北师大版四年级数学四单元教案
结合学生的实际,选择适当的教学方法,设计教学程序;挖掘教材中思想教育因素。通过教材分析和深入的思考,一份教案的蓝图已经形成了。今天小编在这里整理了一些北师大版四年级数学四单元教案最新范文,我们一起来看看吧!
北师大版四年级数学四单元教案(精选篇1)
教材分析:
本节课教材的设计重视自然数、奇数、偶数与现实生活的联系,尊重学生的生活经验和已有的知识基础,利用真实的生活素材开展数学学习。
学情分析:
学生对生活中的情景比较熟悉,在认识自然数上并不陌生。但是奇数、偶数的特点总结方面可能会欠缺一些。 设计思路 通过用谜语星星引发后面的故事情景,让学生打开智慧之窗。从中激发了学生的学习兴趣,使学生深刻理解了“数学来源于生活而又高于生活”的道理,感受到数学就在我们身边,并深深体会到数学的价值。给学生提供自主探究,合作交流的时间和空间,让学生在独立思考的基础上,合作交流,认识奇数和偶数。
教学方式:
自主、探究、合作。
教学手段:
借助多媒体课件。
教学目标:
1、结合具体情景,经历认识自然数、奇数、偶数的过程。
2、认识自然数,能用直线上的点表示自然数;知道奇数、偶数;能判断一个数是奇数还是偶数。
3、感受数学与日常生活的联系,激发学生学习数学的兴趣。
教学重点:
让学生认识自然数,能用直线上的点表示自然数。
教学难点:
知道奇数、偶数;能判断一个数是奇数还是偶数。
课前准备:
课件。
教学过程:
一、探索自然数的特征。
师:老师发现,天空有几颗非常明亮的星星,它们一共是4.5颗,你觉得老师这句话有什么问题吗?
生:我觉得星星的颗数不能用4.5来表示。
师:那你觉得用什么数来表示才好呢?
生:我觉得用像1、2、3„„这样的数来表示好。
师:说的非常好!我们平时数东西的时候,就像这样1,2,3,4,5„„一个一个地数,这些数都叫自然数。(板书:自然数) 课件出示问题:0是自然数吗? 小组讨论。学生汇报结果。
小结:0也是自然数,它表示一个物体都没有。
二、用直线上的点表示自然数。
师:自然数不但可以用数的形式来表示,还可以用直线上的点来表示。我们一起来看。(课件出示:用直线上的点表示自然数的内容。)
师:请大家仔细观察直线上的数,(手势)看看你能发现什么?和你的同桌说一说。 学生观察交流、讨论。教师可以参与到学生的学习中去。 教师指名回答。
师:这些就是我们今天要掌握的自然数的特征,大家跟老师一起再来概括一遍,“自然数的个数是无限的,没有的自然数,最小的自然数是0。”
三、认识奇数和偶数。
师:大家喜欢做游戏吗?我们一起来做个游戏。请十位同学到前面来。 学生举手,教师请十位学生到前面站成一排报数:1、2、3„„ 师:请报单数的向前一步走。
师:你有什么发现吗? 学生交流。
生1:我发现10名同学的报数不是双数就是单数。 „„
师:刚才我们提到了单数和双数,单数都有哪些数?双数又有哪些数?谁给举一些例子?
师:在数学上,我们把单数又叫做奇数,(板书:奇数),注意字的读音。双数又叫做偶数。(板书:偶数)值得说明的一点:0也是偶数。
师:现在,谁能举出几个奇数和偶数的例子呢?
四、尝试应用。
1、师:我们在生活中也经常用到奇数和偶数。生活中哪些地方用到奇数和偶数?
生1:电影院的座位号分奇数号和偶数号;
生2:上体育站队报数。 „„
2、观察数列,初探奇数、偶数的规律。
师:我们已经认识了奇数和偶数。下面请同学们拿出练习本,试着按要求写出奇数和偶数。
(1)写出自然数1-30之间所有连续的奇数。
(2)写出自然数1-30之间所有连续的偶数。 学生在练习本上写,教师巡视指导。
师:谁愿意给大家展示一下你写的。你给大家读一下好吗?
师:我们一起来看这两组数,有什么新发现吗?四人小组可以讨论讨论。 学生讨论。
师:哪个组想把你们的发现告诉大家?
