a+b)×c=a×c+b×c 或a×c+b×c=(a+b)×c

二、课堂活动

1?课堂活动第1题:先让学生独立算一算,对有困难的也可先在小组中议一议。

最后让学生说一说自己是怎么算的?能说明乘法分配律吗?

2?课堂活动第2题:先让学生讨论,找出错误的原因,再汇报,最后让学生改正。

4?练习五中第1题:学生独立做在书上,订正时让学生说说运用的是什么运算律?

先做,再议一议,最后与全班同学交流。

三、课堂小结

四年级下册数学教案汇总篇4

一、创设情景、感受旋转

1、出示3张图片:风扇、风车、礼花

师:这些物体都在怎样运动?你能用手势表示一下吗?

小结:像这样的运动现象我们把它叫做旋转。

师:生活中的旋转现象还有很多,你能举个例子吗?

师:今天这节课我们就一起来研究图形的旋转现象。(揭题)

出示旋转概念:在平面内,将一个图形绕一个顶点沿某个方向转动一个角度,这样的图形运动称为旋转。

二、认识顺时针和逆时针旋转

出示转杆图片

提问:

(1)从这幅图中,你看到了什么?

(2)转杆分别是怎样转动的?生活中还有哪些类似的转动例子?

(3)理解顺时针、逆时针旋转的含义,转杆打开与关闭时,旋转过程有什么相同之处?有什么不同之处?哪一种与时针旋转的方向相同?

小结:与时针旋转方向相同的是顺时针旋转,方向相反的是逆时针旋转。转杆打开是逆时针旋转90°,转杆关闭是顺时针旋转90°。

三、认识旋转的三要素

出示方格图:把三角尺绕A点旋转90°

师:“绕A点旋转”是什么意思?这个点能动吗?学生自练

师:旋转后的边与旋转前有什么关系?谁能说说自己是怎么画的?

师:你觉得将图形在旋转时,要确定什么?

出示旋转三要素:旋转中心、旋转方向、旋转角度

四、解决生活中的实际问题

1、做“想想做做”第1题

(1)观察、交流;学生独立完成。

(2)交流:从6:00到9:00与从9:00到12:00时针都旋转了90度。

(3)如果去掉台秤上的物品,指针又是怎样旋转的?转盘上的指针呢?

2、“想想做做”第2题

提问:你是怎样画的?

共同小结:要确定旋转后长方形的位置,关键在于确定相交于A点的两条邻边的位置;要确定旋转后小旗图的位置,关键在于确定旗杆的位置。

3、“想想做做”第3题

提问:

(1)观察每组中的两个图形,你有什么发现?

(2)你能旋转每组中的一个图形,使每组图形变成一个长方形吗?

(3)你是怎样画的?最后一个图形只旋转一次能成吗?它一共旋转了多少度?

五、全课总结

通过这节课的学习,你有什么收获?

将图形按一定角度旋转时,要注意什么?

四年级下册数学教案汇总篇5

〖教学内容〗

《图形的变换》北师大版四年级上册第四单元第54-56页。

〖教材分析〗

在学习这部分内容之前,学生已经在三年级初步感受了生活中的平移与旋转现象,并能在方格纸上画出一个沿水平、垂直方向平移后的图形。本课学习的内容是在上述基础上的延伸,把学生的视角引入到图形的旋转,意在通过欣赏、探索、创作等一系列活动,使学生体验到简单图形变成复杂图案的过程,理解旋转的中心点、方向、角度不同,形成的图案也不同,进一步发展学生的空间观念,为今后继续学习图形变换奠定基础。

1.在操作的过程中,让学生体会图形变换的特点

本单元内容的教学,应鼓励学生动手操作,并在操作的过程中积极地思考。如“图形的旋转”活动(教材第54页),教材中展示的两幅美丽的图案是由一个简单的图形经过旋转而得到的。教学中,可以准备四张画着同一图案的纸,然后逐张围绕某一点进行旋转,旋转90°后,贴上一张纸,再旋转90°,再贴上一张纸,直至形成一个完整的图案。在旋转的过程中教师要提醒学生观察并思考:图案发生了哪些变化,是绕着哪一点旋转的。

本单元的很多练习都是可以操作的,因此,在课前可以请学生准备一些小的学具,这样,在教学的过程中学生就有操作的机会。练习中的一些问题也通过学生的操作回答,以提高学生的感性认识。

2.在图形的变换中,提倡不同的操作方法

一个图形经过变换后,可以得出新的图形,但得到同样的新图形,可以有不同的操作方法。因此,可以先让学生想一想,再在方格纸上试一试,然后全班来说一说。在教学过程中,教师要深入到学生活动中去,从中发现学生有特色的操作方法,并给予鼓励与肯定,为学生互相学习与交流提供条件。

3.在欣赏的过程中,鼓励学生设计制作美丽的图案

本单元的数学欣赏内容是任意一个简单的图形,当它围绕一点进行旋转,并把每次旋转后的图形沿轮廓画下来,那么就会形成一个美丽的图案。学生在三年级时已经欣赏了正方形旋转的过程,并进行了制作。本单元把这一内容进一步扩展,可以是任意的简单图形。在教学中,先请学生欣赏,然后,每个学生用硬纸剪一个任意的简单图形,接着进行变换制作。对学生制作的图案,只要基本符合要求,教师就应肯定。对一些设计特别优秀的学生,也可以让他们当场再演示一遍,以带动动手能力较弱的学生。

〖教学目标〗

1.进一步认识图形的旋转变换,探索它的特征和性质。

2.能在方格纸上将简单的图形旋转90。。

3.初步学会运用旋转的方法在方格纸上设计图案,发展学生的空间观念。

4.欣赏图形的旋转变换所创造出的美,培养学生的审美能力;感受旋转在生活中的应用,体会数学的价值。

〖教学重点〗

1.理解图形旋转变换的含义。

2.探索图形旋转的特征和性质。

〖教学难点〗

1、探索图形旋转的特征和性质。

2、能在方格纸上将简单图形绕固定点顺时针旋转90°并说出旋转过程。

〖教学工具〗

多媒体课件、每桌一个学具袋(基本图形、彩笔)。

〖教学过程〗

一、情景引入:

这是一只小朋友很喜欢玩的风车。

请两个小朋友和老师一起玩一玩。(生操作)

其他孩子请注意观察风车是怎样运动的?

