高中物理教案创新
一份优秀的教案应该采用多种教学方法和手段,例如讲解、实验、讨论等,以激发学生的学习兴趣并提高教学效果。如何写出优秀的高中物理教案创新?下面给大家分享一些高中物理教案创新,希望对大家有所帮助。
高中物理教案创新篇1
研究性实验:(1)研究匀变速运动练习使用打点计时器:
1.构造:见教材。
2.操作要点:接50HZ,4---6伏的交流电S1S2S3S4
正确标取记:在纸带中间部分选5个点。T。T。T。T。
3.重点:纸带的分析01234
a.判断物体运动情况:
在误差范围内:如果S1=S2=S3=......,则物体作匀速直线运动。
如果?S1=?S2=?S3=.......=常数,则物体作匀变速直线运动。
b.测定加速度:
公式法:先求?S,再由?S=aT2求加速度。
图象法:作v-t图,求a=直线的斜率
c.测定即时速度:V1=(S1+S2)/2TV2=(S2+S3)/2T
测定匀变速直线运动的加速度:
1.原理::?S=aT2
2.实验条件:
a.合力恒定,细线与木板是平行的。
b.接50HZ,4-6伏交流电。
3.实验器材:电磁打点计时器、纸带、复写纸片、低压交流电源、小车、细绳、一端附有滑轮的长木板、刻度尺、钩码、导线、两根导线。
4.主要测量:
选择纸带,标出记数点,测出每个时间间隔内的位移S1、S2、S3。。。。图中O是任一点。
5.数据处理:0123456
根据测出的S1、S2、S3.......。S1。S2。S3。S4。S5。S6。
用逐差法处理数据求出加速度:
S4-S1=3a1T2,S5-S2=3a2T2,S6-S3=3a3T2
a=(a1+a2+a3)/3=(S4+S5+S6-S1-S2-S3)/9T2
测匀变速运动的即时速度:(同上)
(2)研究平抛运动
1.实验原理:
用一定的方法描出平抛小球在空中的轨迹曲线,再根据轨迹上某些点的位置坐标,由h=求出t,再由x=v0t求v0,并求v0的平均值。
2.实验器材:
木板,白纸,图钉,未端水平的斜槽,小球,刻度尺,附有小孔的卡片,重锤线。
3.实验条件:
a.固定白纸的木板要竖直。
b.斜槽未端的切线水平,在白纸上准确记下槽口位置。
c.小球每次从槽上同一位置由静止滑下。
(3)研究弹力与形变关系
方法归纳:
(1)用悬挂砝码的方法给弹簧施加压力
(2)用列表法来记录和分析数据(如何设计实验记录表格)
(3)用图象法来分析实验数据关系
步骤:
1以力为纵坐标、弹簧伸长为横坐标建立坐标系
2根据所测数据在坐标纸上描点
3按照图中各点的分布和走向,尝试作出一条平滑的曲线(包括直线)
4以弹簧的伸重工业自变量,写出曲线所代表的函数,首先尝试一次函数,如不行则考虑二次函数,如看似象反比例函数,则变相关的量为倒数再研究一下是否为正比关系(图象是否可变为直线)----化曲为直的方法等。
5解释函数表达式中常数的意义。
2.注意事项:所加砝码不要过多(大)以免弹簧超出其弹性限度
高中物理教案创新篇2
一、预习目标 预习“光的干涉”,初步了解产生光的明显干涉的条件以及出现明暗条纹的规律。 二、预习内容 1、请同学们回顾机械波的干涉现象以及产生的条件; 2、对机械波而言,振动加强的点表明该点是两列波的,该点的位移随时间(填变化或者不变化);振动减弱的点表明该点是两列波的; 3、不仅机械波能发生干涉,电磁波等一切波都能发生干涉,所以光若是一种波,则光也应该能发生干涉 4、相干光源是指: 5、光的干涉现象: 6、光的干涉条件是: 7、杨氏实验证明: 8、光屏上产生亮条纹的条件是 ;光屏上产生暗条纹的条件是 9、光的干涉现象在日常生活中很少见的,这是为什么? 三、提出疑惑 同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中 疑惑点疑惑内容 课内探究学案 一、学习目标 1.说出什么叫光的`干涉 2.说出产生明显干涉的条件 3.准确记忆产生明暗条纹的规律 学习重难点:产生明暗条纹规律的理解 二、学习过程 (一)光的干涉 探究一:回顾机械波的干涉 1.干涉条件: 2.干涉现象: 3.规律总结 探究二:光的干涉条件及出现明暗条纹的规律 1.光产生明显干涉的条件是什么? 2.产生明暗条纹时有何规律: (1)两列振动步调相同的光源: (2)两列振动步调正好相反的光源: (三)课堂小结 (四)当堂检测 1、在杨氏双缝实验中,如果(BD) A、用白光做光源,屏上将呈现黑白相间的条纹 B、用红光做光源,屏上将呈现红黑相间的条纹. C、用红光照射一条狭缝,用紫光照射另一条狭缝,屏上将呈现彩色条纹 D、用紫光作为光源,遮住其中一条狭缝,屏上将呈现间距不等的条纹. 2、20__年诺贝尔物理学家将授予对激光研究做处杰出贡献的三位科学家。如图所示是研究激光相干性的双缝干涉示意图,挡板上有两条狭缝S1、S2,由S1和S2发出的两列波到达屏上时会产生干涉条纹。已知入射激光波长为λ,屏上的P点到两缝S1和S2的距离相等,如果把P处的亮条纹记做0号亮 条纹,由P向上数与0号亮纹相邻的是1号亮纹,与 1号亮纹相邻的亮纹为2号亮纹,设P1处的亮纹恰好 是10号亮纹,直线S1P1的长度为r1,S2P1的长度为 r2,则r2-r1等于(B) A、5λB、10λ.C、20λD、40λ 课后练习与提高 1.在双缝干涉实验中,入射光的波长为λ,若双缝处两束光的振动情况恰好相同,在屏上距两缝波程差d1=地方出现明条纹;在屏上距两缝波程差d2= 地方出现暗条纹;若双缝处两束光的振动情况恰好相反,在屏上距两缝波程差d3=地方出现明条纹;在屏上距两缝波程差d4= 地方出现暗条纹。 2. 用白光光源进行双缝实验,若用一个纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光片遮盖另一条缝,则 (A)干涉条纹的宽度将发生改变. (B)产生红光和蓝光的两套彩色干涉条纹. (C)干涉条纹的亮度将发生改变. (D)不产生干涉条纹[D】 3.双缝干涉中屏幕E上的P点处是明条纹.若将缝S2盖住,并在S1S2连线的垂直平分面处放一高折射率介质反射面M,如图所示,则此时[A] (A)P点处仍为明条纹. (B)P点处为暗条纹. (C)不能确定P点处是明条纹还是暗条纹. (D)无干涉条纹. 一、引入新课 演示实验:让物块在旋转的平台上尽可能做匀速圆周运动。 教师:物块为什么可以做匀速圆周运动?这节课我们就来研究这个问题。 (设计意图:从实验引入,激发学生的好奇心,活跃课堂气氛。) 二、新课教学 (一)向心力 1.向心力的概念 学生:在教师引导下对物块进行受力分析:物块受到重力、摩擦力与支持力。 