五、课堂练习。
1、下面各数中,哪些是自然数? (出示题目:6、25、1、47、0.01„„„)
2、在括号里填上合适的数。
3、在圆圈里填上奇数偶数。
4、数字游戏。 (学生手中拿着奇数和偶数的数字牌根据老师口令做游戏)
六、全课小结。
师:这节课你学到了哪些知识呀?(学生交流)
师:看来同学们的收获真不少,老师这有一道拓展练习想考考大家,请看大屏幕(拓展练习:教室里有一盏亮着的日光灯,淘气的小明一连拉了8下开关。聪明的同学们,现在请你们来判断,这盏灯是否还亮着?如果拉9下呢?拉100下呢?)
师:看来,自然数就在我们身边,让我们都做生活的有心人,去生活中发现数学的美吧!
北师大版四年级数学四单元教案(精选篇2)
一、 创设情境,揭示课题
1.谈话导入
前几天,学开展了一场“少年演讲比赛”出示主题图
问:谁的得分高一些呢?
2.揭示课题。
板书课题:比大小
二、探索交流,解决问题
1.比较两个小数的大小
1)组织讨论:说一说自己比较的方法和结果。
2)交流汇报
3)探索比较方法
①先让学生说一说:你是怎样想的?
②引导探索
举例说明,比较9.9和9.1
9.9和9.15
9.1和9.09
通过比较,观察数位特征,逐步将学生引导到从数位来考虑问题,使学生明白:两个小数的整数部分相同,就看十分位,十分位上大的那个数就大,如果十分位上的相同,就看百分位上的数……
4)练一练
比大小
0.8○0.6 0.25○0.26 1.30○1.5
12.6○12.62 4.54○4.49 5.45○4.55
2.把几个小数按大小顺序排列
1)再次呈现主题图,问:张华比李明表现好一点但不是10分,你给张华多少分?
试一试:把三人的得分按照大小顺序排列
① 学生各自给张华打分
② 按大小顺序排列
2)探索比较方法
在0.82、0.80、0.79中哪个数?哪个数最小?
(先学生独立思考,探索比较的方法,然后分组讨论,探索比较合理的比较大小的方法)
3)练一练
把3.24、3.30、3.28按大小顺序排列
( )>( )>( )
三、课堂练习
练一练第1--4题
四、课后小结:
引导学生总结比较两个小数的方法
五、作业布置:
P10第5题
北师大版四年级数学四单元教案(精选篇3)
教学目标:
1、知识与技能。认识自然数,知道自然数可以分为奇数和偶数。了解自然数的规律以及奇数和偶数规律。
2、过程与方法。通过数一数,看一看,议一议,说一说等活动,引导学生经历知识的形成过程。
3、情感态度与价值观。感受生活中的数学,培养学生语言表达能力、概括能力以及用数学解决问题的能力。
教学重难点:
引导学生经历发现数学规律的形成过程,体验成功的感受。
教学准备:
七彩泡泡一瓶,幻灯片(电影院图片、练习题),小试卷。
教学过程:
一、创设情境
师:同学们,今天老师给大家带来了一个礼物,大家看是什么? 教师出示七彩泡泡。
请一名学生来吹泡泡。其他同学注意发现其中的数学问题。 生开始吹泡泡。
吹了一会儿,师喊停。
问:发现了什么数学问题?
有的学生说一共12个泡泡,有的说10个,还有的说13个……
师:这样吧,让这位同学重新吹一下,我们大家一起大声的数出来。
一生吹泡泡,其他人数:1、2、3、4、5、6、7、8、9、10、11、12、13、14、…… 师板书。
师写到20多的时候停了下来。
说:我太累了,什么时候能数完?
生:数到10000。
师:数到一万还能接着数吗?
生:能。10001,10002…
生:永远也数不完。
师:永远也数不完我应该用什么号结束?
生:省略号,代表还有无数个数。
师拿起七彩泡泡说:我也会吹。结果一个也没吹出来。这应该用几表示?
生:0. 师板书。
二、探索建模
探索自然数的规律。
师揭示:像0、1、2、3、4、5、6、7、8、9、10、11、12、13……这样数出来的数我们把它们叫做自然数。
板书课题。
今天我们就来研究一下自然数。自然数除了可以这样一个一个写出来,还可用直线上的点来表示。
师在黑板上画数轴表示。
接下来我们一起研究研究自然数有哪些特点?
学生讨论。全班汇报。
师在学生汇报时注意帮学生完善语言,适时引导。
引导学生明确(幻灯片出示):
⑴最小的自然数是0,没有的自然数。
⑵自然数的个数是无限的。
⑶相邻的两个自然数相差1.