谁来说说,在风车的运动中,你看出了什么?

(解决旋转、旋转中心、旋转方向)

出示钟面

在数学里,我把向这个方向旋转的方向叫做顺时针方向;

逆时针方向。

手势,比划。

小结:在刚才的运动方式中,我们可以说,

风车绕中心点顺时针方向旋转;

或者风车绕中心点逆时针方向旋转。

会说了吗?

二、新授:

在生活中,有各种美丽的图案,有的是简单的图形通过平移、旋转得到的。

你想知道这些图案是怎样设计的吗?(想知道吗?)

那我们今天就进一步研究“图形的旋转”。(板书课题)

那么我们选一副简单的图案,由易到难研究它是通过怎样的简单图形,怎样旋转而成的,请仔细观察。

课件展示

为了便于研究,老师还专门做了一个这样模型把它粘贴在黑板上。

讨论:

小组内相互说一说,刚才,你看到了什么?

(形状、大小都不变)

师:从图形A到图形B是如何变换的?

是如何旋转的。(绕点O顺时针方向。。。。。。)

旋转了多少度?

你是怎样判断它旋转了90°的呢?

(有什么方法,想一想,互相说一说)

结合图例,图中画出对应边,标出旋转角。测量。

这个度数叫做旋转度数

小结出,图B可以看作图A绕点O顺时针方向旋转90°

谁能完整地再说一遍。

强调三要素。

师:从图形B到图形C是如何变换的?

图形A到图形C呢?

同学们,我们可以说图形A绕点O顺时针方向旋转180°得到图形C;还有其他的说法吗?(配合手势)

逆时针方向

看到这副图,你还能像这样说些什么吗?

师小结,只有旋转中心、旋转方向和旋转度数三者都确定了,旋转以后的位置才能确定。

三、巩固练习:

1.转一转。(动手操作)

说一说这些三角形是以哪个点为中心旋转的

2.

四、欣赏,升华。

感受旋转的美,数学的美。

由什么简单图形旋转而成的?

四年级下册数学教案汇总篇6

教学内容:

四年级上册第26页例1例2,做一做。

教材分析:

例题中只呈现加减法计算的例子,按键数字和屏幕显示的结果对应出现;乘除法式题要由学生自己尝试操作。在用计算器进行大数的运算的同时让学生探索计算的规律,把计算和探索规律有机地结合在一起,既让学生学习了用计算器计算的方法,又激发了学生探索数学奥妙的兴趣,还是培养学生观察、推理能力的直接途径。

教学目标:

1.使学生能够利用电子计算器进行简单的计算。

2.使学生知道用电子计算器计算顺序和笔算顺序是一样的。

3.让学生善于观察发现数学的秘密,能够对一些有规律的数进行口算。

教学重点:

能够利用计算器进行简单的计算。

教学难点:

懂得观察发现一些有规律的数的计算。

教学过程:

一、利用计算器计算

1、师:谁会使用计算器计算?

学生介绍使用方法:按on/c键,显示:0输入题目,按=键,显示结果,再按on/c键,清屏。

2、出示:386+179=,学生尝试使用计算器计算。

说说你是怎样使用计算器计算的?

(先按“386”,屏幕上显示386,再按“+”,屏幕显示不变,再按“179”,屏幕显示179,按“=”,显示结果565。)

试试CE键有什么功能?(清除)

3、自己试试看

26×39=312÷8=

4、你觉得使用计算器需要注意些什么?

看清数,别摁错了;每次计算前要清屏。

5、计算。

765+469=589×76=3208-2965=625÷25=6848-579+386=

再计算。

946×57×0=100÷5=3028-2965=

估算:99+199≈

计算后说一说你是怎么算的?你有什么想和大家说的?

(并不是任何时候用计算器计算都是的,像可以直接口算的、能简算的题目,就不需要使用计算器了。)

6、看谁算的快,练一练。

7、做第26页的“做一做”。

让学生在小组内做一做,然后同桌做一做。

二、观察发现

1、比一比,看谁做的又对又快。(以四人小组为单位进行)

9999×1=9999×2=9999×3=9999×4=

2、观察上面的算式和结果,你发现什么规律?

师:根据你们的发现,能不用计算器,直接写出下面各题的答案吗?

9999×5=9999×7=9999×9=

师总结:碰到9999乘9以内的自然数(0除外)答案都是五位数,位和个位就是自然数与9的乘积,中间三位数都是9。

3、完成第27页的“做一做”。

三、练习

(一)基础练习

1、用计算器探索规律

1111111×1111111=?

2、神奇的198。

321-123=654-456=987-789=951-753=357-159=9856-9658=8745-8547=5412-5214=

(二)巩固练习

1、走进生活,解决问题。

师:现在我们来研究一个非常有价值的问题。

一个没有关紧的水龙头,每天大约滴12千克的水,这些水就这样被白白地流掉了„„

◆照这样计算,一个没关紧的水龙头一年(按365天计算)要浪费______千克。

◆把这些水装在饮水桶中(每桶按20千克计算),这些水大约能装______桶。

◆如果一个三口之家每月用6桶水,这些水够用______个月,约合______年。

(1)学生用计算器输入数据,计算得数,再指名汇报结果。教师提醒学生要做到:看清数据、正确输入。

(2)看完这些数据,你想说点什么?

(3)小结:节约用水要从点点滴滴开始,有这样一句广告词:“当世界上只剩下最后一滴水的时候,那就是自己的眼泪!”让我们从自己做起,争当一个节约的好孩子,为创建和谐节约型社会尽自己的一份力!