教师:物块所受到的合力是什么? 学生:重力与支持力相互抵消,合力就是摩擦力。 教师:这个合力具有怎样的特点? 学生:思考并回答:方向指向圆周运动的圆心。 教师:得出向心力的定义:做匀速圆周运动的物体受到的指向圆心的合力。 (做好新旧知识的衔接,使概念的得出自然、流畅。) 2.感受向心力 学生:学生手拉着细绳的一端,使带细绳的钢球在水平面内尽可能做匀速圆周运动。 教师:钢球在水平面内尽可能做匀速圆周运动,什么力使钢球做圆周运动? 学生:对钢球进行受力分析,发现拉力使钢球做圆周运动。 (设计意图:利用常见的小实验,让学生亲身体验,增强学生对向心力的感性认识。) 教师:也就是说,钢球受到的拉力充当圆周运动的向心力。大家动手实验并猜想:拉力的大小与什么因素有关? 学生:动手体验并猜想:拉力的大小可能与钢球的质量m、线速度的v、角速度 1.某金属在一黄光照射下,正好有电子逸出,下述说法中,哪种是正确的() A.增大光强,而不改变光的频率,光电子的最大初动能将不变 B.用一束更大强度的红光代替黄光,仍能发生光电效应 C.用强度相同的紫光代替黄光,光电流强度将不变 D.用强度较弱的紫光代替黄光,有可能不发生光电效应 答案A 要点二光的波粒二象性 2.物理学家做了一个有趣的实验:在光屏处放上照相用的底片.若减弱光的强度,使光子只能一个一个地通过狭缝.实验结果表明,如果曝光时间不太长,底片只能出现一些不规则的点子;如果曝光时间足够长,底片上就会出现规则的干涉条纹.对这个实验结果有下列认识,其中正确的是() A.曝光时间不太长时,底片上只能出现一些不规则的点子,表现出光的波动性 B.单个光子通过双缝后的落点可以预测 C.只有大量光子的行为才能表现出光的粒子性 D.干涉条纹中明亮的部分是光子到达机会较多的地方 答案D 题型1对光电效应规律的理解 【例1】关于光电效应,下列说法正确的是() A.光电子的最大初动能与入射光的频率成正比 B.光电子的动能越大,光电子形成的电流强度就越大 C.用不可见光照射金属一定比用可见光照射同种金属产生的光电子的初动能要大 D.对于任何一种金属都存在一个最大波长,入射光的波长必须小于这个波长,才能产生光电效应 答案D 题型2光电效应方程的应用 【例2】如图所示,一光电管的阴极用极限波长为0的钠制成.用波长为的紫外线照射阴极,光电管阳极A和阴极K之间的电势差为U,光电流的饱和值为I. (1)求每秒由K极发射的电子数. (2)求电子到达A极时的最大动能.(普朗克常量为h,电子的电荷量为e)? 答案(1) 题型3光子说的应用 【例3】根据量子理论,光子的能量E和动量p之间的关系式为E=pc,其中c表示光速,由于光子有动量,照到物体表面的光子被物体吸收或反射时都会对物体产生压强,这就是光压,用I表示. (1)一台二氧化碳气体激光器发出的激光,功率为P0,射出光束的横截面积为S,当它垂直照射到一物体表面并被物体全部反射时,激光对物体表面的压力F=2pN,其中p表示光子的动量,N表示单位时间内激光器射出的光子数,试用P0和S表示该束激光对物体产生的光压I. (2)有人设想在宇宙探测中用光作为动力推动探测器加速,探测器上安装有面积极大、反射率极高的薄膜,并让它正对太阳,已知太阳光照射薄膜对每1m2面积上的辐射功率为1.35kW,探测器和薄膜的总质量为M=100kg,薄膜面积为4104m2,求此时探测器的加速度大小(不考虑万有引力等其他的力)? 答案(1)I=(2)3.610-3m/s2 题型4光电结合问题 【例4】波长为=0.17m的紫外线照射至金属筒上能使其发射光电子,光电子在磁感应强度为B的匀强磁场中,做最大半径为r的匀速圆周运动时,已知rB=5.610-6Tm,光电子质量m=9.110-31kg,电荷量e=1.610-19C.求: (1)光电子的最大动能. (2)金属筒的逸出功. 答案(1)4.4110-19J(2)7.310-19?J 【学习目标】 1.了解万有引力定律的伟大成就,能测量天体的质量及预测未知天体等 2.熟练掌握应用万有引力定律测天体质量的思路和方法。 3.体会万有引力定律在天文学史上取得的巨大成功,激发学科学习激情和探索精神。 【学习重难点】 1.重点:测天体的质量的思路和方法 2.难点:物体的重力和万有引力的区别和联系。 【学习方法】 自主学习、合作交流、讲授法、练习法等。 【课时安排】1课时 【学习过程】 一、导入新课: 万有引力定律发现后,尤其是卡文迪许测出引力常量后,立即凸显出定律的实用价值,能利用万有引力定律测天体的质量,科学性的去预测未知的天体!这不仅进一步证明了万有引力定律的正确性,而且确立了万有引力定律在科学史上的地位,有力地树立起人们对年轻的物理学的尊敬。 二、多媒体展示问题,学生带着问题学习教材,交流讨论。 1.说一说物体的重力和万有引力的区别和联系 2.写出应用万有引力定律测天体质量的思路和方法。 3.简述“笔尖下发现的行星”的天文学史事,该史事说明了什么? 三、师生互动参与上述问题的学习与讨论 1.学生互动学习交流发言。 2.教师指导、帮助学生进一步学习总结(结合课件展示)。 (1)万有引力和物体的重力 地球表面附近的物体随地球的自转而做匀速圆周运动,受力分析如图(1) 1)在两极点: 2)除两极点外:万有引力的一个分力提供向心力, 另外一个分力就是物体受到的重力,由于提供 向心力的力很小(即使在赤道上),物体的重力 的数值和万有引力相差很小。 3)在赤道处: 显然,地球表面附近随纬度的增加,重力加速度值略微增大。若忽略地球自转的影响,物体受到的万有引力约为物体在该处受到的重力,不予考虑二者的差别。 物体在距离地心距离为r(r>R)处的加速度为ar: 则: 若忽略地球自转的影响,物体在距离地心距离为r处的重力加速度为gr: 则: (2)“科学真是迷人”巧测地球的质量 若不考虑地球自转的影响:,则: 地面的重力加速度g和地球半径R在卡文迪许之前就已知道,卡文迪许测出了引力常量G,就可以算出地球的质量M。这在当时看来就是一个科学奇迹。难怪著名文学家马克·吐温满怀激情地说:“科学真是迷人。根据零星的事实,增添一点猜想,竟能赢得那么多收获!” (3)计算天体的质量 1)计算太阳的质量 核心思路方法:万有引力提供行星做匀速圆周运动的向心力。 对行星由牛顿第二定律得:可得: 2)计算其他中心天体的质量: 核心思路方法:万有引力提供小星体绕中心天体做匀速圆周运动的向心力。 对小星体由牛顿第二定律得: 可得: 思考与讨论:如何进一步测中心天体的密度? 中心天体的体积:,中心天体的密度: 联立以上各式得:。 若,则:这是很重要的一个结论。 (4)发现未知天体: 1)笔尖下发现海王星 1781年人们发现矛盾亚当斯和勒维耶计算并预言伽勒发现证实 2)哈雷彗星的“按时回归” 1705年英国天文学家哈雷根据万有引力定律计算了一颗著名彗星的&39;轨道并正确预言了它的回归。 3)海王星的发现和哈雷彗星的“按时回归”不仅进一步证实了万有引力定律的正确性,同时也确立了万有引力定律在科学史上的地位,也成为科学史上的美谈。科学定律的可预测性体现的淋漓尽致! 四、随堂练习: 例1:开普勒定律不仅适用于太阳系,它对一切具有中心天体的引力系统(如地月系统)都成立。经测定月地距离为3.84×108m,月球绕地球运动的周期为2.36×106S,试计算地球的质量M地。(G=6.67×10-11Nm2/kg2,结果保留一位有效数字) 例2:20_年10月22日,欧洲航天局由卫星观测发现银河系中心存在一个超大型黑洞,命名为MCG6-30-15,由于黑洞的强大引力,周围物质大量掉入黑洞,假定银河系中心仅此一个黑洞,已知太阳系绕银河系中心匀速运转,下列哪一组数据可估算该黑洞的质量() A.地球绕太阳公转的周期和速度 B.太阳的质量和运行速度 C.太阳的质量和到MCG6-30-15的距离 D.太阳运行速度和到MCG6-30-15的距离 例3:地球可视为球体,其自转周期为T,在赤道上用弹簧秤测得某物体的重量是在两极处测得同一物体重量的0.9倍,已知引力常量为G,试求地球的平均密度。 例4:某星球的质量是地球质量的9倍,半径是地球半径的一半,若从地球上平抛一物体射程为60m,则在该星球上以同样的初速度,同样的高度平抛物体,其射程是 五、学习目标的自我评价和学习小结 本节课首先认识了万有引力和重力间的差异,后学习了应用万有引力定律测天体质量的两种基本方法:1)和2),最后见识了万有引力定律在探索宇宙过程中发挥的重要作用和地位。 六、课后作业: 教材P432、3、4 【板书设计】 §6.4万有引力理论的成就 一、万有引力和物体的重力 1)在两极点: 2)在赤道处:, 二、“科学真是迷人”巧测地球的质量 ,则: 三、计算天体的质量 1)计算太阳的质量可得: 2)计算其他中心天体的质量: 可得: 四、发现未知天体:1)笔尖下发现海王星 2)哈雷彗星的“按时回归” 五、随堂练习:略 六、课后作业:教材P432、3、4 【自由落体运动】 一、自由落体运动 1.定义:物体只在重力作用下从静止开始下落的运动. 思考:不同的物体,下落快慢是否相同?为什么物体在真空中下落的情况与在空气中下落的情况不同? 在空气中与在真空中的区别是,空气中存在着空气阻力.对于一些密度较小的物体,例如降落伞、羽毛、纸片等,在空气中下落时,受到的空气阻力影响较大;而一些密度较大的物体,如金属球等,下落时,空气阻力的影响就相对较小了.因此在空气中下落时,它们的快慢就不同了. 在真空中,所有的物体都只受到重力,同时由静止开始下落,都做自由落体运动,快慢相同. 2.不同物体的下落快慢与重力大小的关系 (1)有空气阻力时,由于空气阻力的影响,轻重不同的物体的下落快慢不同,往往是较重的物体下落得较快. (2)若物体不受空气阻力作用,尽管不同的物体质量和形状不同,但它们下落的快慢相同. 3.自由落体运动的特点 (1)v0=0 (2)加速度恒定(a=g). 4.自由落体运动的性质:初速度为零的匀加速直线运动. 二、自由落体加速度 1.自由落体加速度又叫重力加速度,通常用g来表示. 2.自由落体加速度的方向总是竖直向下. 3.在同一地点,一切物体的自由落体加速度都相同. 4.在不同地理位置处的自由落体加速度一般不同. 规律:赤道上物体的重力加速度最小,南(北)极处重力加速度;物体所处地理位置的纬度越大,重力加速度越大. 三、自由落体运动的运动规律 因为自由落体运动是初速度为0的匀加速直线运动,所以匀变速直线运动的基本公式及其推论都适用于自由落体运动. 1.速度公式:v=gt 2.位移公式:h=gt2 3.位移速度关系式:v2=2gh 4.平均速度公式:= 5.推论:Δh=gT2 ●问题与探究 问题1物体在真空中下落的情况与在空气中下落的情况相同吗?你有什么假设与猜想? 探究思路:物体在真空中下落时,只受重力作用,不再受到空气阻力,此时物体的加速度较大,整个下落过程运动加快.在空气中,物体不但受重力还受空气阻力,二者方向相反,此时物体加速度较小,整个下落过程较慢些. 问题2自由落体是一种理想化模型,请你结合实例谈谈什么情况下,可以将物体下落的运动看成是自由落体运动. 探究思路:回顾第一章质点的概念,谈谈我们在处理物理问题时,根据研究问题的性质和需要,如何抓住问题中的主要因素,忽略其次要因素,建立一种理想化的模型,使复杂的问题得到简化,进一步理解这种重要的科学研究方法. 问题3地球上的不同地点,物体做自由落体运动的加速度相同吗? 探究思路:地球上不同的地点,同一物体所受的重力不同,产生的重力加速度也就不同.一般来讲,越靠近两极,物体做自由落体运动的加速度就越大;离赤道越近,加速度就越小. ●典题与精析 例1下列说法错误的是 A.从静止开始下落的物体一定做自由落体运动 B.若空气阻力不能忽略,则一定是重的物体下落得快 C.自由落体加速度的方向总是垂直向下 D.满足速度跟时间成正比的下落运动一定是自由落体运动 精析:此题主要考查自由落体运动概念的理解,自由落体运动是指物体只在重力作用下从静止开始下落的运动.选项A没有说明是什么样的物体,所受空气阻力能否忽略不得而知;选项C中自由落体加速度的方向应为竖直向下,初速度为零的匀加速直线运动的速度都与时间成正比,但不一定是自由落体运动. 答案:ABCD 例2小明在一次大雨后,对自家屋顶滴下的水滴进行观察,发现基本上每滴水下落的时间为1.5s,他由此估计出自家房子的大概高度和水滴落地前瞬间的速度.你知道小明是怎样估算的吗? 精析:粗略估计时,将水滴下落看成是自由落体,g取10m/s2,由落体运动的规律可求得. 答案:设水滴落地时的速度为vt,房子高度为h,则: vt=gt=10×1.5m/s=15m/s h=gt2=×10×1.52m=11.25m. 绿色通道:学习物理理论是为了指导实践,所以在学习中要注重理论联系实际.分析问题要从实际出发,各种因素是否对结果产生影响都应具体分析. 例3一自由下落的物体最后1s下落了25m,则物体从多高处自由下落?(g取10m/s2) 精析:本题中的物体做自由落体运动,加速度为g=10N/kg,并且知道了物体最后1s的位移为25m,如果假设物体全程时间为t,全程的位移为s,该物体在前t-1s的时间内位移就是s-25m,由等式h=gt2和h-25=g(t-1)2就可解出h和t. 答案:设物体从h处下落,历经的时间为t.