3、再次体验。
⑴小游戏数一数。老师说一个数,学生接着数。
⑵幻灯片出示数轴,学生填空。
⑶(幻灯片出示)选一选哪些是自然数,哪些不是。
4、找一找生活中的自然数。
学生自由发言。如日历,电话号,车牌号书页…
5、探索奇数和偶数的规律。
师:自然数在生活中处处可见,请看老师找到的图片。(幻灯片出示电影院的座位号)
同学们读一读,师板书。
1、 3、 5、 7、 9 11、13、15、17、19 21、23、25、27、29…… 这些数有什么特点?
生:都是单数。
师:对,我们把生活中的单数叫做奇数。 奇数有哪些特点? 学生讨论,汇报。
最后(幻灯片出示)师总结这都是刚才大家自己总结的:
⑴最小的奇数是1,没有的奇数。
⑵奇数的个数是无限的。
⑶相邻的两个奇数相差2.
⑷奇数的个位分别是1、3、5、7、9. 同样的方法认识偶数。
放手让学生自己总结偶数的规律。
6、小游戏。
抢答:快速判断老师说的数是奇数还是偶数。
100045、140、3000019…
说一说怎样快速判断。
生:就是看个位。个位是1、3、5、7、9的数是奇数。个位是0、2、4、6、8的数偶数。
三、应用实践
小试卷
1、选择自然数,奇数,偶数,填到合适的圈内。
2、填数轴。
3、填数列。 全班订正同桌互判。
全课小结。
北师大版四年级数学四单元教案(精选篇4)
教学目标:
1. 进一步认识自然数。
2. 认识自然数的6种含义。
3. 能根据已有的生活经验来认识自然数,及自然数的一些含义。
教学重难点:
认识自然数的6种含义。
教学用具:
教学课件
教学过程:
一、新课导入
看图编题。
出示图片、学生编题
小结:自然数0、1、2、3、4、5 等,可以表示物体的个数。
二、揭示课题
认识自然
三、新课探索
(一)探究一:自然数
1.数苹果,看个数。
(1)出示:1个苹果。
提问:现在你看到了什么?
回答:1个苹果。
(板书:1)
(2)逐步的一个一个添加苹果。
提问:现在有多少只苹果?
根据学生的回答板书成:1、2、3、4、5„„
提问:这里的1、2、3、4、5„„表示什么?
回答:苹果的个数。
(板书:表示个数)
2. 找名次,看序数。
(1)出示:刘翔110米栏比赛后的领奖的情景
提问:谁得了冠军?冠军还可以怎么表示呢?
回答:第1名。
(板书:1)
提问:那亚军和季军又可以怎样表示?
(板书:2、3)
(2)提问:这里的1、2、3表示什么?
回答:表示比赛的名次。
小结:比赛的名次是一种有序的排列。1、2、3也可以表示这样的序数
板书:表示序数
3.小结:像1、2、3„„这些用来表示计数编序的数在生活中随处可见,它们被称为自然数。今天这节课我们就一起来深入地了解自然数。
(出示课题:自然数)
4.认识自然数。
(1)提问:谁能说说看你在平时生活中的哪些情况下可以用自然数表示?
(2)学生举例回答
(3)小结:所以用来表示物体个数的数叫做自然数。
(二)探究二:自然数所表示的6种含义
1.自学。
2.交流反馈。
学生逐步归纳自然数的6种含义。
3.小结。
①表示序数——如第3个。
②表示个数——如3个。
③表示代码——如:邮政编码中的3,3号运动员等。
④表示量数——如:“多长?多大?多重?”。
⑤表示计算结果——如:2+1=3。
⑥表示重复计算的次数——如:2重复加3次:2+2+2=3×2=6 2重复乘3次:2×2×2=23=8 ㈢
探究三:“0”的认识
1.提问:“0”是自然数吗?说说你的理由。
(1)学生介绍说理。
(2)小结:从历看,国内外数学界对于0是不是自然数历来有两种观点:一种认为0是自然数,另一种认为0不是自然数。建国以来,我国的中小学教材一直规定自然数不包括0。目前,国外的数学界大部分都规定0是自然数。为了方便于国际交流,1993年颁布的《中华人民共和国国家标准》(GB 3100-3102-93)《量和单位》(11-2.9)第311页,规定自然数包括0。所以在近几年进行的中小学数学教材修订中,教材研究编写人员根据上述国家标准进行了修改。即一个物体也没有,用0表示。0也是自然数。
(3)自然数:表示物体个数的数0、1、2、3、4、5、6、„„叫自然数,简单说就是大于等于零的整数。
(4)板书:0是自然数。
2.提问:有比“0”更小的自然数吗?
(1)回答:“0”是最小的自然数。
(2)提问:的自然数会是几?