2、练习三第12题。

要求先笔算,再用计算器验算。注意学生计算后填表时相应数据填写得是否合适、是否正确。

3、练习三第14题。

这是有规律的计算题,用简便方法计算比计算器还要快,体现了计算方法的灵活性。

(三)拓展练习。

8765-32×21的结果是多少?你是怎么操作的?

1、学生独立操作,指名汇报。

2、教师介绍“M+”、“MR”的使用方法

先按32×21,得数是672。然后按下“M+”,这样就可以把这个答案保存下来,然后按“8765-”,再按“MR”就可以把刚才的672调出来了,最后我们就可以得到答案8093。

四、课堂小结

今天你有什么收获?

五、作业。

练习三第11、13题。

四年级下册数学教案汇总篇7

教学目标:

1、估算三位数乘两位数的积的范围。

2、列竖式计算三位数乘两位数(重难点)

教学过程:

1、竖式计算39×12(复习、小结两位数与两位数的乘法)

2、卫星运行动画导入

3、板书课题

4、明确教学目标

5、提问1:东方红1号绕地球一圈需要114分钟,则卫星绕地球运行2圈需

要多长时间?(复习三位数与一位数的乘法)

提问2:东方红1号绕地球一圈需要114分钟,则卫星绕地球运行21圈需

要多长时间?(提出三位数与两位数的乘法,设疑、激发学生学习的兴趣)

完成导学案问题1(估算)

6、学生自学课本第30页内容,完成导学案的问题2,要求

(1)时间:5分钟;

(2)学生自己自学,独立完成;

7、分析、解答问题2,注意小结;重点在问题2.

提问3:通过竖式计算114×21,归纳一下“三位数如何乘以两位数”(重点与难点)

8、游戏(把课本第31页第3题练习以游戏的形式呈现)

9、小结:本节课你学到了什么?

10、分层作业

[1](必做题)课本第31页第1、2题;

[2](选做题)请你利用本节课学习到的知识,向老师提出一个问题。

四年级下册数学教案汇总篇8

加法交换律和结合律

一、教学内容:加法交换律和结合律P17——P18

二、教学目标:

1、在解决实际问题的过程中,发现并掌握加法交换律和结合律,学会用字母表示加法交换律和结合律。

2、在探索运算律的过程中,发展分析、比较、抽象、概括能力,培养学生的符号感。

3、培养学生的观察能力和概括能力。

三、教学重难点

重点:发现并掌握加法交换律、结合律。

难点:由具体上升到抽象,概括出加法交换律和加法结合律。

四、教学准备

多媒体课件

五、教学过程

(一)导入新授

1、出示教材第17页情境图。

师:在我们班里,有多少同学会骑自行车?你最远骑到什么地方?

师生交流后,课件出示李叔叔骑车旅行的场景:骑车是一项有益健康的运动,你看,这位李叔叔正在骑车旅行呢!

2、获取信息。

师:从中你知道了哪些数学信息?(学生回答)

3、师小结信息,引出课题:加法交换律和结合律。

(二)探索发现

第一环节 探索加法交换律

1、课件继续出示:“李叔叔今天上午骑了40km,下午骑了56km,一共骑了多少千米?”

学生口头列式,教师板书出示: 40+56=96(千米) 56+40=96(千米)

你能用等号把这两道算式写成一个等式吗? 40+56=56+40

你还能再写出几个这样的等式吗?

学生独自写出几个这样的等式,并在小组内交流各自写出的等式,互相检验写出的等式是否符合要求。

2、观察写出的这些算式,你有什么发现?并用自己喜欢的方式表示出来。

全班交流。从这些算式可以发现:两个数相加,交换加数的位置,和不变。

可以用符号来表示:△+☆=☆+△;

可以用文字来表示:甲数十乙数=乙数十甲数。

3、如果用字母a、b分别表示两个加数,又可以怎样来表示发现的这个规律呢?

a+b=b+a

教师指出:这就是加法交换律。

4、初步应用:在( )里填上合适的数。

37+36=36+( ) 305+49=( )+305 b+100=( )+b

47+( )=126+( ) m+( )=n+( ) 13+24=( )+( )第二环节 探索加法结合律

1、课件出示教材第18页例2情境图。

师:从例2的情境图中,你获得了哪些信息?

师生交流后提出问题:要求“李叔叔三天一共骑了多少千米”可以怎样列式?

学生独立列式,指名汇报。

汇报预设:

方法一:先算出“第一天和第二天共骑了多少千米”:

(88+104)+96

=192+96

=288(千米)

方法二:先算出“第二天和第三天共骑了多少千米”:

88+(104+96)

=88+200

=288(千米)

把这两道算式写成一道等式:

(88+104)+96=88+(104+96)

2、算一算,下面的○里能填上等号吗?

(45+25)+13○45+(25+13) (36+18)+22○36+(18+22)

小组讨论。先比较每组的两个算式,再比较这三组算式,在小组里说说你有什么发现。

集体交流,使学生明确:三个算式加数没变,加数的位置也没变,运算的顺序变了,它们的和不变。也就是:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

3、如果用字母a、b、c分别表示三个加数,可以怎样用字母来表示这个规律呢?

(a+b)+c=a+(b+c)

教师指出:这就是加法结合律。

4、初步应用。

在横线上填上合适的数。

(45+36)+64=45+(36+ )

(560+ )+ =560+(140+70)

(360+ )+108=360+(92+ )

(57+c)+d=57+( + )

(三)巩固发散

1、完成教材第18页“做一做”。

学生独立填写,组织汇报时,让学生说说是根据什么运算律填写的。

2、下面各等式哪些符合加法交换律,哪些符合加法结合律?

(1)470+320=320+470

(2)a+55+45=55+45+a

(3)(27+65)+35=27+(65+35)

(4)70+80+40=70+40+80

(5)60+(a+50)=(60+a)+50

(6)b+900=900+b

(四)评价反馈

通过今天这节课的学习,你有哪些收获?

