教案吧 > 小学教案 > 四年级教案 >

四年级数学教案设计

时间: 新华 四年级教案

通过编写教案,教师可以将教学计划、教学重点、难点、教学方法等组织起来,形成完整的教学内容体系。优秀的四年级数学教案设计应该是怎样的?快来学习四年级数学教案设计的撰写技巧,跟着小编一起来参考!

四年级数学教案设计篇1

教学目标:

1、经历观察、测量、猜想等学习活动,感受、体验小数产生于生活,感受生活中处处都存在小数;

2、理解小数的意义,能说出小数各部分的名称,掌握小数的读、写方法,并正确能读写小数;

3、在合作与交流中的过程中,感受数学学习的乐趣。

教学教法:

教学方法是教学过程中师生双方为完成目标而采取的活动方式的组合。根据本课教学内容的特点和学生的思维特点,我选择了尝试法、引导发现法、等方法的优化组合。引导他们去发现问题、分析问题、解决问题、获取知识,从而达到训练思维、培养能力的目的。小数的含义是属概念教学,较为抽象、凝炼,根据学生对概念的认知,一般遵循:感知——表象——抽象概括——形成概念的这一规律。

1、从生活中了解小数,明确要用小数表示的必要性。

2、从已有的生活经验中,理解、抽象小数的意义。

3、 通过观察、测量,让学生充分感受、体验小数产生于生活,从而使学生感受生活中处处都存在小数 。

4、了解小数在生活中的普遍存在及广泛运用,体验数学在身边,感受数学学习的价值和乐趣。

教学学法:

1、学会通过观察、测量、归纳,可以发现生活中处处都存在小数 。

2、引导学生自主探究,培养他们用已有知识解决新问题的能力。

3、通过指导独立看书,汇报交流活动,培养学生的自学能力和合作交流的好习惯。

教学过程:

一、创设情景 导入新课

创设“5.1”假期情景 ,使本课内容与学生的现实生活经念相吻合

1、在假期里你买了什么物品?花了多少钱?

2、老师买了一本书,同学们猜一猜要多少元?

从同学们的回答中归纳出不能用整元数表示的这种数,要用小数表示。引入课题。

这样的设计,旨在把枯燥的数学知识与学生的生活实际相联系,引发起学主的学习兴趣,点燃他们求知欲望的火花,从而进入的学习状态,为主动探究新知识聚集动力。

二、明确目标 探索新知

同学们都知道小数就在我们的生活中存在,那么同学们想了解小数的什么?

我预设学生的提问(预设)

1、小数是怎么来的。(怎么产生的)

2、什么叫小数?(小数的意义)

3、小数是怎么读的,怎么写的?

根据学生提的问题,师生分析问题

1、师生小结小数的意义

(1)象“0.1、0.3、0.9”这些小数叫1位小数。(分母是10的分数,可以写成1位小数。1位小数表示十分之几。)

(2)象“0.01、0.04、0.18”这些小数叫2位小数。(分母是100的分数,可以写成2位小数。2位小数表示百分之几。)

(3)象“0.001、0.015、0.219”这些小数叫3位小数。(分母是1000的分数,可以写成3位小数。3位小数表示千分之几。)

2、学习小数的写法

三、巩固新知

1、练习“考考你”;(练一练)第1题

2、用米做单位测量同桌的高度;

3、菜市场买菜统计表。

【把小数在实际生活中的运用结合起来,使学生体验教学就在身边,感受数学学习的乐趣】

四、小结

1、了解小数的历史。(小资料)

【了解小数的历史,激发学生的爱国热情。】

2、学了小数这节课,能谈谈你知道了些什么吗?