则有: h=gt2① h-25=g(t-1)2② 由①②解得:h=45m,t=3s 所以,物体从离地45m高处落下. 绿色通道:把物体的自由落体过程分成两段,寻找等量关系,分别利用自由落体规律列方程,联立求解. 自主广场 ●基础达标 1.在忽略空气阻力的情况下,让一轻一重的两石块从同一高度处同时自由下落,则 A.在落地前的任一时刻,两石块具有相同的速度、位移和加速度 B.重的石块下落得快、轻的石块下落得慢 C.两石块在下落过程中的平均速度相等 D.它们在第1s、第2s、第3s内下落的高度之比为1∶3∶5 答案:ACD 2.甲、乙两球从同一高度处相隔1s先后自由下落,则在下落过程中 A.两球速度差始终不变B.两球速度差越来越大 C.两球距离始终不变D.两球距离越来越大 答案:AD 3.物体从某一高度自由落下,到达地面时的速度与在一半高度时的速度之比是 A.∶2B.∶1 C.2∶1D.4∶1 答案:B 4.从同一高度处,先后释放两个重物,甲释放一段时间后,再释放乙,则以乙为参考系,甲的运动形式是 A.自由落体运动B.匀加速直线运动a C.匀加速直线运动a>gD.匀速直线运动 答案:D 5.A物体的质量是B物体质量的5倍,A从h高处,B从2h高处同时自由落下,在落地之前,以下说法正确的是 A.下落1s末,它们的速度相同 B.各自下落1m时,它们的速度相同 C.A的加速度大于B的加速度 D.下落过程中同一时刻,A的速度大于B的速度 答案:AB 6.从距离地面80m的高空自由下落一个小球,若取g=10m/s2,求小球落地前最后1s内的位移. 答案:35m ●综合发展 7.两个物体用长L=9.8m的细绳连接在一起,从同一高度以1s的时间差先后自由下落,当绳子拉紧时,第二个物体下落的时间是多长? 答案:0.5s 8.一只小球自屋檐自由下落,在Δt=0.2s内通过高度为Δh=2m的窗口,求窗口的顶端距屋檐多高?(取g=10m/s2) 答案:2.28m 9.如图2-4-1所示,竖直悬挂一根长15m的杆,在杆的下方距杆下端5m处有一观察点A,当杆自由下落时,从杆的下端经过A点起,试求杆全部通过A点所需的时间. (g取10m/s2) 【教学目标】 知识技能1.初步了解一些物理现象2.对教师讲解的内容有所理解 过程与方法: 通过讲解和实验,让学生初步了解学习物理知识和研究物理问题的方法。 情感、态度和价值观:1.在教学中渗透人文主义教育 2.通过实验教学,激发学生的学习兴趣 【教学重点】 激发学生学习 兴趣,了解学习物理知识和研究物理问题的方法。 【教学方法】 演示法、讨论法。 【课时安排】 1课时 【教学过程】 一、引入新课 同学们,今天我们开始学习一门新的学科—物理,你听别人说过物理吗?你心中的物理是怎样的呢?谁起来说一下?(让学生起来说说自己的看法) 二、新课教学 1.演示几个实验,说明物理是十分有趣的。 (让学生先猜测现象,再演示) (1)器材:一大一小两只试管(尺寸十分接近),水,红墨水。 做法:大试管装入过半的水,管口朝上,放入小试管,倒过来,水流下,管上升。 现象:试管自动上升。 (2)器材:漏斗,乒乓球。 做法:一个乒乓球放在一个倒扣的漏斗中,通过漏斗嘴用力吹下面的乒乓球。 现象:乒乓球悬在空中不下落。 拓展:让学生撕下两张纸,用力吹两张纸的中央,发现纸靠近。 (3)器材:两只大烧杯,鸡蛋,清水,盐水。 做法:把一只鸡蛋分别放入两个大烧杯中。 现象:鸡蛋有浮有沉。 (4)器材:导线,开关,电池组,小灯泡,变阻器。 做法:连好电路,闭和开关,移动滑片,观察小灯泡的发光情况。 现象:灯变亮。 2.物理不仅有趣,而且是十分有用的,它能帮助我们解释生活中的许多现象。 (让学生先说说自己的看法,教师再解析) 提问1:人听到子弹声再躲来的及吗?为什么? 解析:子弹出膛飞行时的速度比声音快,所以来不及。 提问2:我们对着水中看到的鱼用手去抓,能抓到吗? 解析:抓不到,我们看到的是像,真正的鱼在像的下边。 提问3:黄浦江边的路灯,水中的像为什么是一道光柱? 解析:古诗云“月黑见渔灯,孤光一点荧。微微风簇浪,散做满河星”,起伏的水面相当于许多平面镜,每盏灯在水里有好多像,连在一起就成了一道光柱。 提问4:冬天的冰花结在玻璃的内表面还是外表面? 解析:外表面。 提问5:在光滑的路面上,空身容易摔倒,还是肩挑重物容易摔倒? 解析:空身。 小结:同学们,今天对所提的问题的分析,大家可能还领会不了,没关系,随着以后的学习大家就会明白其中的奥秘。 3.怎样学好物理。 (1)勤于观察,勤于动手。 引导学生观察课本插图,勉励学生“纸上得来终觉浅,绝知学问要躬行”。 (2)勤于思考,重在理解。 不能死记硬背,贵在理解,要多问,“为学贵有疑,有疑贵问师”,不要以为问老师一些简单的问题会遭到耻笑,而不问。 (3)联系实际,联系社会。 我们学了知识以后,如果能解释生活中的现象,就完成了一次飞跃,如果遇到生活中的疑问,又从课本中找到根据,就又完成一次飞跃。 (4)像科学家那样探究。 介绍伽利略的贡献:伽利略望远镜,伽利略温度计等。 尊称:近代科学之父 引导学生阅读课本第八页“伽利略对摆动的研究”,并讨论材料后的几个问题。 小结:学习物理,就要仔细观察周围的世界,发现问题,提出假设,善于动手,加以实践,找到规律。 三、作业: 阅读“科学之旅”,说说你打算怎样学好物理课。 一、教学目标 1、知道什么是曲线运动。 2、知道曲线运动中速度的方向。 3、理解曲线运动是一种变速运动。 4、理解物体做曲线运动的条件是所受合外力的方向与它的速度方向不在一条直线上。 二、重点难点 重点:曲线运动中的速度方向和物体做曲线运动的条件。 难点:理解并掌握物体做曲线运动的条件。 三、教学方法 实验、讲解、归纳、推理 四、教学用具 多媒体设备、小钢球、条形磁铁 五、教学过程 (一)、引入新课: 【放录像】飞行的铁饼,导弹,卫星? 在实际生活中,曲线运动是普遍发生的。曲线运动有什么特点?物体为什么会做曲线运动?本节课我们就来学习这些问题。 (二)、曲线运动的速度方向 1、提问:曲线运动与直线运动有什么区别? ——运动轨迹是曲线。 ——速度方向时刻改变。 2、曲线运动的速度方向 【放录像】 (1)、在砂轮上磨刀具时,刀具与砂轮接触处有火星沿砂轮的切线方向飞出;(见课件) (2)、撑开的带有水的伞绕着伞柄旋转,伞面上的水滴沿伞边各点所划圆周的切线方向飞出。 总结:曲线运动中速度的方向是时刻改变的,质点在某一点(或某一时刻)的速度的方向是在曲线的这一点的切线方向。 (3)、推理: a:速度是矢量,既有大小,又有方向。 b:只要速度的大小、方向中的一个或两个同时变化,就表示速度矢量发生了变化,也就是具有加速度。 