四年级下册教案数学教案
教案是教师根据教学目标和教学要求,预先设计师生活动和教学资源,制定实施教学的具体方案。要怎么写四年级下册教案数学教案呢?下面给大家分享一些四年级下册教案数学教案,供大家参考。
四年级下册教案数学教案篇1
加法交换律和结合律
一、教学内容:加法交换律和结合律P17——P18
二、教学目标:
1、在解决实际问题的过程中,发现并掌握加法交换律和结合律,学会用字母表示加法交换律和结合律。
2、在探索运算律的过程中,发展分析、比较、抽象、概括能力,培养学生的符号感。
3、培养学生的观察能力和概括能力。
三、教学重难点
重点:发现并掌握加法交换律、结合律。
难点:由具体上升到抽象,概括出加法交换律和加法结合律。
四、教学准备
多媒体课件
五、教学过程
(一)导入新授
1、出示教材第17页情境图。
师:在我们班里,有多少同学会骑自行车?你最远骑到什么地方?
师生交流后,课件出示李叔叔骑车旅行的场景:骑车是一项有益健康的运动,你看,这位李叔叔正在骑车旅行呢!
2、获取信息。
师:从中你知道了哪些数学信息?(学生回答)
3、师小结信息,引出课题:加法交换律和结合律。
(二)探索发现
第一环节 探索加法交换律
1、课件继续出示:“李叔叔今天上午骑了40km,下午骑了56km,一共骑了多少千米?”
学生口头列式,教师板书出示: 40+56=96(千米) 56+40=96(千米)
你能用等号把这两道算式写成一个等式吗? 40+56=56+40
你还能再写出几个这样的等式吗?
学生独自写出几个这样的等式,并在小组内交流各自写出的等式,互相检验写出的等式是否符合要求。
2、观察写出的这些算式,你有什么发现?并用自己喜欢的方式表示出来。
全班交流。从这些算式可以发现:两个数相加,交换加数的位置,和不变。
可以用符号来表示:△+☆=☆+△;
可以用文字来表示:甲数十乙数=乙数十甲数。
3、如果用字母a、b分别表示两个加数,又可以怎样来表示发现的这个规律呢?
a+b=b+a
教师指出:这就是加法交换律。
4、初步应用:在( )里填上合适的数。
37+36=36+( ) 305+49=( )+305 b+100=( )+b
47+( )=126+( ) m+( )=n+( ) 13+24=( )+( )第二环节 探索加法结合律
1、课件出示教材第18页例2情境图。
师:从例2的情境图中,你获得了哪些信息?
师生交流后提出问题:要求“李叔叔三天一共骑了多少千米”可以怎样列式?
学生独立列式,指名汇报。
汇报预设:
方法一:先算出“第一天和第二天共骑了多少千米”:
(88+104)+96
=192+96
=288(千米)
方法二:先算出“第二天和第三天共骑了多少千米”:
88+(104+96)
=88+200
=288(千米)
把这两道算式写成一道等式:
(88+104)+96=88+(104+96)
2、算一算,下面的○里能填上等号吗?
(45+25)+13○45+(25+13) (36+18)+22○36+(18+22)
小组讨论。先比较每组的两个算式,再比较这三组算式,在小组里说说你有什么发现。
集体交流,使学生明确:三个算式加数没变,加数的位置也没变,运算的顺序变了,它们的和不变。也就是:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
3、如果用字母a、b、c分别表示三个加数,可以怎样用字母来表示这个规律呢?
(a+b)+c=a+(b+c)
教师指出:这就是加法结合律。
4、初步应用。
在横线上填上合适的数。
(45+36)+64=45+(36+ )
(560+ )+ =560+(140+70)
(360+ )+108=360+(92+ )
(57+c)+d=57+( + )
(三)巩固发散
1、完成教材第18页“做一做”。
学生独立填写,组织汇报时,让学生说说是根据什么运算律填写的。
2、下面各等式哪些符合加法交换律,哪些符合加法结合律?
(1)470+320=320+470
(2)a+55+45=55+45+a
(3)(27+65)+35=27+(65+35)
(4)70+80+40=70+40+80
(5)60+(a+50)=(60+a)+50
(6)b+900=900+b
(四)评价反馈
通过今天这节课的学习,你有哪些收获?
师生交流后总结:学习了加法交换律和结合律,并知道了如何用符号和字母来表示发现的规律。
(五)板书设计
加法交换律和结合律
加法交换律 加法结合律
例1:李叔叔今天一共骑了多少千米? 例2:李叔叔三天一共骑了多少千米?