五、作业布置

1、从生活中记录一些小数,明天同学之间相互交流;

2、完成《作业本》

布置实践性的作业,使学生把小数在实际生活中的运用结合起来,体验教学就在身边,感受数学学习的乐趣。

四年级数学教案设计篇2

计算工具的认识

教学目标:

1.通过教学使学生认识各种计算工具,对算盘和计算器有一定的了解。

2.培养学生学习数学的兴趣。

3.使学生感受生活中处处有数学。

教学重难点:认识算盘、计算器,计算器的使用。

教学关键:能够自学了解算盘与计算器的使用方法。

教具准备:算盘、计算器。

教学过程:

课前参与:查找有关计算工具的资料,准备一下,把你所认识的计算工具用最清楚的方式介绍给大家。

一、计算工具的历史

(一)课前参与反馈(学生介绍计算工具)

前面我们了解了数是怎样产生的,随着数的产生,就会出现数的计算,为了计算方便,人们发明了各种各样的计算工具,课前同学们进行了有关资料的查询,谁来给大家介绍一下你所了解的计算工具?

学生发言。

(二)老师根据学生介绍的情况补充介绍计算工具的发展历史

计算工具的源头可以上溯至2000多年前的春秋战国时代,古代中国人发明的算筹是世界上最早的计算工具。在大约六、七百年前,中国人发明了更为方便的算盘,并一直沿用至今。许多人认为算盘是最早的数字计算机,而珠算口诀则是最早的体系化的算法。

计算尺的出现,开创了模拟计算的先河。从冈特开始,人们发明了多种类型的计算尺。直到20世纪中叶,计算尺才逐渐被袖珍计算器取代。

从17世纪到19世纪长达两百多年的时间里,一批杰出的科学家相继进行了机械式计算机的研制,其中的代表人物有帕斯卡、莱布尼茨和巴贝奇。这一时期的计算机虽然构造和性能还非常简单,但是其中体现的许多原理和思想已经开始接近现代计算机。

最古老的计算工具:算筹

我国春秋时期出现的算筹是世界上最古老的计算工具。计算的时候摆成纵式和横式两种数字,按照纵横相间的原则表示任何自然数,从而进行加、减、乘、除、开方以及其它的代数计算。负数出现后,算筹分红黑两种,红筹表示正数,黑筹表示负数。这种运算工具和运算方法,在当时世界上是独一无二的。

中国人发明算盘

随着计算技术的发展,在求解一些更复杂的数学问题时,算筹显得越来越不方便了。于是在大约六、七百年前,中国人发明了算盘,它结合了十进制计数法和一整套计算口诀并一直沿用至今,被许多人看作是最早的数字计算机。

一般的算盘大都是木制的,算珠也是木制的。后来发展到用铜等金属制作算盘。高档的算盘用玉制作。算珠除了圆柱形的算珠,也有截面为菱形的算珠。的算盘有几米长,最小的只有几厘米。

算盘可以进行加减乘除各种运算。时至今日,用算盘计算加减法的速度毫不逊色于计算器。

算盘上粒粒算珠的上下左右移动,可以使计算者直观的看到加减乘除的运算过程。算珠互相碰撞及算珠与横档的碰撞发出的有节奏的声音,形成一首美妙的“计算进行曲”。计算者从声音中体会到计算的愉快。这些愉快的感觉反映到俗语中,“三下五去二”、“管它三七二十一”,“劈里拍拉的算账”。

利用算盘进行计算时,不仅要用手指不断的拨动算珠,还要用眼睛看数,同时要不停的动脑筋。这是非常典型的手脑并用,对提高智力,开发右脑是一种好方法。有学者指出,学珠算练手指是开发智力的有效途径。

由于用算盘计算有这么多的优点,所以这个在中国已使用了二千多年的计算工具,现在在世界各地仍得到广泛应用。在受中国文化影响比较深的日本、韩国、东南亚,珠算技术的传授及普及教育一直受到重视。日本的小学生把读书、写字、打算盘列为三大基本功,日本的珠算教育在世界上处于地位。日本全国的算盘学校高达35,000所。韩国的珠算教育近年来也取得了长足的发展。

即使远在南美洲的巴西,也成立了珠算联盟,每年进行4次珠算考核和二次珠算大赛。北美洲的墨西哥有全国珠算支部,美国有珠算教育中心,有1,000多所学校接受珠算教育,算盘正成为美国的一种数学教学工具。