师生交流后总结:学习了加法交换律和结合律,并知道了如何用符号和字母来表示发现的规律。

(五)板书设计

加法交换律和结合律

加法交换律 加法结合律

例1:李叔叔今天一共骑了多少千米? 例2:李叔叔三天一共骑了多少千米?

40+56=96(千米) (88+104) +96 88+(104+96)

56+40=96(千米) =192+96 =88+200

=288(千米) =288(千米)

40+56=56+40 (88+104)+96=88+(104+96)

a+b=b+a (a+b)+c=a+(b+c)

两个数相加,交换加数的位置,和不变。 三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

六、教学后记

四年级下册数学教案汇总篇9

教学目标:

知识与技能:在经历操作活动的过程中了解计算器的结构和基本功能;能正确、熟练地运用计算器进行一些简单必要的计算,能运用计算器探索并发现一些简单的数学规律。

过程与方法:在经历操作活动的过程中体验使用计算器计算的优越性,感受使用计算器在生活和工作中的较广泛的应用价值,了解从古到今计算工具的发展历程。

情感态度与价值观:培养学生初步的实践能力、探索意识,发展学生积极参与学习活动的心理倾向,养成自觉、及时验算的意识。

教学重点:

在经历操作活动的过程中初步认识计算器,了解计算器的基本功能。能运用计算器进行一些简单、“必要”的计算。能运用计算器探索并发现一些简单的数学规律。

教学难点:

会利用计算器进行大数目的计算,探索并发现规律。

教学准备:

课件、计算器

教学过程:

一、活动引入

1.师:上课前,让我们来进行一次计算比赛,用你喜欢的方法来完成,把答案写在练习纸上。看谁算得又对又快。开始!

①18+21=②56÷7=③3028-2956=④589×76=⑤98+199=⑥12+459+88=

2、有的同学为什么会计算得这么快?能向大家介绍一下你的方法吗?小结:看来,在进行像这样的比较繁杂的计算时,我们可以请计算器来帮忙。

3、计算器在我们的生活中已经越来越普及了,人们经常会在什么时候使用计算器呢?生活中各行各业都有可能需要使用到计算器,特别是商业中(图片)。除了专门的计算器,有的手表上也有计算器(出示手表)。还有哪里也有计算器?(电脑、手机、遥控器、电子秤等)

4、师:使用计算器有哪些优点呢?那你想掌握使用计算器的本领吗?(板书课题:用计算器计算)

5、师:你认识计算器吗?先向你的同桌介绍计算器。师:谁愿意当小老师向大家介绍计算器?

二、观察认识

1、整体认识

这是一个常用计算器的面板(出示图片),上面部分是显示器(板书:显示器),下面部分是键盘(板书:键盘)

2、认识键盘

(1)观察一下,这个键盘上的哪些键你已经认识了?上来指给大家看看。

(2)互动生成

①有0、1、2、3、4、5、6、7、8、9这些有数字的键叫数字键,(板书:数字键),自己指一指你计算器的数字键。

②有+、-、×、÷这些运算符号的键叫运算符号键,(板书:运算符号键)。自己指一指你的运算符号键。

③有ON这些字母的是开机键。(板书:开机键)你能在自己的计算机上找到开机键吗?和老师不同的上来指给大家看看。你知道开机键除了开机还有其他功能吗?(清零)

④有OFF这些字母的是关机键。(板书:关机键)你能在自己的计算机上找到关机键吗?有些计算器上没有关机键又是怎样关机的呢?(自动关机)

⑤其它一些键的名称和功能又是什么呢?我们以后慢慢认识,有兴趣的同学课后可以去查阅配套的说明书。

三、尝试应用

1、按数

(1)先开机,显示器上显示了几?表示可以开始计算了。

(2)请你在计算器上任意按一个自然数,谁愿意上来边说边按给大家看看?他是怎样按的?按照数字顺序按键就可以显示要按的数。

(3)现在请你清除自然数后再按出一个自然数892,谁愿意上来边说边按给大家看?他是怎样按的?先按开机键清除原来的自然数,再按一个自然数。没做对的同学再试一遍。

(4)同学们都已经会按数了,你们会用计算器计算吗?38+27

谁愿意上来试一试,他是怎样按的?他算得对吗?请你用口算、笔算验证一下,请你在自己的计算器上试一下。

(5)加法算的很好,咱们再来算一道乘法题,好吗?30×15,等于多少?谁愿意上来演示验证一下。

2、计算(同学们已经能够利用计算器正确地计算了,你能利用它解决生活中的问题吗?

(1)出示苏宁电器购物中心的发票,从发票中你了解到哪些信息?你能帮张叔叔算一算,带30000元钱够不够呢?请你估算一下

(2)怎样才能知道张叔叔究竟花了多少钱呢?

①要先求出每种电器的总价,再求三种电器的总价。

怎样用计算器求三种电器的总价呢?谁愿意到上面来演示一下。(计算连加时,我们可以按顺序按键输入数字和符号进行计算)

②用计算器算一算,把答案填在发票上。校对。营业员阿姨是怎样填写发票的呢,和你填的有什么不同?

③如果想知道大家算得对不对,该怎么办?可以用笔算也可以用计算器进行验算。自己选择一个算式后用计算器进行验算。

(3)延伸问题:你还能根据这张发票中的信息提出一些用减法或除法计算的数学问题吗?老师选择两个问题请大家用计算器算一算。

①电脑的总价比VCD的总价多多少元?

②电脑的数量是照相机数量的几倍?你为什么不算?对,像这样比较简单的题目是没有必要用计算器计算的,计算器是用来计算数字比较大、比较复杂的题目的。

(4)“人机挑战”,“比比谁最聪明”。

师:是人聪明呢还是计算器聪明呢?我们来进行一次挑战,你可以自由选择参加“挑战队”还是“计算器队”,每次比赛后都可以重新选择下一次参加的队伍。

10+20=45÷9=27-16=80×50=29×42=457÷7=3569+1427=8737-3210=

师:看来,无论是学习还是生活,工具都不是最重要的,重要的是人,“人的智慧才是天下最伟大的力量”!(投影培根的名言)。

3、找规律

想运用自己的智慧解决下列问题吗?