40+56=96(千米) (88+104) +96 88+(104+96)
56+40=96(千米) =192+96 =88+200
=288(千米) =288(千米)
40+56=56+40 (88+104)+96=88+(104+96)
a+b=b+a (a+b)+c=a+(b+c)
两个数相加,交换加数的位置,和不变。 三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
六、教学后记
四年级下册教案数学教案篇2
教学目标:
1、认识电子计算器,会使用计算器进行大数目的四则运算
2、会根据题目特点,有选择性地使用计算器;
3、让学生经历用计算器探究简单数学规律的过程,从中培养学生观察、归纳、概括、推理的能力;
4、能初步体会:计算器只是一种计算工具,人脑与之相比,有无法比拟的优越性。
5。进行数学文化的教育
重点难点:
会根据题目特点,有选择性地使用计算器;
能用计算器探究简单的数学规律,并初步体会计算器只是一种计算工具,人脑与之相比,有无法比拟的优越性。
教学准备:
课件、计算器
教学过程:
一、情境导入
师:请看一段录象(计算工具的发展)
师:刚才这段录象提到了哪几种计算工具?(示算筹图算盘图)
师:1945年第一台计算机在美国诞生了,1977年第一台微型计算机在日问世以后计算机就成为了人们计算经常用到的工具。
(课件出示各种常见的计算机)
师:你在哪些地方见到过有人使用计算器?你会用吗?
二、使用计算器
1、计算器介绍
你知道计算器上各中按键的名称和功能吗?请同座相互说说介绍。(然后叫一人上台用展示仪演示数字键、符号键、功能键。ON、OF、AC、CE、C的功能是什么?如果要进行计算怎样按?数字——符号——等号——清除)
我们都知道了计算机的使用方法,那这节课咱们就用计算器来计算。(板书课题)
2、尝试练习,规范操作
(电脑)银盆岭小学在校学生775人,如果每人每天节约用水1千克,一天可节约用水775千克,一年(365天)共可节约用水多少千克?
(1)指名口头列式
(2)学生试算
(3)汇报结果,纠错
(电脑)一年节约282875千克,如果缺水地区一家三口每天用水25千克,这些水够他们用多少天?
学生试算
(电脑)每年按365天计算,115131天是多少年?
学生试算
师:通过我们做的题目的数字这么大,但是你感觉难不难?你认为使用计算器计算有什么好处?
3、灵活运用
比一比,看谁算得又对又快!
(1)学生计算,教师巡视、辅导
219×35=41600÷128=24÷6=125×8=138976-138970=1379+34089=
(2)学生汇报,集体订正
师:这些题都是用计算器算的吗?哪些没有用?为什么?
(3)归纳总结
师:你认为什么样的题适合用计算器计算?
三、能力提升
师:想不想算一个又大又难算的题目?下面我们就做一个挑战极限的游戏。
我们就用9作为乘数吧。你准备几个九相乘?小了,8个九吧
999999999×999999999=
试算
报得数
你认为计算结果正确吗?
在计算器上你看到了什么不一样的?E对了,他是英文单词错误的缩写,你知道这个单词是什么意思吗?错误!
师:那老师不看这个E也可以知道这个结果上错误的,你知道我是从哪里看出来的吗?
师:是的,因为工具都有他的局限性,现在用我们的手中的计算器因为为数少了,看来这个题目没有办法做了。
老子说:天下难事,必作于易,天下大事必作于细。不着急,这个数字大了,那如果小一些我们能不能算?那我们就从简单的做起看能不能发现一些什么?
计算:9__9=81
99__99=9801
999×999=998001,
9999×9999=99980001
有很多同学举起了手,你想说什么?
发现规律,得出结论
999999999×999999999=999999998000000001
做了这道题目,你有什么想法吗?
师、是呀!计算器不能解决的问题我们用自己聪明的头脑解决,为自己骄傲吧!但是在刚才的计算过程中我们计算器就没有一点作用吗?
师:是的,他可以帮助我们探索规律的工具。其实,我们手中的计算器因为位数少不能计算,但是还是有工具可以计算出的,比如我们教室现在就有的——电脑师演示
师、现在64位计算器已经在许多行业使用。尽管这样,是不是计算器就能够解决所以的问题呢?