C:曲线运动中速度的方向时刻在改变,所以曲线运动是变速运动。 过渡:那么物体在什么条件下才做曲线运动呢? (三)、物体做曲线运动的条件 【演示实验】(投影仪显示)一个在水平面上做直线运动的钢珠,如果从旁边给它施加一个侧向力,它的运动方向就会改变,不断给钢珠施加侧向力,或者在钢珠运动的`路线旁放一块磁铁,钢珠就偏离原来的方向而做曲线运动。 归纳得到:当运动物体所受合力的方向跟它的速度方向不在同一直线上时,物体就做曲线运动。 【讨论】做曲线运动的物体,其加速度的方向跟它的速度方向是否一致? 对照物体做直线运动的条件:当物体所受的合外力方向跟它的速度方向在同一直线上时,物体做直线运动。 【看书】抛出的石子,飞行的人造卫星为什么做曲线运动? 用牛顿第二定律分析物体做曲线运动的条件: 当合力的方向与物体的速度方向在同一直线上时,产生的加速度也在这条直线上,物体就做直线运动。 如果合力的方向跟速度方向不在同一条直线上,产生的加速度就和速度成一夹角,这时,合力就不但可以改变速度的大小,而且可以改变速度的方向,物体就做曲线运动。课堂练习:课本P83练习一(1)、(4)两题学生讨论;(2)、(3)两题课堂练习,并点两名学生在黑板上写出结果。教师评讲。 (四)、巩固练习 物体在力F1、F2、F3的共同作用下做匀速直线运动,若突然撤去外力F1,则物体的运动情况是 A、必沿着F1的方向做匀加速直线运动 B、必沿着F1的方向做匀减速直线运动 C、不可能做匀速直线运动 D、可能做直线运动,也可能做曲线运动 【C、D】 (五)、课堂小结 1、运动轨迹是曲线的运动叫曲线运动。 2、曲线运动中速度的方向是时刻改变的,质点在某一点的瞬时速度的方向在曲线的这一点的切线方向上。 3、当运动物体所受合力的方向跟它的速度方向不在同一直线上时,物体就做曲线运动。 六、课外作业 (略) 教学目标 (1)通过演示实验认识加速度与质量和和合外力的定量关系。 (2)会用准确的文字叙述牛顿第二定律并掌握其数学表达式。 (3)通过加速度与质量和和合外力的定量关系,深刻理解力是产生加速度的原因这一规律。 (4)认识加速度方向与合外力方向间的矢量关系,认识加速度与和外力间的瞬时对应关系。 (5)能初步运用运动学和牛顿第二定律的知识解决有关动力学问题。 能力目标 通过演示实验及数据处理,培养学生观察、分析、归纳总结的能力;通过实际问题的处理,培养良好的书面表达能力。 情感目标 培养认真的科学态度,严谨、有序的思维习惯。 教材分析 1、通过演示实验,利用控制变量的方法研究力、质量和加速度三者间的关系:在质量不变的前题下,讨论力和加速度的关系;在力不变的前题下,讨论质量和加速度的关系。 2、利用实验结论总结出牛顿第二定律:规定了合适的力的单位后,牛顿第二定律的表达式从比例式变为等式、 3、进一步讨论牛顿第二定律的确切含义:公式中的表示的是物体所受的合外力,而不是其中某一个或某几个力;公式中的和均为矢量,且二者方向始终相同,所以牛顿第二定律具有矢量性;物体在某时刻的加速度由合外力决定,加速度将随着合外力的变化而变化,这就是牛顿第二定律的瞬时性。 教法建议 1、要确保做好演示实验,在实验中要注意交代清楚两件事:只有在砝码质量远远小于小车质量的前题下,小车所受的拉力才近似地认为等于砝码的重力(根据学生的实际情况决定是否证明);实验中使用了替代法,即通过比较小车的位移来反映小车加速度的大小。 2、通过典型例题让学生理解牛顿第二定律的确切含义。 3、让学生利用学过的重力加速度和牛顿第二定律,让学生重新认识出中所给公式。 教学重点: 牛顿第二定律 教学难点: 对牛顿第二定律的理解 教学过程: 示例: 一、加速度、力和质量的关系 介绍研究方法(控制变量法):先研究在质量不变的前题下,讨论力和加速度的关系;再研究在力不变的前题下,讨论质量和加速度的关系、介绍实验装置及实验条件的保证:在砝码质量远远小于小车质量的条件下,小车所受的拉力才近似地认为等于砝码的重力、介绍数据处理方法(替代法):根据公式可知,在相同时间内,物体产生加速度之比等于位移之比、 以上内容可根据学生情况,让学生充分参与讨论、本节书涉及到的演示实验也可利用气垫导轨和计算机,变为定量实验。 二、牛顿第二运动定律(加速度定律) 1、实验结论:物体的加速度根作用力成正比,跟物体的质量成反比、加速度方向跟引起这个加速度的力的方向相同。 2、力的单位的规定:若规定:使质量为1kg的物体产生1m/s2加速度的力叫1N、则公式中的=1。(这一点学生不易理解) 3、牛顿第二定律: 物体的加速度根作用力成正比,跟物体的质量成反比、加速度方向跟引起这个加速度的力的方向相同。 培养差生非智力因素的途径是多方面的。这里,仅介绍我对三种类型差生进行非智力因素培养的情况。 强化自制,控制自我。 统计资料表明,由于自我控制能力薄弱而成为差生的比例较大。调查中,我发现他们的自我意识还是比较强的,有一定的评价别人和自我评价的能力。例如,在他们的心目中,物理学得好的学生往往是学习成绩优秀,观察能力、实验能九思维能力、分析和解决物理问题的能力都很强的学生。当问他们想不想向这个标准靠拢时,几乎都说心里想达到,但做起来太不容易。他们之所以想的做的不能同步,是由于不能控制自己,容易受外界的干扰。调查中还发现,这类学生的自我控制能力往往同兴趣、情感、意志等有关。针对这类差生的特点,我做了以下一些转化工作。 1、激发差生的学习动机,提高学习物理的兴趣。 首先,根据物理的特点,引导差生正确认识学习物理的目的和社会意义,用所学的物理知识解决简单的实际问题,以激发差生的学习兴趣,从而强化内驱力,增强自制力。其次,在教学中严格把好教材深度关,注意突破难点。在习题教学中,重视物理过程的分析,并充分运用实验的优点,采用灵活新颖的教学方式,创设轻松愉快的教学气氛,使学生乐于学习。 2、锻炼差生的意志,增强学好物理的信心 差生有一个显著的特点,就是情绪波动大,意志薄弱,缺乏毅力,害怕困难和挫折,这无疑影响了他们的学习,因为学习是一件充满困难和挫折的事情,物理又是一门较难学的学科。因此,我注意引导他们把战胜困难,攻下难题当作一大乐事,让他们在合适的练习中磨练克服困难的意志,能搞到在情景中循序渐进,合理上升,产生向上攀登的情感。通过不断地磨炼,不断地战胜一个又一个学习中的困难,这样,学生学好物理的信心就会逐渐提高。 3、教会差生听课,培养注意品质。 差生的另一特点就是注意力不稳定,常常被某些与上课无关的事情所干扰。为此,我要求他们勤记笔记,并尽量向他们多提些力所能及的__题,以引起他们的注意。此外,我还组织这类差生召开座谈会,邀请物理成绩好、自我控制能力强的学生言传身教。