先用计算器算出下面各题的积,再找一找有什么规律。

142857×1=142857×4=142857×2=142857×5=142857×3=142857×6=

我们可以用计算器验算,也可以找到规律进行推算。

4、用计算器算出得数,再比一比,你发现了什么?

11111111×11111111=

“你觉得问题出在哪儿?是我们错了,还是计算器错了?你能想办法解决吗?请四人小组讨论一下解决方案。”

1×1=

11×11=

111×111=

1111×11111=

11111×11111=

(1)用计算器计算,把答案写在练习纸上,校对。

(2)这组题目中隐藏着哪些规律呢?

(3)你能照样子继续写出几个算式吗?你能用计算器进行验算吗?

(4)在进行像这样的比较复杂的又有规律的计算时,我们可以请计算器来帮忙,也可以从简单问题入手找出规律再推算出比较复杂的算式。

5、小挑战老师这里有一道比较复杂的算式你会算吗?

22222222×55555555=?

小结:同学们用自己的智慧,迎接了挑战,取得了胜利。祝贺你们。

四、观察拓展

1、想了解一下计算工具从古到今的发展历程吗?

2、你知道吗?

在人类计算工具发展的历,人们一直没有停下自己追求的脚步。远在商代,我们的祖先就创造了十进制计数法。到了周代,人们发明了当时最先进的计算工具——算筹。这是一种用竹、木或骨制成的颜色不同的小棍。在数学问题时,人们还编了一套歌诀。到了汉代,我国人民又发明了算盘,这是计算工具的一次重大的发明。这种轻巧灵活、携带方便的计算工具,至今仍在人们的生产和生活中发挥着巨大的作用。1945年,世界上第一台电子计算机诞生于美国,它被人们誉为“人类文明最光辉的成就之一”。1977年,日本卡西欧公司生产出了第一部微型计算器,这种袖珍型计算器可握在手中,使用方便,适合于所有人的使用。如今,计算机技术正日新月异地向前发展,64位计算机技术正被许多行业所使用,它每秒钟可计算1000万亿次,过去需要数代人计算的题目,现在片刻间就有了答案。

3、了解了这些资料,你有什么想说的吗,你能想象一下未来的计算器是怎样的吗?(这些美好的想法,都有待于同学们今天好好学习才能实现呢!)

四年级下册数学教案汇总篇10

教学内容:

卫星运行时间(教材33―34页)〔三位数乘两位数的乘法〕

教学目标:

1.能结合具体情境估计两、三位数乘法积的范围。

2.探索两、三位数乘法的计算方法,并能正确计算。

3.能运用乘法运算解决一些实际问题。

教学重点:

三位数乘两位数的方法及简便运算。

教学难点:

三位数乘两位数的算理。

教学用具:

课件

教学过程:

一、创设情境,提出问题

1.课件演示第一题人造卫星发射实况,引出卫星绕地球一圈需要114分,教师接着问:2圈、5圈、10圈呢?让学生计算所需要的时间,激发学生的计算兴趣;

2.思维引导:绕地球21圈需要多长时间?列式114×21;

3.揭示课题:卫星运行时间

二、合作探究,解决问题

1.提问:你怎么能很快估算出结果?把你的好方法介绍给大家好吗?

(交流并归纳出估计的方法,对于问题的学生及时鼓励,提高他们的自信心。)

(114×21的积比2000多比2500少)

归纳总结:将两个乘数分别按“四舍五入”法求出近似值,再将近似数相乘,所得的积作为估计的结果。

2.引导用其他方法计算。(分组讨论,教师巡视,展示学生的计算方法)

①把21看作20加1②把21看作7乘3

114×21114×21

=114×(20+1)=114×(7×3)

=114×20+114×1=114×7×3

=2280+114=798×3

=2394=2394

③把114分成100、10和4④用表格计算

114×2

=(100+10+4)×21

=100×21+10×21+4×21

=2394

3、因势利导,挖掘竖式算法。

以前之学过乘数是一位数的乘法……114×21

⑵算理:乘得的数字该怎样对齐?

⑶引导学生用自己的语言归纳

归纳总结:用竖式计算三位数乘两位数,先用两位数个位上的数去乘三位数,得到的末位数和两位数对齐,再用两位数十位上的数去乘三位数,乘得的末位数和两位数的十位对齐。然后,把两次乘得的数加起来。

⑷课本34页试一试

①54×312列竖式时调换两个乘数的位置:312×54

②408×25因数中间有0的计算方法

③47×210因数末尾有0的简便算法

三、反馈练习,强化理解

1.填空

①两位数乘两位数,积可能是()位数,也可能是()位数。

②用因数十位上的数去乘另一个因数时,所得的积的末位数要和因数的()位对齐。

③在计算整数乘法时,如果因数末尾有0,可以先把0前面的数(),然后再看因数末尾一共有几个(),就在乘得的数的末尾添上几个0。

④括号里能填几?

600×()<120、1200×()<801

2.对号入座。(将正确答案的序号填在括号里)

⑴计算280×50,积末尾有()个0。

A.2B.1C.3D.4

⑵三位数乘两位数,积最少是()。

A.三位数B.四位数C.五位数D.不能确定

⑶672×53=()

A.670×53×2×53B.672×50+672×3C.600×53×72×53

3、竖式计算。课本34页练一练第一题(让学生口述算法,并强调相同数位对齐,从个位乘起等。)

4、森林医生。课本34页练一练第二题(通过改错,强调易错注意问题。)

四、拓展应用,升华提高

1.列竖式计算。

386×15、407×28、540×30、62×204

2.应用题。

商店从工厂批发了80台复读机,每台140元,商店要付给工厂多少元?