师:工具都有他的局限性,需要不断发展。看来无论是学习还是生活,工具都不是最重要的,重要的是:人的智慧才是天敌下最伟大的力量。(出示培根的名言)
希望同学们做个充满智慧的人
四年级下册教案数学教案篇3
教学目标:
1、巩固如何判断直线的互相平行与互相垂直。
2、通过练习巩固用量角器量指定角的度数,画指定度数的角。
教学重难点:会用量角器量指定角的度数,画指定度数的角,会判断直线的互相平行与互相垂直。
课前准备:实物投影,量角器,三角板,圆形纸,长方形纸
课时安排:1课时
教学过程:
一、复习本单元的知识重点
1、直线、线段与射线的特点与读法
2、平行、垂直的定义及平行线、垂线的画法
3、角的度量及画法
二、练一练
1、第一题下图是北京城区地图的一部分,请你找出两组互相平行、两组互相垂直的道路(让学生说说判断的方法)
2、第二题说一说,在你的学校附近,哪两条道路是互相平行的?哪两条道路是互相垂直的?可以让学生画个草图
3、第三题先估计,再量出下面各角的度数思考,角的边不够长,不能指到量角器上的准确度数,该怎么办?(把角的一边延长)
4、第四题
(1)将一张圆形纸对折三次,得到的角是多少度?
A、学生试做,同桌交流,再全班交流。
B、引导学生发现,每对折一次,所得到的角是原来的一半。
C、摊开折过后的纸,在这张纸上你能找到哪些度数的角。
小组合作,可画一画。
(2)用长方形纸分别折出45°,135°的角可先让学生独立操作,再全班交流。
三、复习用量角器测量角的大小
练习二第3、4题:先让学生估一估角的大小,再用量角器测。
四、运用知识解决问题:
1、练习二第5题:
这是一道操作题,让学生在操作的过程中发现规律,解决问题。这道题要放手让学生自己动手操作、讨论、发现规律、解决问题。
2、练习二第6题:
让学生通过独立地观察找出图中的直角、锐角、钝角,然后与同学交流。
四年级下册教案数学教案篇4
1、探索乘法的结合律要以解决问题策略的多样化为依托。 下面请老师们见教材19页探索部分,教材是通过比较2个学生的不同解题方法,发现规律的。这里要说明的一点是:我们所说的解决问题策略的多样化是指群体策略的多样化,通过比较不同学生的不同策略,来发现其中的规律,而不是要求每个学生都必须会用不同的策略解决同一个问题。
2、猜测、举例、验证必不可少。 与学习加法的结合律和交换律一样,乘法的结合律和交换律也要经过猜测、举例、验证的过程。这一点,前面已经说过,在教材的呈现形式上已有所渗透。
3、运算律的字母描述形式,可以尝试放手。 在教学第一单元时,由于学生是第一次接触用字母表示加法运算律,教师需要进行适当的引导,但是本学习本单元时,由于学生已经有了用字母表式规律的经验,所以教师可尝试着放手,让学生自己去摸索,去表达。
4、关注学生已有的经验和认知基础,找准迁移点。 学生有了第一单元学习加法结合律和加法交换律的经验,再来学习乘法结合律和乘法交换律,应该说难度不大。因此,教师要尽量放手,发挥其主观能动性,让学生自主地获取知识。 在组织教学方面,由于本单元教材的呈现形式及教法渗透方面,与上单元很相似,因此,可参照第一单元的教学流程去组织学习活动(比如说,猜想——举例——验证)
5、运算律的探索、理解、运用是本单元的教学重点,规律的记忆要在理解的基础上进行。 数学课程标准对运算律的教学提出的目标是“探索和理解运算律,能应用运算律进行一些简便运算”从字面意义上看,标准对我们的要求,是学会探索方法,理解定律的意义。当然作为基础知识与技 能的教学要求,也即规律的记忆,这是必要的,但要在理解的基础上进行。
6、重视简便计算在现实生活中的灵活应用,有利于提高学生解决实际问题的能力。
四年级下册教案数学教案篇5
教学目标
1?进一步理解并掌握乘法分配律,并能运用乘法运算律进行简便计算。
2?运用乘法运算律解决简单的实际问题。
3?培养学生灵活运用所学知识解决实际问题的能力。
教学重、难点
灵活运用乘法运算律进行简便计算。
教学过程
一、复习旧知,引入新课
1.上节课学习了乘法分配律,谁能分别用自己的话和字母表述乘法分配律?
2.填空。
25×6+75×6=
我们这节课一起来学习用乘法分配律进行简便计算。
二、学习新知
1.出示例5
用简便方法计算102×45,32×27+32×73。
教师:观察每个算式中的因数有什么特点?可以运用乘法运算律进行简便计算吗?(学生观察思考,独立尝试计算)
学生计算后汇报,教师板书如下:
(1)①102×4
②102×45
③……=(100+2)×45 =102×(40+5)
=100×45+2×45 =102×40+102×5
=4500+90 =4080+510
=4590 =4590
(2)①32×27+32×73
②32×27+32×73
③……=32×(27+73) =864+2336
=32×100=3200 =3200
小组讨论(小组讨论后,在全班交流)
(1)你认为每个题的哪种算法最简便?为什么?这种简便算法的依据是什么?
(2)运用乘法分配律进行简便计算时,要注意什么?