计算机

1946年美国宾夕法尼亚大学经过几年的艰苦努力,研制出世界上第一台电子计算机──埃尼阿克(ENIAC)。随着科学技术的进步,计算机不断更新。目前,速度快的计算机1秒钟能计算几十万亿次。计算机的大小也发生了很大的变化,世界上第一台计算机大约有一间房间那么大,现在有台式电脑、笔记本电脑,还有掌上电脑。

计算机发展史:

■1946年发生了人类历一件划时代的大事人类第一台电子计算机诞生了。

■以使用电子管为特点的第一代电子计算机在20世纪40年末和50年代初获得重大发展。

■第二代电计算机于20世纪50年代中期间问世以晶体管代替电子管并增加浮点运算。

■1964年IBM360系统问世它成为使用集成电路的第三代电子计算机的代表。

■使用超大规模集成电路的第四代计算机。

■第五代电子计算机被称为智能计算机。

■模仿人类大脑功能的神经计算机已经开发成功它标志着电子计算机的发展进入第六代。

二、算盘和计算器的认识与使用

1.算盘。

刚才同学们介绍了许多的计算工具,其中算盘是我们中国所特有的,现在在许多地方还能见到。你认识算盘吗?对算盘有哪些了解?

(1)算盘各部分名称

算盘的长方形的框内装有一根横梁,梁上钻孔镶上小棍数根,称为档。每根上穿一串珠子,叫算盘子儿或算珠。

常见的算盘是两颗算珠在横梁上,每颗代表五;五颗在横梁下,每颗代表一。计算时按规定的方法拨动算盘子儿而得出计算结果。

在拨数时要先定好数位,规定哪档是个位,然后再拨数。(规定从右往左数第三档为个位)

拨出一个数,说一说这表示多少?

(2)两种不同的算盘:

出示两种不同的算盘(书23页图):

观察有什么不同。

左边的算盘是中国算盘,上面有两颗珠子,每颗代表5。

后来算盘发展到日本,逐渐演变成右边这样,上面变成了一颗珠子。

原因是:原来是中国采用的是16进制,满15进1,所以算盘每档上是15;进入日本后,采用的是十进制,所以算盘的上面剩下1颗珠子。

(3)算盘的两种功能:计算和计数

2.计算器。

(1)计算器的使用非常的广泛,你认识计算器吗?

出示一个计算器,你能说说每个键的功能吗?

显示屏、时间键、日期键、清除键、开关及清除屏键、存储运算键、括号键、数字键、运算符号键、等号键等。

(2)让学生看课本自学,边看自己的计算器边看书,然后小组交流。

(3)计算器的使用与算盘相比有什么优势?

(4)全班看计算器,师生对口令。

三、总结

计算器的使用为我们带来了许多的方便,通过使用计算器,你觉得计算器如果具备哪些功能就更好了?不妨我们去找一找是否有具备这种功能的计算器,该如何使用,更希望同学们能利用自己的聪明才智发明出更好的计算工具。

四、作业:

1.继续查找有关计算工具的资料。(有兴趣的同学,如果能根据计算工具的发展史将其罗列就更好了。)

2.了解计算器的其他功能。

四年级数学教案设计篇3

一、教学内容

教科书第62页例3、例4及相关内容。

二、教学目标

1、在操作试验活动中经历探索发现“三角形边的关系”的过程,知道三角形边的关系。

2、借助剪一剪、拼一拼、移一移等活动,积累数学活动经验,培养学生自主探索、动手操作、合作交流的能力。

3、渗透建模思想,体验数据分析、数形结合方法在探究过程中的作用。

三、教学重点

理解三角形任意两边的和大于第三边。

四、教学难点

理解两条线段的和等于第三条线段时不能围成三角形,理解“任意”二字的含义。

五、教具准备

“几何画板”制作的教学课件,三角形的每条边可以根据学生生成的数据输入显现,展示围的过程。

六、学具准备

透明彩色喷墨胶片打印线段。

七、教学过程

环节预设教师活动学生活动设计意图

一、再现三角形模型——强化对三角形的认识1、谈话导入,复习三角形概念。

师:我们已经认识了三角形,谁来说说什么是三角形?