(140×80列竖式时可以先把0前面的数相乘。)

乘数末尾有0时,可以先把前面的数相乘,再看乘数末尾一共有几个0,就在乘得的数的末位添上几个0。

五、作业

1.课本34页第3题

2.课本34页第4题

四年级下册数学教案汇总篇11

教学目标

1、通过学生对一些日常生活中的现象的观察与思考,从中发现一些特殊的规律。

2、通过猜测、列表、假设或方程解等方法,解决鸡兔同笼问题。

3、通过本节课的学习,知道与鸡兔同笼有关的.数学史,对学生进行数学文化的熏陶和感染。

教学过程

一、故事引入

教师:在我国古代流传着很多有趣的数学问题,鸡兔同笼就是其中之一。这个问题早在1500多年前人们就已经开始探讨了。

出示题目:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?(笼子里有若干只鸡和兔。上面数,有35个头,下面数,有94只脚。鸡和兔各有几只?)

二、探究新知

1、教学例1:笼子里若干只鸡和兔。从上面数有8个头,从下面数有26只脚。鸡和兔各有几只?

让学生以两人为一组讨论。

汇报讨论的结果。

(1)、列表:

鸡876543

兔012345

脚161820222426

(2)、假设法:

假设笼子里都是鸡,那么就是82=16(只)脚,这样就比题目多26-16=10(只)脚。

因为刚才是把兔子当成鸡,一只兔子少算两只脚,那么多出的10只脚就有102=5(只)兔子。

因此,鸡就有:8-5=3(只)

(3)、用方程解:

解:设鸡有x只,那么兔就有(8-x)只。

根据鸡兔共有26只脚来列方程式

2x+(8-x)4=26

2x+84-4x=26

32-26=4x-2x

2x=6

x=3

8-3=5(只)

2、小结解题方法:

教师:以上三种解法,哪一种更方便?

小结:要解决鸡兔同笼问题,可以采用假设法或方程解都可以。用方程解更直接。

3、独立解决书中的趣题。

(1)、方程解:

解:设鸡有x只,那么兔就有(35-x)只。

根据鸡兔共有94只脚来列方程式

2x+(35-x)4=94

2x+354-4x=94

140-94=4x-2x

2x=46

x=23

35-23=12(只)

答:鸡有23只,兔有12只。

(2)、算术解:

假设都是鸡。

235=70(只)

94-70=24(只)

24(4-2)=12(只)

35-12=23(只)

答:鸡有23只,兔有12只。

三、巩固与运用

1、完成教科书第115页做一做的第1题。

学生独立读题分析后,列式解答。鼓励用方程解。

2、完成教科书第115页做一做的第2题。

提问:根据图中你能了解什么信息?(一条大船乘6人,一条小船乘4人)

请同学独立列式解答。(讲评时重点解释算术解的每步的算理)

68=48(人)

假设8条都是大船可坐48人。

48-38=10(人)

假设人数比实际的人数多10人。

多10人的原因是把部分的小船当成了大船,也就是每条小船多算了2人。多的10人除以每条船多算的人数,就是有多少条小船。

10(6-4)=5(条)

8-5=3(条)

这是表示有3条大船。

四、作业

练习二十六第一、二题。

四年级下册数学教案汇总篇12

【学习目标】

1、理解并掌握方程的意义,弄清方程与等式间的联系与区别。

2、通过在不同的情景中建立等量关系列方程,经历方程模型的建构的过程。

3、初步培养学生的观察、抽象概括等能力。

【学习重点】

会用方程表示事物之间简单的数量关系。

【学习难点】

能根据图义,找到等量关系列出方程。

【学习过程】

一、谈话引入

师:生活中经常遇到各种各样的数,对吗?比如说,谁愿意告诉我你今年多大了?(学生说)只知道自己的年龄还不行,谁知道妈妈今年多大了?(学生说)自己的年龄,妈妈的年龄对你来说是已知数,那老师的年龄对你来说是……..(未知数)以此来引出未知数。

二、利用等量关系,正确列出等式

1、出示天平图1:天平左边10克,天平右边:2克和一个樱桃

师:看天平的显示,谁能列出一个等式?(樱桃的质量+2克=10克),如果用未知数X来表示樱桃的质量,那么,可以列出一个什么样的等式呢?(2+X=10)

2、出示情景图2:四盒种子的质量一共是20__克。

你从图中发现了什么?(4盒种子的质量=20__克)

师:能根据这个相等关系写出一个等式吗?

师:请你给同学们介绍一下你的等式,先说字母表示什么意思?

师:如果用y表示每块月饼的质量,怎样用数学式子表示这个等式呢?(板书:4y=20__)

师:下面老师加大难度,敢接受挑战吗?(同学们在家里帮爸爸妈妈倒过开水吗?现在请同学们仔细观察老师倒开水的过程,找一找这里有相等关系吗?)

3、课件出示图3:一壶水刚好倒满两个开水瓶和一个杯子。

师:你们找到其中的相等关系了吗?(两个热水瓶的盛水量+200毫升=20__毫升)

师:如果用z表示每个热水瓶的盛水量,那么这个关系式可以怎样表示?(板书:2z+200=20__)

4.理解方程的意义。

师:刚才我们通过称樱桃,称种子和水壶倒水的三次实践活动,得出了下面这三个等式:(x+5=104y=3802z+200=20__)

(1)同桌交流。说一说:上面的等式有什么共同特点?

(2)全班交流。

教师小结:这样含有未知数的等式叫方程。(板书课题:方程)

师:自己读一读,你认为关键词是什么?

(3)巩固知识。

师:说一说方程必须具备哪几个条件?(一必须是等式,二必须含有未知数)

5、会写方程师:你会自己写出一些方程吗?写下来同桌交换检查。

(学生试着写出各种各样的方程,再在全班展示,当然也有可能会出现一些不是方程的式子,教师应引导学生说出它不是方程的原因。)

三、巩固练习

1.判断

下面式子哪些是方程,哪些不是方程?