教师在学生讨论交流的基础上,小结运用乘法分配律进行简便计算的方法。
三、课堂练习
1.基本练习
(1)练习五第5题:学生独立完成口算题。
(2)填空。
巩固练习
(1)练习五第7题:学生独立完成,再集体订正。
(2)练习五第4题:学生根据题中所呈现的信息独立解决问题,然后思考还能提出哪些数学问题?
(3)练习五第8题:学生根据情景图中所呈现的信息先独立思考解决,对有困难的可在小组中讨论解决。
全班交流,板演在黑板上,并说出自己解题的思路。
3.发展练习
练习五思考题,独立思考,有困难的先在小组中商量解决,最后全班反馈,要求说出思考过程。
4.课堂作业
练习五第2,3,6题。
四、课堂小结
今天的学习你都有些什么收获?你还有什么问题?
四年级下册教案数学教案篇6
【学习目标】
1、理解并掌握方程的意义,弄清方程与等式间的联系与区别。
2、通过在不同的情景中建立等量关系列方程,经历方程模型的建构的过程。
3、初步培养学生的观察、抽象概括等能力。
【学习重点】
会用方程表示事物之间简单的数量关系。
【学习难点】
能根据图义,找到等量关系列出方程。
【学习过程】
一、谈话引入
师:生活中经常遇到各种各样的数,对吗?比如说,谁愿意告诉我你今年多大了?(学生说)只知道自己的年龄还不行,谁知道妈妈今年多大了?(学生说)自己的年龄,妈妈的年龄对你来说是已知数,那老师的年龄对你来说是……..(未知数)以此来引出未知数。
二、利用等量关系,正确列出等式
1、出示天平图1:天平左边10克,天平右边:2克和一个樱桃
师:看天平的显示,谁能列出一个等式?(樱桃的质量+2克=10克),如果用未知数X来表示樱桃的质量,那么,可以列出一个什么样的等式呢?(2+X=10)
2、出示情景图2:四盒种子的质量一共是20__克。
你从图中发现了什么?(4盒种子的质量=20__克)
师:能根据这个相等关系写出一个等式吗?
师:请你给同学们介绍一下你的等式,先说字母表示什么意思?
师:如果用y表示每块月饼的质量,怎样用数学式子表示这个等式呢?(板书:4y=20__)
师:下面老师加大难度,敢接受挑战吗?(同学们在家里帮爸爸妈妈倒过开水吗?现在请同学们仔细观察老师倒开水的过程,找一找这里有相等关系吗?)
3、课件出示图3:一壶水刚好倒满两个开水瓶和一个杯子。
师:你们找到其中的相等关系了吗?(两个热水瓶的盛水量+200毫升=20__毫升)
师:如果用z表示每个热水瓶的盛水量,那么这个关系式可以怎样表示?(板书:2z+200=20__)
4.理解方程的意义。
师:刚才我们通过称樱桃,称种子和水壶倒水的三次实践活动,得出了下面这三个等式:(x+5=104y=3802z+200=20__)
(1)同桌交流。说一说:上面的等式有什么共同特点?
(2)全班交流。
教师小结:这样含有未知数的等式叫方程。(板书课题:方程)
师:自己读一读,你认为关键词是什么?
(3)巩固知识。
师:说一说方程必须具备哪几个条件?(一必须是等式,二必须含有未知数)
5、会写方程师:你会自己写出一些方程吗?写下来同桌交换检查。
(学生试着写出各种各样的方程,再在全班展示,当然也有可能会出现一些不是方程的式子,教师应引导学生说出它不是方程的原因。)
三、巩固练习
1.判断
下面式子哪些是方程,哪些不是方程?
35+65=100x-14>72y+24
5x+32=4728<16+146(y+2)=42
2、练一练课本67页第一题说一说各图中的等量关系,再列出方程。
四、总结评价
师:关于方程还有很多有趣的内容,相信同学们还会以饱满的精神、积极地态度去研究、去探索方程的奥妙。
四年级下册教案数学教案篇7
第1课时 鸡兔同笼
教学内容:P116页的练习二十五的第20题。
教学目标
知识与技能:通过复习“鸡兔同笼”问题,感受中国古代数学问题的趣味性。
过程与方法:能熟练用列表、假设等不同的方法解决“鸡兔同笼”问题,体验解决问题的方法的多样性,提高解决实际问题的能力。
情感态度价值观:通过复习,培养学生的合作意识和逻辑推理能力,在解决问题的过程中,提高迁移思维的能力,进而体会数学的价值。
教学重点:熟练理解和掌握解决问题的不同思路和方法,让学生再一次亲历列表法、假设法等解题的过程,深刻体会解决问题的一般性策略。
教学难点:建构解决“鸡兔同笼”问题的数学模型,运用学到的解题策略熟练解决生活中的实际问题。教具学具:多媒体
教学过程
一、情境导入
师:“鸡兔同笼”是一道有名的中国古算题。最早出现在《孙子算经》中。许多小数数学问题都可以转化成这类问题。
师:你知道解决“鸡兔同笼”问题有几种方法吗?通过比较发现它们有什么特点?