2、操作试验,感受三条线段怎样围成三角形,懂得围成三角形的关键是任意两条线段的端点两两相接。

(实物投影:三张印有线段的胶片,胶片的边沿相连。)

师:看屏幕,现在这样围成三角形了吗?

教师:谁来围一围?

(请一名学生在实物投影上操作,其他同学观察,评价。)

教师:刚才的没围成三角形,现在就围成了,围成三角形的关键是什么?

学生回答

学生观察

学生操作,评价

学生讨论并回答

先让学生说说什么是三角形,调出学生的原有认知,通过实物投影上三条线段围的变化,一方面帮助学生重现三角形的模型,强化对“每两条线段的端点相连”的认识,潜移默化地指导了围的方法。为后边的学习打下基础。

二、拆解三角形模型——制造冲突,引发思考1、拆解

师:如果从三条线段中拿走一条,剩下的可能是哪两条?

(板书:11、6和11、11)

2、讨论

师:用这两条线段能直接围成三角形吗?能想办法变成三条线段吗?

师:变成三条线段了,就能围成三角形吗?

(板书:能?不能)

学生动手,观察并总结回答在学生生活经验和已有认识中,想象得到的都是能围成三角形的三条线段,头脑中也有大量这样的生活原型和抽象的三角形模型。教师通过“从三条线段中拿走一条→两条线段围不成三角形→想办法变成三条→三条线段就能围成三角形吗”四个小步骤的巧妙设计,打破了学生头脑中存有的三角形模型,引发学生的思考:三条线段能不能围成三角形呢?给学生提供了一个质疑自己和他人已有知识经验的机会,让他们在审视、思考、疑惑中进入到下一个环节的研讨。

三、重组三角形模型——探究三角形边的关系

1、操作试验,明确三条线段能否围成三角形

(1)明确要求。

师:实际情况是不是你们想的那样呢?请你动手试试。

要求在动手前,小组内先一起说说打算剪哪一条,怎么剪。组内4个人每人剪的尽量不一样,剪完围围看,然后填在记录单上。

记录单:两条线段11cm和6cm(或11cm和11cm)

剪后的三条线段是()cm、()cm和()cm

围成三角形了吗?(√或×)

(2)小组合作试验。

教师监控:收集试验数据

能围成不能围成

3、8、62、9、6

4、7、61、5、11

5、6、62、4、11

…………

(3)展示交流试验情况,提取数据。

师:谁愿意把你试验的情况给大家看看?(学生说教师板书。)

追问:谁和他的不同?

还有补充吗?

谁用的是11和11,说说你们试验的结果?

师:这两条线段在哪儿相连?

师:你们觉得他说的有道理吗?

师:到底连没连上,最后边的同学看得清楚吗?看来这儿用学具不容易看清楚,咱们用课件清楚地看看。

师:有没有同学认为这个能围成?到底能不能围成,说说理由。我们通过课件演示来看一下。

(播放两边之和等于第三边时围的课件。)

(4)小结过渡。

师:通过亲自试验,大家知道三条线段有时能围成三角形,有时不能围成三角形。

学生动手操作

学生展示结果

情况一:

全是能(或全是不能)的情形。

情况二:

有的能有的不能的情形。

学生将一条线段剪成两条,从理论上分析能够得到无数种不同的剪法,但围三角形的结果只会出现两种:能围成和不能围成。教师根据可能出现的试验结果进行设计,引导学生在生生交流中提取典型数据。通过实物投影变焦放大的功能,有助于学生清晰地看到两条线段的端点相连情况。几何画板课件随学生生成输入数据和动态演示过程,弥补了学具操作的不足,有助于学生达成统一认识。这几个环节的设计,不是就内容说内容,而是让学生在亲自动手试验基础上,补充完善个人和小组的认识,达成共识。学生在剪、围中思考,初步感受能不能围成三角形,不是在比较每一条线段,而是需要看两条线段与第三条线段的关系,为后续教学做了铺垫。

三、重组三角形模型——探究三角形边的关系

2、数形结合,探究三角形边的关系

(1)提出问题。

师:试验前我们的问题已经解决了,如果继续研究,你想研究什么?