还组织一些竞赛活动。有时故意把时间搞得长些,以促使他们自我控制能力的提高。 教学目标 知识与技能 1.理解平抛运动是匀变速运动,其加速度为g. 2.掌握抛体运动的位置与速度的关系. 过程与方法 1.掌握平抛运动的特点,能够运用平抛规律解决有关问题. 2.通过例题分析再次体会平抛运动的规律. 情感、态度与价值观 1.有参与实验总结规律的热情,从而能更方便地解决实际问题. 2.通过实践,巩固自己所学的知识. 教学重难点 教学重点 分析归纳抛体运动的规律 教学难点 应用数学知识分析归纳抛体运动的规律. 教学过程 [新课导入] 上一节我们已经通过实验探究出平抛运动在竖直方向和水平方向上的运动规律,对平抛运动的特点有了感性认识.这一节我们将从理论上对抛体运动的规律作进一步分析,学习和体会在水平面上应用牛顿定律的方法,并通过应用此方法去分析没有感性认识的抛体运动的规律. [新课教学] 一、抛体的位置 我们以平抛运动为例来研究抛体运动所共同具有的性质. 首先我们来研究初速度为。的平抛运动的位置随时间变化的规律.用手把小球水平抛出,小球从离开手的瞬间(此时速度为v,方向水平)开始,做平抛运动.我们以小球离开手的位置为坐标原点,以水平抛出的方向为x轴的方向,竖直向下的方向为y轴的方向,建立坐标系,并从这一瞬间开始计时. 师:在抛出后的运动过程中,小球受力情况如何? 生:小球只受重力,重力的方向竖直向下,水平方向不受力. 师:那么,小球在水平方向有加速度吗?它将怎样运动? 生:小球在水平方向没有加速度,水平方向的分速度将保持v不变,做匀速直线运动. 师:我们用函数表示小球的水平坐标随时间变化的规律将如何表示? 生:x=vt 师:在竖直方向小球有加速度吗?若有,是多大?它做什么运动?它在竖直方向有初速度吗? 生:在竖直方向,根据牛顿第二定律,小球在重力作用下产生加速度g.做自由落体运动,而在竖直方向上的初速度为0. 师:那根据运动学规律,请大家说出小球在竖直方向的坐标随时间变化的规律. 生:y=1/2gt2 师:小球的位置能否用它的坐标(x,y)描述?能否确定小球在任意时刻t的位置? 生:可以. 师:那么,小球的运动就可以看成是水平和竖直两个方向上运动的合成.t时间内小球合位移是多大? 生: 师:若设s与+x方向(即速度方向)的夹角为θ,如图6.4—1,则其正切值如何求? 生: [例1]一架飞机水平匀速飞行.从飞机上海隔ls释放一个铁球,先后释放4个,若不计空气阻力,从地面上观察4个小球() A.在空中任何时刻总是捧成抛物线,它们的落地点是等间距的 B.在空中任何时刻总是排成抛物线,它们的落地点是不等间距的 C.在空中任何时刻总在飞机正下方,排成竖直的直线,它们的落地点是等间距的 D.在空中任何时刻总在飞机的正下方,捧成竖直的直线,它们的落地点是不等间距的。 解析:因为铁球从飞机上释放后做平抛运动,在水平方向上有与飞机相同的速度.不论铁球何时从飞机上释放,铁球与飞机在水平方向上都无相对运动.铁球同时还做自由落体运动,它在竖直方向将离飞机越来越远.所以4个球在落地前始终处于飞机的正下方,并排成一条直线,又因为从飞机上每隔1s释放1个球,而每个球在空中运动的时间又是相等的,所以这4个球落地的时间也依次相差1s,它们的落地点必然是等间距的.若以飞机为参考系观察4个铁球都做自由落体运动.此题把曲线运动利用分解的方法“化曲为直”,使其成为我们所熟知的直线运动,则据运动的独立性,可以分别在这两个方向上用各自的运动规律研究其运动过程. 二、抛体的速度 师:由于运动的等时性,那么大家能否根据前面的结论得到物体做平抛运动的时间? 生:由y=1/2gt2得到,运动时间 师:这说明了什么问题? 生:这说明了做平抛运动的物体在空中运动的时间仅取决于下落的高度,与初速度无关. 师:那么落地的水平距离是多大? 生:落地的水平距离 师:这说明了什么问题? 生:这说明了平抛运动的水平位移不仅与初速度有关系,还与物体的下落高度有关. 师:利用运动合成的知识,结合图6.4—2,求物体落地速度是多大?结论如何? 生:落地速度,即落地速度也只与初速度v和下落高度h有关. 师:平抛运动的速度与水平方向的夹角为a,一般称为平抛运动的偏角.实际上,常称为平抛运动的偏角公式,在一些问答题中可以直接应用此结论分析解答 [例2]一个物体以l0m/s的速度从10m的水平高度抛出,落地时速度与地面的夹角θ是多少(不计空气阻力)? [例3]在5m高的地方以6m/s的初速度水平抛出一个质量是10kg的物体,则物体落地的速度是多大?从抛出点到落地点发生的位移是多大?(忽略空气阻力,取g=10m/s2) [交流与讨论] 应用运动的合成与分解的方法我们探究了做平抛运动的物体的位移和速度.请大家根据我们探究的结果研究一下平抛运动的物体位移和速度之间存在什么关系. 参考解答:根据前面的探究结果我们知道,物体的位移,与x轴的夹角的正切值为tanθ=gt/2v.物体的速度,与x轴的夹角的正切值为tanθ=gt/v.可以看到位移和速度的大小没有太直接的关系,但它们的方向与x轴夹角的正切是2倍关系.利用这个关系我们就可以很方便地计算物体速度或位移的方向了.师:在(2)中,与匀变速直线运动公式vt2=v02+2as,形式上一致的,其物理意义相同吗?生:物理意义并不相同,在中的h,并不是平抛运动的位移,而是竖直方向上的位移,在 中的s就是表示匀速直线运动的位移.对于平抛运动的位移,是由竖直位移和水平位移合成而得的. 师:平抛运动的轨迹是曲线(抛物线),某一时刻的速度方向即为曲线上物体所在位置的切线方向.设物体运动的时间为t,则这一时刻的速度与竖直方向夹角的正切值tanβ=v0/gt,而物体下落的高度为h==1/2gt2.如图6.4—3. 图中的A点为速度的切线与抛出点的水平线的交点,C点为物体所在位置的竖直线与水平线的交点,从图中可以看出A为水平线段OC的中点.平抛运动的这一重要特征,对我们分析类平抛运动,特别是带电粒子在电场中偏转是很有帮助的. 平抛运动常分解成水平方向和竖直方向的两个分运动来处理,由于竖直分运动是初速度为零的匀加速直线运动,所以初速度为零的匀加速直线运动的公式和特点均可以在此应用.另外,有时候根据具体情况也可以将平抛运动沿其他方向分解. 三、斜抛运动 师:如果物体抛出时的速度不是沿水平方向,而是斜向上方或斜向下方的(这种情况称为斜抛),它的受力情况是什么样的?加速度又如何? 生:它的受力情况与平抛完全相同,即在水平方向仍不受力,加速度仍是0;在竖直方向仍只受重力,加速度仍为g. 师:实际上物体以初速度v沿斜向上或斜向下方抛出,物体只在重力作用下的运动,如何表示?与平抛是否相同? 