生1:列表法,适合数据较小的问题。
生2:假设法,一般情况都适合,数量关系比较容易理解。
师:今天我们复习“鸡兔同笼”问题。
二、自主探究
师:摆三角形和正方形一共用了19根小棒。(任意两个图形之间没有公共边)你能算出分别摆了多少个三角形和多少个正方形吗?(学生回答)
师:星期日,小英一家八口人到博物馆参观,博物馆的票价是成人每人30元,儿童每人15元,买门票共花去210元钱,其中儿童有几人?(学生回答)
师:三年级(4)班48人去北海公园划船,租了大船和小船共10条,每6人克坐满一条大船,每4人可坐满一条小船,且每条船都没有空位,他们租大船和小船各几条?(学生回答)
三、探究结果汇报
师:通过复习“鸡兔同笼”问题,你有哪些收获?
生1:借助列表的方法,解决简单的实际问题。
生2:我学会了化繁为简的学习方法。
生3:用“假设”法解决问题的一般性。
四、师生总结收获
师:通过本课的学习,你有哪些收获?
师生总结得出:解决数学问题时,可以先提出假设,如果假设后的情况与实际不符,这时就需要进行调整。我们可以借助画图、列表等方法帮助我们进行调整,从而推算出正确结果,最后还要对结果进行检验。(逐一板书:假设、调整、检验)
板书设计
鸡兔同笼假设→调整(列表、画图)→检验
四年级下册教案数学教案篇8
教学目标:
1、了解“鸡兔同笼”问题的结构特点,掌握用列表法、假设法、解决问题,初步形成解决此类问题的一般性策略。
2、通过自主探索,合作交流,培养学生的合作意识和逻辑推理能力,体会解题策略的多样性,渗透化繁为简的思想。
3、感受古代数学问题的趣味性,提高学习数学的兴趣。
教学重点:
理解掌握用不同的方法解决问题的不同思路和方法。
教学难点:
用不同的方法解决实际问题。
教具准备:
多媒体课件、学习单等。
教学过程:
一、创设情境、揭示课题
1、师:同学们,今天老师很高兴能跟大家一起度过一堂生动有趣的课。同学们有没有信心能上好这堂课?真棒!请同学们带着你们的信心和热情跟老师一起有进数学广角。我们一起来学习一道我国古代非常有名的数学趣题,“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”(PPT投影展示原题。)这四句话是什么意思呢?抽生回答。(笼子里有若干只鸡和兔,从上面数,有35个头。从下面数,有94条脚。鸡和兔各有几只?)(PPT展示今意。)
2、这类题我们把它叫做什么问题好呢?(“鸡兔同笼”问题。)板书。其实,鸡兔同笼问题记载于《孙子算经》一书中,早在1500多年前就有古人在研究它,我们现代人还在研究它,而且还有很多外国人也在研究它。那么这个流传了上千年的问题到底有什么魅力,使得那么多的人乐此不疲地去解决这个问题呢?相信同学们学习了这节课,你们就会揭开这个秘密。老师再问一次大家:你们有没有信心把这节课的&39;内容学好?
二、合作探究、学习新知
活动一:探究用猜测列表法解决“鸡兔同笼”问题。
为了便于研究,我们可以先从简单的问题入手,来探讨解决这类问题好吗?出示例1
1、师:请大家读题。思考:从上面数,有8个头,从下面数,有26只脚,分别是什么意思?所求问题是什么?
生:鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只?师:还有补充吗?有两个隐藏条件看谁细心发现了?。
生:鸡有2条腿,兔子有4条腿。鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只?师评:他还发现了隐藏条件,审题真细心。
2、列表法
(1)猜想
要求鸡和兔各有几只,咱们不妨猜一猜,好吗?(学生猜)
(2)验证:
到底谁猜对了呢?我们来验证一下。解决问题要有理有据,不能随意猜。我们应该抓住什么样的条件来验证我们的猜测是否正确?首先要知道鸡和兔一共有8只,其次鸡的腿和兔的腿一共有26只,所以我们必须要把鸡的腿和兔的腿加起来看看等不等于26。这两个条件必须同时满足才是正确答案。
现在请同学们拿出你们的表格把你们的猜测的数据按顺序填到表格中并找到正确答案。学生独立完成表格,之后交流完成情况,出示大屏幕的表格中。
(像这样把我们的猜测按一定的顺序列成表格,这种方法叫列表法)。观察这个表格,你找到答案了吗?答案是怎样的。
活动二:探究用假设法解决“鸡兔同笼”问题。
师:列表的方法可以解决鸡兔同笼问题,但是如果数据很大,会发生什么情况?(繁琐)。有没有其他方法可以解决?请同学们四人一小组探讨一下还有没有其他方法可以解决。
设全都是鸡,每只鸡有两只脚2×8=16(条)8只鸡共长几条脚?26-16=10(条)表示什么?所有兔子少的脚4-2=2(条)2表示什么?每只兔子少的脚
10÷2=5(只)兔表示10条脚,每只鸡上添2只脚变成兔子,所以共有5只鸡变成了兔子,因此兔子有5只8-5=3(只)鸡表示总数减兔数等于鸡数
可能还有些同学有点迷糊,我们用画图法直观理解一下。
(1)请画8个圆表示鸡,每只鸡2只腿,一共有16只脚。
(2)还差10只脚,每只鸡再加两只脚变成兔子,共有5只鸡变成5只兔子。
(3)最后剩下的3只就是鸡。
现在大家清楚了吗?在引导学生回顾一遍。先怎么想?假设全是鸡,用总脚数减去鸡的脚数求出它们
的相差数是10,再用相差的数除以每只鸡相差的2只脚,就得到了兔的只数,最后用总只数减去兔的只数就是实际鸡的只数。这种方法好吗?给这种方法起个名字,叫什么好呢?假设法。
②:如果假设全是兔,你们会解吗?好这个方法就留给你们课后完成。
小结:同学们,刚才我们用很多方法解决了同一个问题,你觉得这些方法的核心思想是什么?(假设。所以鸡兔同笼问题又叫假设问题。)
发散思考、加深理解:
现在我们能用上面的方法解决古人流传下来的问题了吗?出示:鸡兔同笼,有35个头,94只脚,鸡兔各有几只?学生独立自主完成
小结:现在你能从新总结一下这些方法的优势和适用范围吗?数目比较小时,用列表法。数目比较大时,列表法计算量大,就有局限性,比较麻烦,最好用假设法比较好。用假设法时要特别注意:如果假设是鸡而先求出的就是兔子,如果假设的是兔子那先求出的是鸡,两者相反。
三、巩固练习
课本105页“做一做”的1、2题。
四、课堂总结
师:通过今天的学习,你有哪些收获?
五、作业布置
课本106页练习二十四第一题
四年级下册教案数学教案篇9
教学目标:
1、在解决鸡兔同笼的活动中,通过列表枚举解决鸡兔的数量问题。
2、在解决鸡兔同笼的活动中,通过列表尝试和不断调整的过程从中体会解决问题的一般策略——列表,让学生学会从不同角度分析,掌握解题的策略与方法。
3、运用学到的解题策略——列表解决生活中的实际问题。
4、培养学生分析问题的能力,渗透假设的数学思想。
教学重点
让学生经历列表、尝试和不断调整的过程,体会解决问题的一般策略—列表。
教学难点
运用学到的解题策略解决生活中的实际问题。
教学过程:
一、情境引入,激发兴趣
今天老师给同学们带来一本书《孙子算经》,其中有这样一道题目:
今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?
谁来读一读,你见过这类题吗?
今天我们就来研究这类问题(板书鸡兔同笼)
二、探索问题
1、课件出示:(教材中的情景图)鸡兔同笼,有20个头,54条腿,鸡、兔各有多少只?
从图中你能知道哪些数学信息:(有鸡、有兔、20个头、54只腿,鸡有2条腿、兔有4条腿)
现在同学们就来猜一猜鸡、兔各有多少只?
把你猜想的结果跟你的同桌同学交流交流。
学生交流后:请学生汇报猜想的情况
教师随机板书
看到这么多种猜测,你知道哪种答案是正确的吗?你又想说什么?
生:可以按照一定的顺序把他们排列起来看就很清楚。
师:对,按照一定的顺序把他们排列在表格里那会看得更清楚。
那么列表先做什么。
生:(1)画表
(2)填写第一行
师:请你们把猜测的结果按一定的顺序填在表格中,并验证,哪种猜测正确。
出示学习要求:
1、先独立尝试猜测。
2、把尝试的数据在表格中表达出来。
3、在小组内交流自己的.想法。
生:尝试列表
展示学生的表格请学生说一说是怎样做的。
师:一共尝试了几次。
生:13次,尝试出了这道题的答案。
师:我发现刚才同学们在写腿的只数时特别快,观察这张表格,你发现了什么?