师:你觉得三条线段能否围成三角形与什么有关系?

(2)研讨三条线段不能围成三角形的情况。

师:三条线段在什么情况下不能围成三角形呢?小组同学研究研究。

师:哪个小组来说说你们的想法?(课件:输人数据生成三角形演示围的情况。)

(3)研讨三条线段能围成三角形的情况。

师:同学们知道了两条短的线段的和小于或等于第三条线段的时候一定不能围成三角形。

那三条线段在什么情况下就能围成三角形呢?我们来看这些能围成的情况,一起来分析分析。

师:哪个小组来说说你们的想法?

生:什么样的三条线段能围成三角形,什么样的不能围成三角形。

小组讨论

学生说想法

课件重现了数据对应的图形,学生借助黑板上的数据、屏幕上的图形和数据进行分析,发现不能围成三角形的三条线段之间的关系。

四年级数学教案设计篇4

教学目标:

1、让学生自主探索小数加、减法的计算方法,理解计算的算理并能正确地进行加、减及混合运算。

2、使学生理解整数运算定律对于小数同样适用,并会运用这些定律进行一些小数的简便计算,进一步发展学生的数感。

3、使学生体会小数加、减运算在生活、学习中的广泛应用,提高小数加、减法计算能力的自觉性。

教学重点:

1、小数加、减法的笔算方法以及小数加减混合运算。

2、能根据数据特点正确应用加法的运算定律进行小数的简便计算。

教学难点:

1、理解小数点对齐,即数位对齐的道理。

2、灵活选用方法使混合运算简便。

3、感受解题策略的多样化和灵活性。

教学建议:

1、鼓励学生自主学习小数加减法知识。

小数加减法和整数加减法,两者之间有着割不断的联系和相同之处。整数加减法的计算方法,学生在三年级时就已经掌握了。因此,让学生充分应用旧知来自主学习小数的加减法成为本单元教学的一个重要策略。教学时,教师的职责是:帮助学生激活整数加减法的计算方法这一已有知识经验,并尝试用它来计算小数加减法;让学生明确列竖式时应如何对齐数位,懂得道理何在;学会用自己的语言表述自主尝试的过程和结果。通过自主学习本单元的知识,使学生懂得应用旧知来学习新知是获取知识的一条重要途径。

2、提倡解题策略的多样化。

为了使因材施教、让每一个人都得到充分发展的理念落到实处,教学时应注意关注不同学生解答问题的不同思路,积极鼓励学生用自己的方式思考问题,提出自己的解法。如,教学例1中解答“第二轮动作完成后中国队领先多少分?”的问题时,教师不宜作任何提示,而应让学生根据自身经验找到适当的解题方法。又如,教学例3、例4时,不需要将教材中出现的各种解题思路率先呈现给学生,而是让学生在独立思考、自主解答的基础上,通过合作交流,领会多种不同的解题思路,感受解题策略的多样性和灵活性,达到提高数学思考能力和计算能力的目的。

四年级数学教案设计篇5

[教学目标]

1.引导学生通过观察、讨论感知生活中的垂直与平行的现象。

2.帮助学生初步理解垂直与平行是同一平面内两条直线的两种位置关系,初步认识垂线和平行线。

3.培养学生的空间观念及空间想象能力,引导学生树立合作探究的学习意识。

[教学重点]

正确理解“相交”“互相平行”“互相垂直”等概念,发展学生的空间想象能力。

[教学难点]

相交现象的正确理解(尤其是对看似不相交而实际上是相交现象的理解)。

[教具、学具准备]