生:斜抛运动沿水平方向和竖直方向初速度与平抛不同,分别是vx=vcosθ和vy=sinθ. 由于物体运动过程中只受重力,所以水平方向速度vx=vcosθ保持不变,做匀速直线运动;而竖直方向上因受重力作用,有竖直向下的重力加速度J,同时有竖直向上的初速度vy=sinθ,因此做匀减速运动(是竖直上抛运动,当初速度向斜下方,竖直方向的分运动为竖直下抛运动),当速度减小到。时物体上升到点,此时物体由于还受到重力,所以仍有一个向下的加速度g,将开始做竖直向下的加速运动.因此,斜抛运动可以看成是水平方向速度为vx=vcosθ的匀速直线运动和竖直方向初速度为vy=sinθ的竖直上抛或竖直下抛运动的合运动. 师:斜抛运动分斜上抛和斜下抛(由初速度方向确定)两种,下面以斜上抛运动为例讨论. 师:斜抛运动的特点是什么? 生:特点:加速度a=g,方向竖直向下,初速度方向与水平方向成一夹角θ斜向上,θ=90°时为竖直上抛或竖直下抛运动θ=0°时为平抛运动. 师:常见的处理方法: ①将斜上抛运动分解为水平方向的匀速直线运动和竖直方向的竖直上抛运动,这样有由此可以得到哪些特点? 生:由此可得如下特点:a.斜向上运动的时间与斜向下运动的时间相等;b.从轨道点将斜抛运动分为前后两段具有对称性,如同一高度上的两点,速度大小相等,速度方向与水平线的夹角相同. 师:②将斜抛运动分解为沿初速度方向的斜向上的匀速直线运动和自由落体运动两个分运动,用矢量合成法则求解. ③将沿斜面和垂直斜面方向作为x、y轴,分别分解初速度和加速度后用运动学公式解题. [交流与讨论] 对于斜抛运动我们只介绍下船上抛和斜下抛的研究方法,除了平抛、斜上抛、斜下抛外,抛体运动还包括竖直上抛和竖直下抛,请大家根据我们研究前面几种抛体运动的方法来研究一下竖直上抛和竖直下抛. 参考解答:对于这两种运动来说,它们都是直线运动,但这并不影响用运动的合成与分解的方法来研究它们.这个过程我们可以仿照第一节中我们介绍的匀加速运动的分解过程.对竖直上抛运动,设它的初速度为v0,那么它的速度就可以写成v=v0—gt的形式,位移写成x=v0t—gt2/2的形式.那这样我们就可以进行分解了.把速度写成v1=v0,v2=—gt的形式,把位移写成xl=v0t,x2=—gt2/2的形式,这样我们可以看到,竖直上抛运动被分解成了一个竖直向上的匀速直线运动和一个竖直向上的匀减速运动.对于竖直下抛运动可以采取同样的方法进行处理. 课后小结 1.具有水平速度的物体,只受重力作用时,形成平抛运动. 2.平抛运动可分解为水平匀蓬运动和竖直自由落体运动.平抛位移等于水平位移和竖直位移的矢量和;平抛瞬时速度等于水平速度和竖直速度的矢量和. 3.平抛运动是一种匀变速曲线运动. 4.如果物体受到恒定合外力作用,并且合外力跟初速度垂直,形成类似平抛的匀变速曲线运动,只需把公式中的g换成a,其中a=F合/m. 说明: 1.干抛运动是学生接触到的第一个曲线运动,弄清其成固是基础,水平初速度的获得是同题的关键,可归纳众两种; (1)物体被水平加速:水平抛出、水干射出、水平冲击等; (2)物体与原来水平运动的载体脱离,由于惯性而保持原来的水平速度. 2.平抛运动的位移公式和速度公式中有三个含有时间t,应根据不同的已知条件来求时间.但应明确:平抛运动的时间完全由抛出点到落地点的竖直高度确定(在不高的范国内g恒定),与抛出的速度无关. 教学准备 教学目标 知识与技能 1.知道时间和时刻的区别和联系. 2.理解位移的概念,了解路程与位移的区别. 3.知道标量和矢量,知道位移是矢量,时间、时刻和路程是标量. 4.能用数轴或一维直线坐标表示时刻和时间、位置和位移. 5.知道时刻与位置、时间与位移的对应关系. 过程与方法 1.围绕问题进行充分的讨论与交流,联系实际引出时间、时刻、位移、路程等,要使学生学会将抽象问题形象化的处理方法. 2.会用坐标表示时刻与时间、位置和位移及相关方向 3.会用矢量表示和计算质点位移,用标量表示路程. 情感态度与价值观 1.通过时间位移的学习,要让学生了解生活与物理的关系,同时学会用科学的思维看待事实. 2.通过用物理量表示质点不同时刻的不同位置,不同时间内的不同位移(或路程)的体验,领略物理方法的奥妙,体会科学的力量. 3.养成良好的思考表述习惯和科学的价值观. 4.从知识是相互关联、相互补充的思想中,培养同学们建立事物是相互联系的唯物主义观点. 教学重难点 教学重点 1.时间和时刻的概念以及它们之间的区别和联系 2.位移的概念以及它与路程的区别. 教学难点 1.帮助学生正确认识生活中的时间与时刻. 2.理解位移的概念,会用有向线段表示位移 教学工具 多媒体、板书 教学过程 一、时刻和时间间隔 1.基本知识 (1)时刻是指某一瞬间,时间间隔表示某一过程. (2)在表示时间的数轴上,时刻用点来表示,时间用线段来表示. (3)在国际单位制中,表示时间和时刻的单位是秒,它的符号是s. 2.思考判断 (1)时刻和时间间隔都是时间,没有本质区别.(×) (2)飞机8点40分从上海起飞,10点05分降落到北京,分别指的是两个时间间隔.(×) (3)20年10月25日23时33分在西昌成功将第16颗北斗导航卫星发射升空.25日23时33分,指的是时刻.(√) 探究交流 时间的常用单位有哪些?生活中、实验室中有哪些常用的计时仪器? 【提示】在国际单位制中,时间的单位是秒,常用单位有分钟、小时,还有年、月、日等.生活中用各种钟表来计时,实验室和运动场上常用停表来测量时间,若要比较精确地研究物体的运动情况,有时需要测量和记录很短的时间,学校的实验室中常用电磁打点计时器或电火花计时器来完成. 二、路程和位移 1.基本知识 (1)路程 物体运动轨迹的长度. (2)位移 ①物理意义:表示物体(质点)位置变化的物理量. ②定义:从初位置到末位置的一条有向线段. ③大小:初、末位置间有向线段的长度. ④方向:由初位置指向末位置. 2.思考判断 (1)路程的大小一定大于位移的大小.(×) (2)物体运动时,路程相等,位移一定也相等.(×) (3)列车里程表中标出的北京到天津122km,指的是列车从北京到天津的路程.(√) 探究交流 一个人从北京去重庆,可以乘火车,也可以乘飞机,还可以先乘火车到武汉,然后再乘轮船沿长江到重庆,如图所示,则他的运动轨迹、位置变动、走过的路程和他的位移是否相同? 【提示】他的运动轨迹不同,走过的路程不同;他的位置变动相同,位移相同. 三、矢量和标量 1.基本知识 (1)矢量 既有大小又有方向的物理量.如位移、力等. (2)标量 只有大小、没有方向的物理量.如质量、时间、路程等. (3)运算法则 两个标量的加减遵从算术加减法,而矢量则不同,后面将学习到. 