生:在头数相同的情况下,增加一只鸡,减少一只兔,腿就少2只。
师:给这种列表法起个名字。
生:起名字。
师:在数学上也有一个名字逐一列表。
师:观察这张表格,你有什么发现。
生:一一列出,肯定能找出答案,但有些麻烦。
师:那还有什么列表方法。
展示学生第二种列表方法出示表格。
生:说这种列表的方法。
师:观察这个表格,你又发现了什么。
生:这种列表,先几个几个的数,再逐渐调整。
师:先几个几个数,再往回调,在数学上也有个名字跳跃式列表。
展示学生第三种列表方法出示表格。
生:说这种列表的方法。
师:观察这个表格,你又发现了什么。
生:这种列表,先假设鸡兔各占一半,再调整。
师:这种列表有直接特点,我们称这种列表方法为取中列表。
想一想,为什么用列表法解决这个问题。
生:简单,能准确计算结果。
师:你更喜欢哪种列表方法,你们在不知不觉中找到解决问题策略,是什么?
生:列表。
师:首先根据信息尝试猜测,再计算验证,最后合理调整。
师:还可以用什么方法计算。
生:计算。
师:想知道古人是怎样解决这道题吗?
课件出示资料
师:看了这个资料你想说什么?
三、实践运用,巩固深化
1、小明的储蓄罐里有1角和5角的硬币共27枚,价值5。1元,1角和5角的硬币各有多少枚?
2、赛场上12张乒乓球台上同时有34人进行比赛,正在进行单打、双打比赛的球台各有几张?
3、小红参加数学知识竞赛,共10道题,每做对一道题得10分,做错一道题扣2分。小红每道题都做了,共得64分。她做对了几道题?
四、总结
通过这堂课的学习你学会了什么?
四年级下册教案数学教案篇10
教学目标:
1、估算三位数乘两位数的积的范围。
2、列竖式计算三位数乘两位数(重难点)
教学过程:
1、竖式计算39×12(复习、小结两位数与两位数的乘法)
2、卫星运行动画导入
3、板书课题
4、明确教学目标
5、提问1:东方红1号绕地球一圈需要114分钟,则卫星绕地球运行2圈需
要多长时间?(复习三位数与一位数的乘法)
提问2:东方红1号绕地球一圈需要114分钟,则卫星绕地球运行21圈需
要多长时间?(提出三位数与两位数的乘法,设疑、激发学生学习的兴趣)
完成导学案问题1(估算)
6、学生自学课本第30页内容,完成导学案的问题2,要求
(1)时间:5分钟;
(2)学生自己自学,独立完成;
7、分析、解答问题2,注意小结;重点在问题2.
提问3:通过竖式计算114×21,归纳一下“三位数如何乘以两位数”(重点与难点)
8、游戏(把课本第31页第3题练习以游戏的形式呈现)
9、小结:本节课你学到了什么?
10、分层作业
[1](必做题)课本第31页第1、2题;
[2](选做题)请你利用本节课学习到的知识,向老师提出一个问题。
四年级下册教案数学教案篇11
教学内容:
卫星运行时间(教材33―34页)〔三位数乘两位数的乘法〕
教学目标:
1.能结合具体情境估计两、三位数乘法积的范围。
2.探索两、三位数乘法的计算方法,并能正确计算。
3.能运用乘法运算解决一些实际问题。
教学重点:
三位数乘两位数的方法及简便运算。
教学难点:
三位数乘两位数的算理。
教学用具:
课件
教学过程:
一、创设情境,提出问题
1.课件演示第一题人造卫星发射实况,引出卫星绕地球一圈需要114分,教师接着问:2圈、5圈、10圈呢?让学生计算所需要的时间,激发学生的计算兴趣;
2.思维引导:绕地球21圈需要多长时间?列式114×21;
3.揭示课题:卫星运行时间
二、合作探究,解决问题
1.提问:你怎么能很快估算出结果?把你的好方法介绍给大家好吗?
(交流并归纳出估计的方法,对于问题的学生及时鼓励,提高他们的自信心。)
(114×21的积比2000多比2500少)
归纳总结:将两个乘数分别按“四舍五入”法求出近似值,再将近似数相乘,所得的积作为估计的结果。
2.引导用其他方法计算。(分组讨论,教师巡视,展示学生的计算方法)
①把21看作20加1②把21看作7乘3
114×21114×21
=114×(20+1)=114×(7×3)
=114×20+114×1=114×7×3
=2280+114=798×3
=2394=2394
③把114分成100、10和4④用表格计算
114×2
=(100+10+4)×21
=100×21+10×21+4×21
=2394
3、因势利导,挖掘竖式算法。
以前之学过乘数是一位数的乘法……114×21
⑵算理:乘得的数字该怎样对齐?