课件,水彩笔,尺子,三角板,量角器,小棒,淡粉色的纸片,双面胶。

[教学内容]

《义务教育课程标准实验教科书?数学》四年级上册64~65页的内容。

[教学过程]

一、画图感知,研究两条直线的位置关系

导入:前面我们已经学习了直线,知道了直线的特点,今天咱们继续学习直线的有关知识。

(一)学生想象在无限大的平面上两条直线的位置关系

师:老师这儿有一张纸,如果把这个面儿无限扩大,闭上眼睛,想象一下,它是什么样子的?在这个无

限大的平面上,出现了一条直线,又出现一条直线。想一想,这两条直线的位置关系是怎样的?会有哪几种不同的情况?(学生想象)

(二)学生画出同一平面内两条直线的各种位置关系

师:每个同学手中都有这样的白纸,现在咱们就把它当成一个无限大的平面,把你刚才的想法画下来。注意,一张白纸上只画一种情况。开始吧。(学生试画,教师巡视)

二、观察分类,了解平行与垂直的特征

(一)展示各种情况

师:画完了吗?在小组中交流一下,看看你们组谁的想法与众不同?(小组交流)

师:哪个小组愿意上来把你们的想法展示给大家看看?(小组展示,将画好的图贴到黑板上)师:仔细观察,你们画的跟他们一样吗?如果不一样,可以上来补充!(学生补充不同情况)

(二)进行分类

师:同学们的想象力可真丰富,画出来这么多种情况。能把它们分分类吗?在小组中交流交流。(小组讨论、交流)

1.小组汇报分类情况。

预案:

a.分为两类:交叉的一类,不交叉的一类;

b.分为三类:交叉的一类,快要交叉的一类,不交叉的一类;

c.分为四类:交叉的一类,快要交叉的一类,不交叉一类,交叉成直角的一类。

当学生在汇报过程中出现“交叉”一词时,教师随即解释:也就是说两条线碰一块儿了。在数学上我们把交叉称为相交,相交就是相互交叉。(并在适当时机板书:相交)

2.引导学生分类。在同一平面内两条直线的位置关系分为相交、不相交两类。

3.(学生说出自己小组的分法后)师:对于他们小组的这种分法,你们有问题吗?

设想:当出现“b”情况后,教师要引导学生自己发现问题,通过想象直线是可以无限延伸的,并把直线画得长一些,使学生明白,看起来快要相交的一类实际上也属于相交,只是我们在画直线时,无法把直线全部画出。

当出现“c”的分法时,开始同“b”的做法一样,先使学生明确快要相交的一类也属于两条直线相交的情

况。再使学生明确分类时要统一标准。相交的一类,快要相交的一类,不相交一类,这样分类是以相交与否为分类标准。而相交成直角是根据两条直线相交后所成角度来分类的。二者不是同一标准,所以这种分法是不正确的。从而达成分类的统一,即相交的一类、不相交的一类。总之,在分类过程中重点引导学生弄清看似两条直线不相交而事实上是相交的情况。先想象是否相交,再请一两名学生动手画一画,从而达成共识。

三、归纳认识,明确平行与垂直的含义

(一)揭示平行的概念

师:那剩下的这组直线相交了吗?(没有)想象一下,画长点,相交了吗?(没有)再长一点,相交了

吗?(没有)无限长,会不会相交?(不会)

(边提问边用课件演示)

师:这种情况你们知道在数学上叫什么吗?我们就说这两条直线互相平行。

(板书:互相平行)知道为什么要加“互相”吗?

(学生回答)谁能说说什么是互相平行?(学生试说不完整的概念)

小结:在同一平面内,画两条直线会出现几种情况?