(3)回答:没有的自然数。
(4)板书:最小的自然数是0,没有的自然数。
3.小结。
0是自然数中最小的一个。0加1得1,1加1得2 ,2加1得3,„„这样继续下去可以得到任意一个自然数。而从自然数的排列顺序可知,后面一个自然数比前面一个自然数多1。因此,任何一个自然数都是由若干个1合并而成,所以1是自然数的单位。0可以看成是由0个1组成的自然数。自然数由0开始,一个接一个,组成一个无穷集合。如果把任意一个自然数用字母n表示,那接在这个自然数后面的一个自然数可以表示成“n+1”。
板书:每个自然数都只有一个自然数接在它的后面。自然数n的后一个自然数是“n+1”。
四、课内练习
1. 找出下面哪些是自然数。
18 100.01 0 10000000 -9
2.判断。
(1)从1开始的表示物体个数的数叫自然数。( )
(2)大于或等于0的整数都是自然数。( )
(3)没有的自然数,也没有最小的自然数。( )
(4)接在自然数18后面的自然数只有1 个。( )
(5)在4.2和8.5之间有4个数。( )
3. 有三个连续的自然数,中间的一个数可以表示为(a —1),那么另外两个自然数可以表示为( )和( )。
五、本课小结
提问:通过今天的学习,你对自然数有哪些深入地了解呢?
1.0是自然数。
2.每个自然数都只有一个自然数接在它的后面。自然数n的后一个自然数是“n+1”。
3.最小的自然数是0,没有的自然数。
六、课后作业
找找身边的自然数,说一说它所表示的含义。
北师大版四年级数学四单元教案(精选篇5)
一、教学目标
1.在具体的情境中,让学生自主探索出比较小数大小的方法,能正确地比较两个小数的大小以及将几个小数按大小顺序排列。
2.在比较小数大小的过程中,发展学生的推理能力。
3.通过小数比较大小,使学生初步感悟到数学知识的内在联系。
二、教材分析
教材创设了少年演讲比赛的情境,设计了三个问题,第一个问题是比较郑强和李明两个同学“谁的得分高”。在比较9.87 和9.90哪个数大时,学生可能会有不同的想法。有的学生联系生活经验可以得到9.90分比9.87分高,最后可以引导学生从数位来思考,两个数的整数部分相同,就看十分位,十分位上大的那个数就大,所以9.87<9.90。
第二个问题是比较三人的得分情况,张华的得分是9.96分,要比较郑强、李明、张华的成绩,就需将三个同学的得分按顺序排列起来,首先要让学生看清楚是按从大到小排列还是小到大排列,再让学生说一说是怎样比的。使学生体会到先比较整数部分,整数部分大的那个数大;整数部分相同就要看十分位,十分位上大的那个数大;十分位上相同,就要看百分位,百分位上大的那个数大。
第3个问题“王平可能是多少分呢?”是进一步让学生理解小数的大小,确定其范围。
三、学校及学生状况分析
我校是一所乡镇小学,学生大部分来自农村,只有极少数学生来自于乡镇企事业单位。我校实施新课程改革已是第四个年头,新的教材,新的理念,新的教学方法,使孩子们养成了良好的学习习惯,敢于提出问题,敢于相互质疑,大胆进行小组合作交流,自主探索,自主学习。学生活泼可爱,思维灵活,敢说敢做,既有着农村孩子特有的淳朴与耿直,又有着良好的合作和创新意识。只要是贴近孩子生活的实际的学习材料和内容,他们都会表现出浓厚的学习兴趣。
四、教学过程。
(一)创设情境,激发兴趣。
师:同学们,你们看过歌手大奖赛吗?
生:看过。
师:一场比赛结束后,你最关心的是什么?
生1:我最想知道谁得了第一。
生2:我一般最想知道我喜欢的那个选手得了第几名。
生3:我最想知道他们的名次情况。
……
(二)合作探索,解决问题。
师:我调查到在一次歌手大奖赛中,郑强和李明两名选手的最后成绩是这样的,请大家看!(出示图片)
郑强:9.87分;李明:9.90分。
1.提出问题。
师:根据图中的信息,你能提出什么数学问题?
生1:郑强和李明谁得了冠军?
生2:郑强和李明谁的得分高一些?
生3:他俩相差多少分?