⑶引导学生用自己的语言归纳
归纳总结:用竖式计算三位数乘两位数,先用两位数个位上的数去乘三位数,得到的末位数和两位数对齐,再用两位数十位上的数去乘三位数,乘得的末位数和两位数的十位对齐。然后,把两次乘得的数加起来。
⑷课本34页试一试
①54×312列竖式时调换两个乘数的位置:312×54
②408×25因数中间有0的计算方法
③47×210因数末尾有0的简便算法
三、反馈练习,强化理解
1.填空
①两位数乘两位数,积可能是()位数,也可能是()位数。
②用因数十位上的数去乘另一个因数时,所得的积的末位数要和因数的()位对齐。
③在计算整数乘法时,如果因数末尾有0,可以先把0前面的数(),然后再看因数末尾一共有几个(),就在乘得的数的末尾添上几个0。
④括号里能填几?
600×()<120、1200×()<801
2.对号入座。(将正确答案的序号填在括号里)
⑴计算280×50,积末尾有()个0。
A.2B.1C.3D.4
⑵三位数乘两位数,积最少是()。
A.三位数B.四位数C.五位数D.不能确定
⑶672×53=()
A.670×53×2×53B.672×50+672×3C.600×53×72×53
3、竖式计算。课本34页练一练第一题(让学生口述算法,并强调相同数位对齐,从个位乘起等。)
4、森林医生。课本34页练一练第二题(通过改错,强调易错注意问题。)
四、拓展应用,升华提高
1.列竖式计算。
386×15、407×28、540×30、62×204
2.应用题。
商店从工厂批发了80台复读机,每台140元,商店要付给工厂多少元?
(140×80列竖式时可以先把0前面的数相乘。)
乘数末尾有0时,可以先把前面的数相乘,再看乘数末尾一共有几个0,就在乘得的数的末位添上几个0。
五、作业
1.课本34页第3题
2.课本34页第4题
四年级下册教案数学教案篇12
“植树问题”是人教版新课程标准实验教材四年级下册“数学广角”的内容,它原先是奥数知识,是少部分学有余的孩子学习的。而新课程改革后,该内容被选入课本,每个孩子都要参与学习。这时,我们该怎样去组织课堂教学呢?
1、引导学生画图理解。
植树问题的思维有一定的复杂性,对于刚接触植树问题的四年级学生来说,则更有一定的难度了。所以,我觉得让学生画图来理解深化,更好一些。学生在画图的过程中,不仅可以很好的理解题意,找到其数量间的关系,而且能很好的培养其学习方法和思维习惯。让学生通过直观的观察初步感知三种情况:两端都栽“棵树=间隔数+1”,一端栽一端不栽“棵树=间隔数”,两端都不栽“棵树=间隔数-1”。等学生找到规律后再解决这类问题就简单多了。
2、创设情境,让数学走近生活。
“数学来源于生活,而又服务于生活。”在学生初步感知植树问题的几种不同种法的基础上,创设与学生的生活环境和知识背景密切相关的、学生感兴趣的、以便能更好的理解与植树问题有关的生活题型,如插红旗,安路灯、排队做操等,让学生在具体生活中理解数学现象,并运用规律解决形式各异的生活问题,使学生深深地体会到数学的价值与魅力。
3、加强训练。
数学离不开训练,特别是对小学生,因为他们的忘性较大,很多的知识在课堂上学的很好,但时间一长,就会遗忘。这样,就要求教师注重平时的有意识的强化和训练,只有这样,才能加深理
4、这部分虽学得扎扎实实,但问题也存在着。
(1)针对学生能够找到简单植树问题的规律“棵数=间隔数+1”却无法运用这个规律求路长的问题,因为学生的认知起点与知识结构逻辑起点存在差异。以为学生能发现“棵数=间隔数+1”就能解决问题了,实际上这只是部分学生具备了继续学习的能力,这恰恰导致了能找规律却不会用规律。也就是在发现规律与运用规律间缺少了的链接,我要加强对规律的扩散教学,比如:得出规律时,可以说说“间隔数=棵数-1,路长=间隔数X间隔长”等等知识的扩散。
(2)把握每一个细节,问题即时解决,站在学生的角度去思考问题。比如:学生的质疑,间隔长和间隔数之间的区别,两端和两边的区别,应该考虑学生的知识构建,学生的知识认知一般是在具体情景中通过活动体验而自主建构的。没有体验,建构就会显得很抽象。在这一次的教学设计中,虽然我创设了情境,但学生仅凭一次体验是不可能全部达到继续建构学习主题的水平。我可以利用线段图或者实例来帮助学生学习。让学生有可以凭借的工具,借助数形结合将文字信息与学习基础结合,使得学习得以继续,使得学生思维发展有了凭借,也使得数学学习的思想方法真正得以渗透。