35+65=100x-14>72y+24

5x+32=4728<16+146(y+2)=42

2、练一练课本67页第一题说一说各图中的等量关系,再列出方程。

四、总结评价

师:关于方程还有很多有趣的内容,相信同学们还会以饱满的精神、积极地态度去研究、去探索方程的奥妙。

四年级下册数学教案汇总篇13

【教学目标】

1.通过具体的例子,结合实际操作,使学生理解小数乘法的意义。

2.结合小数乘法的意义,使学生能够计算简单的小数乘整数。

3.通过探究小数乘整数计算方法的一系列活动,培养学生的类推迁移、联想转化等解决问题的策略意识。

【教材分析】

小数乘法的意义是在学生已经学习过“元、角、分与小数”、“小数的意义”、“小数的加减法”和掌握了“整数乘法的意义”基础上进行教学的,它是在整数乘法意义的基础上的进一步扩展。

【学情分析】

我所抽班级学生有73人。这班孩子从一年级开始就使用北大(版)教材,学生的思维比较活跃。对于列出小数乘法算式以及得出结果,学生不会有任何困难,关键在于学生能否联想到整数乘法的意义,然后用自己的语言来表述出小数乘法的意义。所以针对这一点,我打算利用小数加法的复习题,引导学生观察,使学生运用类推、迁移的方法来理解小数乘法的意义。

【教学过程】

一.复习引入

1、小数的意义:0.20.05(学生口答)

2、小数加法:0.6+0.60.8+0.80.2+0.2+0.20.4+0.4+0.40.1+0.1+0.1+0.1+0.1

(1)学生口算

(2)你发现了什么?(都是求相同加数的和)

(3)你有什么想法?(可以用乘法计算)

3、揭示新课:

(1)0.2+0.2+0.2,用乘法怎样表示?为什么这样列式,你是这样想的?0.2×3表示什么意思?

(2)0.6+0.6,用乘法可以怎样写?0.6×2表示什么意思?

(3)剩下的几道怎样用乘法表示?分别表示什么意思?

(4)这些乘法算式与我们前面学的乘法有什么不同?(是小数乘法)

4、归纳意义:

小数乘整数表示什么呢?

二.探究算法

1、请大家想办法算出0.2×3的积。

(1)学生独立思考并计算。

(2)同桌交流算法。

(3)全班交流:

A.连加法:0.2+0.2+0.2=0.6

b.联想、转化:0.2元=2角2角×3=6角=0.6元

c.画图法:你是怎样画的?为什么要画3个0.2?

d.推算:因为2×3=6,所以0.2×3=0.6

e.还有不同的吗?(略)

2、小结:只要适合自己,就是的!

三.巩固拓展

1、填一填

0.8+0.8+0.8=()×()=()

0.3+0.3+0.3+0.3+0.3=()×()=()

0.1+0.1+0.1+0.1+0.1+...=()×()=()(10个0.1)

1.2×2=()+()=()

()×()=()+()+()+()+()(可以怎样填?你发现了什么?)

2、算一算

2×0.40.3×03×1.19×0.80.6×45×0.20.7×1

3、文具店里的数学问题:

(1)买4块橡皮多少元?

(2)买3支铅笔多少元?

(3)买2把尺子多少元?

(4)任选一种文具,你还能提出一步计算的乘法问题吗?

四.阅读质疑

(1)阅读教材38~39,把书中内容补充完整。

(2)还有不懂的问题吗?

五.全课小结:你有哪些收获?

四年级下册数学教案汇总篇14

教学目标

⒈进一步理解并掌握乘法交换律和结合律,并能运用这两个运算律进行简便计算。

⒉培养学生灵活运用所学知识解决实际问题的能力。

⒊让学生在老师的引导下,经历克服学习困难的过程,体验数学学习的成就感。

教学重、难点

灵活运用乘法交换律和乘法结合律进行简便计算。

教学过程

一、 复习旧知,引入新课

1?回忆上节课中所学的乘法交换律和乘法结合律并用自己的语言加以叙述。

2?填空。

我们学习了乘法运算律,这节课我们一起运用乘法运算律进行计算。

二、探索新知

学习例3。

出示例3,算一算,议一议。

61×25×4 8×9×125

教师:观察每个算式中的因数之间有什么特点?可以运用运算律进行简便计算吗?(学生观察思考,独立计算)

全班汇报,教师板书:

(1)

①61×25×4

②61×25×4

③…… =61×100 =1525×4 =6100 =6100

(2)

①8×9×125

②8×9×125

③…… =72×125 =9×1000 =9000 =9000

小组讨论:每题都有几种算法,你认为哪种算法最简便?为什么?运用乘法交换律和结合律进行简便计算时要注意什么?

全班交流汇报。

教师小结:运用乘法运算律进行简便计算,它的核心就是"凑整"。

往往可以把两个或几个数结合在一起乘起来得到整十、整百……有时还可能需要把一个数分解成两个数,再与另外的数结合相乘得到整十数、整百数……总之使计算变得简单。

三、课堂活动

1?课堂活动第1题:先让学生说一说怎样计算简便,并说出依据,再完成在课本上。

2?课堂活动第2题:先让学生独立思考后,再在小组中讨论该怎样进行简便计算,最后全班反馈。

要学生认识到同一个计算可以有不同的简便计算方法。

3?练习四第2题:学生独立完成(连线)后反馈。

4?练习四第7题:学生独立完成后反馈。

5?练习四第8题。

学生观察图中信息,然后抽学生提出问题,教师板演在黑板上。

其余学生判断。

最后让学生独立解决在课堂作业本上,不得少于3个问题。

注意:随时提醒学生观察算式中数据的特点,并应用简便方法进行计算。

四、拓展练习

思考题:引导学生抓住突破点:一是1~9各数字在算式中只出现一次;二是算式中积的个位数字是2。

根据这两个信息可以想到两个因数个位上的数字只能分别是3和4,继续分析便可解决此题。

五、课堂作业

练习四第3~6题。

六、课堂小结

这节课主要学习了什么知识?你还有什么问题吗?