……
2.大胆猜测。
师:同学们提出的问题都很好!他俩相差多少分这个问题,我们以后的学习中再来解决,而我们这一节课主要来解决像同学们提出的郑强和李明谁的得分高,谁的得分低这样的问题。那么他们谁的分高一些呢? 生1:李明的分高。
生2:我也认为李明的分高一些。
生3:对!和我的看法一样。
……(学生你一言我一语的在谈论)
3.合作探究,解决问题。
师:你们都认为李明的分高一些,你是怎样想出来的?请大家自己先判断一下,然后再在小组内说一说你的想法。
(学生活动,教师参与。)
汇报交流。
生1:我们小组的同学都认为是9.90大一些,我们可以先看9.87和9.90的整数部分,都是“9”,没法比,我们又比下一位“9”和“8”9比8大,所以我们就认为9.90比9.87大一些。
生2:我们小组同意他们的想法,我们能说的更明白,在以前我们学习整数比较大小时,都是从位比起,所以我们认为小数也是从位比起,假如位同样大,那么我们就再比下一位,就这样依次往下比。
生3:我们小组认为在比较小数大小的时候,应该先比较整数部分,假如整数部分同样大就再比较小数部分……
师:同学们说的都很有道理,就像大家所说的,通常我们在比较两个小数的大小时,先看它们的整数部分,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大;……
师:那你们认为小数与整数比较大小时有什么相同和不同的地方呢?请大家独立思考后在小组内互相说一说。
生1:我们认为都是从位比起。
生2:整数要先数一数位数的多少,位数多的那个数就大,而小数有小数部分,不能比位数的多少。……
师:大家说得棒极了!在比较小数大小时是从位比起,按照数位顺序一位一位地比,这一点与整数大小的比较方法是相同的,比到能分出大小就不再往下比了;小数比较大小与整数比较大小还有不同的地方,整数比较大小当整数位数不同时,位数多的那个数就大,而小数比较大小与位数的多少无关,是要按照数位顺序从高位到低位依次比较。
师:张华的得分是9.96分,同学们能将郑强、李明、张华的得分按顺序排列起来吗?
( )>( )>( )
(1)学生独立完成,小组交流。
(2)全班反馈。
1组:我们先比整数部分,整数部分相同,再比较小数部分,十分位上两个是9,一个是8,是8的最小,再比较9.90和9.96的百分位,9.90的百分位是0,9.96的百分位是6,所以9.96,也就是(9.96 )>(9.90 )>( 9.87 )
(三)应用拓展。
1.排顺序。
师:在这次比赛中王平的表现要比张华差一些,比李明好一些,请大家猜一猜,评委会给王平多少分呢?请你将这三个同学的得分按顺序排列起来。 生1:我猜可能是9.95分,因为9.95比9.90大,比9.96小。学生投影展示:9.96>9.95>9.90。
生2:我猜可能是9.93分,9.93也比9.90大,同时也比9.96分小。学生投影展示:9.96>9.93>9.00。
生3:我猜也可能是9.905分。学生投影展示:9.96>9.905>9.90。
师:大家的想法都很好,王平的分数还可以是多少分呢?
生4:老师,我有个不一样的答案!我认为比李明高一些,而比比张华低一些的小数有无数个。
(此时大部分学生有点疑惑)
师:为什么?说说你的看法。
生4:我认为只要个位和十分位上都保证是“9”,然后小数十分位上的数大于0而小于6,千分位和后边的可以任意的添数,就都比9.90多,比9.96小,这样的数可以有无数个。
(众生鼓掌,同意他的想法。)
师:你的这个发现真了不起!老师也为你的出色表现感到自豪!
2.找朋友。
教师举起写有“13.21”的卡片。
师:请大家在卡片上任意写一个小数,找比我大的朋友在哪里?
(学生写好后,部分学生举起手中的卡片对照。)
生:比您大的朋友在这里是……
师:大家可以在组内玩这个找朋友的游戏,请小组的同学先自己写好一个小数,然后比一比谁写的大,谁写的小,并说一说你是怎样比的。
(学生活动)
3.猜一猜。
师:同学们,我买了一本书是7元左右,请大家猜一猜是多少?
生1:比7.20元少吗?
师:对!
生2:比7.10元少吗?
师:不对!
生3:是7.15元吗?
师:对了!
师:你还想玩这个游戏吗?
生(齐):想!
师:请大家在小组内玩一玩,小组的同学可以轮流当裁判。
……
(四)总结、评价。
师:在这节课中,你有什么收获或感受?
生1:我学会了正确的比较两个小数的大小和三个小数的大小,还能给他们排顺序。
生2:我学会了怎样比较小数的大小。我感觉自己在这节课中的表现还可以,我很高兴。
生3:我又学到了一些关于小数的知识,我感觉很快乐。