(二)揭示垂直的概念

师:咱们再来看看两条直线相交的情况。你们发现了什么?(都形成了四个角)

师:你认为在这些相交的情况中哪种最特殊?(相交形成了四个直角)

师:两条直线相交成直角,而其他情况相交形成的都不是直角,有的是锐角有的是钝角。

师:你是怎么知道他们相交后形成了四个直角呢?(学生验证:三角板、量角器)

(板书:成直角、不成直角)

师:像这样的两条直线,我们就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。用自己的语言说说什么是互相垂直。(学生试说后指名回答)

(课件出示互相垂直的概念)

四、练习巩固,深化对垂直与平行的理解

1.生活中我们常常遇到垂直与平行的现象,你能举几个例子吗?(学生举例后教师可适当添加一两个没想到的例子。

2.我们看看运动场上还有这样的现象吗?(出示主题图)

3.咱们看看几何图形中有没有垂直和平行的现象?(出示几何图形)

五、拓展延伸,发展空间观念

师:下面咱们一起来做个游戏,(出示小棒)每根小棒代表一条直线。

1.摆出两根红色小棒与绿色小棒平行,想象有多少条直线跟绿色小棒平行。观察发现规律。

2.摆出两根红色小棒与绿色小棒垂直,想象有多少条直线跟绿色小棒垂直。观察发现规律。

六、课堂总结

今天这节课你有什么收获?

四年级数学教案设计篇6

教学内容:

P4/例1、例2(只含有同一级运算的混合运算)

教学目标:

1. 使学生进一步掌握含有同一级运算的运算顺序。

2. 让学生经历探索和交流解决实际问题的过程,感受解决问题的一些策略和方法。

3. 使学生在解决实际问题的过程中,养成认真审题、独立思考等学习习惯。

教学过程:

一、主题图 引入

观察主题图,根据条件提出问题。

(1)说一说图中的人们在干什么?"冰雪天地"分成几个活动区?每个区有多少人?你是怎么知道的?

组织学生提问并对简单地问题直接解答。

(2)根据图中提出的信息,你能提出哪些问题,怎样解决?

通过补充条件,继续提问。

1. 滑冰场上午有72人,中午有44人离去,又有85人到来。现在有多少人在滑冰?

2. "冰雪天地"3天接待987人。照这样计算,6天预计接待多少人?

等等。

先小组交流,再全班交流。

提示学生可以自己进行条件的补充。

二、新授

1. 小组4人对黑板上的题目进行分配解答。

引导学生对黑板上的问题进行解答,请学生在练习本上列出综合算式并进行脱式计算。

2. 小组内互相说说你是怎样解答的?

教师巡视并对学生的叙述进行指导。

3. 全班汇报:组织全班同学进行汇报,并且互相补充,注意每步表示的意义的叙述。

(1)71-44+85

=27+85

=113(人)

71-44表示中午44人离去后还剩多少人,在加上到来的85人,就是现在滑冰场有多少人。

(2)987÷3×6 6÷3×987

=329×6 =2×987

=1974(人) =1974(人)

第一种方法中,987÷3算出了1天"冰雪天地"接待的人数,在乘6算出6天接待的总人数。(实际上就是原来学习的乘除混合应用题,不知道单一量的情况下求总量,一般都是乘除混合应用题。)

第二种方法,因为是照这样计算,那么每天接待的人数可以看作是一样多的,就可以先算出6天是3天的几倍,6天接待的总人数也是3天接待的总人数的几倍。就可以直接用3天的987人数去乘算出来的2倍。等等。

引导学生进一步理解"照这样计算"的意思。

强调:可用线段图帮助理解。

教师要注意这种方法的叙述,方法不要求全体学生都掌握,主要掌握运算顺序。

4.巩固练习

(1)根据老师提供的情景编题。A加减混合。乘车时的上下车问题,图书馆的借书还书问题,B速度、单价、工作效率

先个人编题,再两人交换。

小组合作,减少重复练习。

(2)P5/做一做1、2

三、小结

学生就本节课的学习内容进行汇报。

这节课我们解决了很多问题,你们都有什么收获?

教师根据学生的回报选择性地板书。(尤其是关于运算顺序的)

运算顺序为已有知识基础,让学生进行回忆概括。

四、作业

P8/1-4

30190