四年级下册数学教案汇总篇15

教学目标:

1、能结合具体情境估计两、三位数乘法的积的范围。

2、探索两、三位数乘法的计算方法,并能正确计算。

3、激发学生学习两、三位数乘法的兴趣,树立学生计算的信心。

教学重点:

用竖式计算三位数乘两位数。

教学难点:

因数中间有0的计算方法和需要处理连续进位的计算。

教学过程:

一、创设情境,导入课题

同学们,今天老师要教你们认识一种你们从没接触过的东西——人造地球卫星。知道它的用途吗?我们无论是打电话、看卫星电视、还是GPS定位都离不开人造卫星。它给人类带来的便利是不可估计的。那么今天我们就来学习一些有关人造地球卫星的知识——卫星运行时间。(板书:卫星运行时间)

师:(显示卫星绕地球运行的时间)大家把黑板上这句话读一遍,将得到的数学信息记下。

【设计意图】计算教学源于生活的需要,我创设与生活相关的问题情境,激发了学生的兴趣。

二、合作探究,获取新知

师:既然大家都知道了人造地球卫星绕地球一圈需要114分。那么2圈呢?5圈呢?可不可以用最快的速度告诉老师?

师:看来同学们三年级的乘法学的非常棒。我也知道2圈、5圈肯定是难不住你们的。那么假设人造地球卫星绕地球10圈,你们会吗?(请同学起来回答)

师:同学们,我们没有学过两位乘三位数的乘法,__能现在做出一个两位数乘三位数的乘法非常的棒。

师:既然这个简单的两位数乘三位数的算式没有难倒你们,那么就来个难的吧。(多媒体显示问题)卫星绕地球21圈需要多长时间?谁会列式?(114×21=)你能估计一下这个算式的积大概是多少吗?

(预设1)我把114看作110,把21看作20,110×20=2200,所以114×21大约等于2200。

(预设2)我把114看作100,把21看作20,100×20=2000,所以114×21大约等于2000。

师:通过同学们估算的答案,我们知道估算就是将其中一个或者两个因数进行适当的四舍五入得出的答案。那么谁估算的答案最接近精确值呢?同学们去试着计算一下吧。(小组讨论)

【设计意图】结合具体情境,让学生养成计算前估算的习惯。将课堂还给学生,小组合作,自主探究出两位数乘三位数的计算方法。

三、反馈方法,优化算法

师:老师下去走了一圈,发现了各种各样的做法,总结出三种算法,呈现出来给大家看看。

先算20圈:114×20=2280(分)114×21

再算1圈:114×1=114(分)=114×7×3

加在一起:2280+114=2394(分)=798×3

=2394(分)

【设计意图】学生对于刚刚接触的两位数乘三位数的计算方法还没有一个固定的做法。在小组合作中,学生能将之前的知识发挥出的迁移,自己摸索出自己喜欢的计算方式。

师:聪明的同学们运用了多种方法告诉了我卫星绕地球21圈需要多长时间。观察一下这些计算方法,你们看看哪种更简便、更快捷呢?

师:同学们异口同声的都选择的竖式计算,那么在用竖式做两位数乘三位数的乘法时,同学们一定要注意数位的对齐。

【设计意图】三位数乘两位数的竖式计算中学生最容易犯的就是数位对齐和进位错误的问题,在这步就正好体现出本节课的重点。同时也让学生体会到竖式计算的优越性。

四、总结算法,巩固训练

(一)、师:看看自己学会了两位数乘三位数的竖式吗,“试一试”吧!(请学生演板课本P34“试一试”)

135×45、408×25

54×312、47×210

(二)、师:演板的同学已经做好了,我们一起来看看他们做的怎么样呢?(组织学生找到演板学生犯的错误,集体订正。)

(三)、师:总结错误,强化算法

1、学生在做中间带0的竖式计算时,往往会出现0乘任何数得任何数的现象。

2、两位数放前面时,学生不知道讲数位多的数放在上面列竖式其实更简单。

3、进位很容易就会忘记或者上一步的进位加到了下一步,标明进位时数字写太大造成混淆了原来了因数。

四、师:这些错误下面的同学应该也会出现,那么经过我们一起总结出来这些问题,希望同学们在今后的学习中对计算要更细心、更准确。

【设计意图】巩固学生新知识。对于乘数中间有0的算式应强调0的处理,在计算两位数乘三位数的笔算时,我们通常把数位多的乘数写在上面。集体订正,也会减少学生的错误,激发学生学习两、三位数乘法的兴趣,树立学生计算的信心。

师:学习数学最终都是要将数__用到生活当中去的,既然今天同学们学会了两位数乘三位数的算法,能不能帮老师解决一下这些问题呢?(多媒体显示问题)

1、一个没关紧的水龙头每天要浪费112千克水,照这样计算一个月(按31天算)会浪费多少千克水?

2、教育书店购进作文书209本,购进的科技书是作文书的32倍。问购进科技书多少本?

【设计意图】:在学生学会了两位数乘三位数的竖式计算后,还要将所学知识运用到生活当中的。此环节设计两道应用题,激发学生解决问题的__,让原本单一的竖式计算教学更加具有趣味性、生活性。体现了数学与生活的紧密联系。

五、课堂总结,课外巩固

通过本节课的学习,你有什么收获?

1、估算三位数乘两位数的积的范围

(1)把其中一个或者两个因数进行适当的四舍五入

取近似数;

(2)将近似数相乘的积作为估算的结果。

2、列竖式计算三位数乘两位数

(1)用两位数个位上的数去乘三位数,得到的末位数和两位数的个位对齐;

(2)用两位数十位上的数去乘三位数,得到的末位数和两位数的十位对齐;

(3)把两次乘得的数相加。

课外作业:课本P34页练一练1、2题。

28112