2.思考判断 (1)负5m的位移比正3m的位移小.(×) (2)李强向东行进5m,张伟向北行进也5m,他们的位移不同.(√) (3)路程是标量,位移是矢量.(√) 探究交流 温度是标量还是矢量?+2℃和-5℃哪一个温度高? 【提示】温度是标量,其正、负表示相对大小,所以+2℃比-5℃温度高. 杠杆(第一课时) (一)学习目标 1、知识与技能 (1)认识杠杆,能从常见的工具和简单机械中识别杠杆。 (2)知道杠杆的平衡。 2、过程和方法 (1)通过观察和实验,了解杠杆的结构; (2)通过探究,了解杠杆的平衡条件。 3、情感、态度与价值观 通过了解杠杆,进一步认识物理是来自于生活的,认识到物理是有用的。 (二)教学重难点 (1)重点:理解杠杆的平衡条件 (2)难点:从常见的工具和简单机械中识别杠杆,理解力臂的概念。 (三)教学准备 杠杆支架、钩码、刻度尺、线 (四)教学过程 一、引入新课 请学生阅读教材引言部分,使学生了解简单机械在生产、生活中有广泛的应用,认识到学好这部分知识具有实际的意义,自然引入杠杆一节的学习内容。 二、什么是杠杆? 出示一些实物,象瓶起子,剪刀等并演示如何使用。 请学生归纳其相同点。 1、定义:一根硬棒,在力的作用下,如果能绕着固定点转动,这根硬棒就叫杠杆。 请学生介绍生活中还有哪些物体可以看作杠杆? 要点:(1)硬棒 (2)绕着固定点转动 三、几个名词 1、动力:使杠杆转动的力F1 2、阻力:阻碍杠杆转动的力F2 3、支点:绕着转动的那个点O 4、动力臂:从支点到动力作用线的距离l1 5、阻力臂:从支点到阻力作用线的距离l2 PS:力的作用线指的是经过力的作用点沿力的方向所在的直线。 力臂不是支点到力的作用点的距离! 学生练习:作图P68动手动脑学物理第3小题。 四、探究杠杆的平衡条件 1、什么叫杠杆的平衡 杠杆静止或匀速转动状态称为杠杆的平衡。 2、小实验:请一个大同学和一个小同学做推门比赛。(大同学推靠近门轴方向,小同学推远离门轴方向) 通过亲自动手,感受平衡时应与力的大小和作用点等因素有关。为下面探究中的猜想做铺垫。 3、探究过程 (1)提出问题:杠杆的平衡条件是什么? (2)猜想与假设:从刚才的实验出发,引导学生猜想。 (3)设计实验,制订计划 (4)进行实验,收集证据 如课本第65页。 (5)分析与归纳: 杠杆的平衡条件为:动力×动力臂=阻力×阻力臂 写成:F1l1=F2l2或F1F2=l2l1 即:力与力臂成反比 (6)评估: a、为什么在实验前,要调节杠杆两端的平衡螺母,使杠杆在水平位置平衡? b、如果不用钩码而用弹簧测力计进行实验,应注意什么问题? 4、学生练习 动手动脑学物理 (五)小结 (六)作业 练习册 附:课后总结 第一节杠杆(第二课时) (一)学习目标 1、知识与技能目标: (1)知道杠杆的分类,能从常见的工具和简单机械中识别杠杆的种类。 (2)知道杠杆的一些应用。 2、过程和方法目标: (1)通过杠杆的平衡条件,了解杠杆的分类方法; (2)通过分类,了解生活中杠杆的应用原理。 3、情感、态度与价值观目标: 通过了解杠杆的应用,进一步认识物理是有用的,提高学习物理的兴趣。 (二)教学重难点 (1)重点:杠杆的分类 (2)难点:从常见的工具和简单机械中识别杠杆的种类,理解省力、费力和等臂杠杆的具体应用。 (三)教学过程 一、复习 复习杠杆的平衡条件:动力×动力臂=阻力×阻力臂(F1l1=F2l2) 二、杠杆的种类 从杠杆的平衡条件可知,当杠杆平衡时,力与力臂成反比,所以可以得出以下几个结论: 1、当l1>l2,F1<f2,说明使用这种杠杆时省力。我们把这种杠杆叫做省力杠杆,如:撬棒,瓶盖起子,园艺剪刀等。<p=""> 2、当l1F2,说明使用这种杠杆时费力。我们把这种杠杆叫做费力杠杆,如:钓鱼杆,缝纫机踏板,理发剪刀等。 3、当l1=l2,F1=F2,说明使用这种杠杆时即不省力也不费力。我们把这种杠杆叫做等臂杠杆,如:天平等。 分类是物理学中一个比较重要的方法,学生可以列举以前所学过的分类方法,如固体可以分为晶体和非晶体等。在学习了杠杆的分类后,请学生尽量列举每种杠杆的实物。 三、杠杆的应用 分析生活中的实物,大家共同讨论这属于什么杠杆,它们有什么好处?又有什么缺点?为什么做成这个样子。然后归纳: 1、省力杠杆,可以省力,但比较费距离。 2、费力杠杆,虽然费力,但可以省距离。 本环节应当以开放性教学为主,请学生列举生活中的杠杆,大家共同讨论其结构,用途,以及是不是可以进行改进? 四、练习 1、如图,是用一根木棒在撬石头,这根木棒的特点有:①木棒不易;②能在力F的作用下围绕着旋转。我们就可以把这根木棒叫。 2、在上题中,我们从O点作一条MN的垂线,这条垂线的长度就是力F的。 MN这条直线就是力F的。 3、下列物体中不能看成杠杆的是() A、筷子B、火钳C、剪刀D、橡皮筋 4、杠杆的平衡条件是;如果分别用不同方向的三个力作用于杠杆的 A点,都能使图所示的杠杆平衡,那么最小的力是。 5、生活中的杠杆可以分成三类,一是省力杠杆,例如;二是,例如;三是等臂杠杆,例如。(把“钓鱼杆,跷跷板,瓶起子”填在“如”字后的横线上) 6、如图,图中轻质木棒AB可以看成一个杠杆,C点吊一重物,B点用绳子拉着,杠杆的支点是点。请在图中标出动力F1,阻力F2,并画出它们的力臂L1、L2。如果木棒静止,,则等式:F1L1=成立。 7、用一根细棉线把一段直铁丝吊起来,让铁丝能在水平位置平衡,再将棉线右边的铁丝对折一下,铁丝还能在水平位置平衡吗?实际做做,然后回答: ①你看到的现象是:; ②猜想可能的原因是:; ③猜想的依据是:。 8、用剪纸的剪刀剪一叠较厚的纸,是用剪刀的尖端容易剪断还是用剪刀的中部容易剪断,试试看,并和同学交流一下,讨论是什么原因?利用的物理知识是什么? 9、在探究杠杆平衡条件的活动中,你一定注意了首先调节杠杆在水平位置平衡吧!这样做对你填写书中表格中的哪几项数据有利,为什么? 10、在探究杠杆平衡条件的活动中,我们使用的杠杆两端有两个螺母,它们的作用是。如果不要这两个螺母,请你设计一种装置,使它具有与螺母相同的作用,画出设计草图,加上必要的文字叙述。 11、在探究杠杆平衡条件的活动中,小红发现用2个钩码可以平衡3个钩码。如图,小红想,杠杆平衡,肯定不能光看动力和阻力,可能还与力的作用点到支点的距离有关。于是她反复做了几次实验,分析得出杠杆的平衡条件为: 动力X支点到动力作用点的距离=阻力X支点到阻力作用点的距离 老师看后,指出她的不足之处,可小红据理力争,“通过实验得出的结论怎么可能有问题呢?”老师为了让小红相信,拿来一个弹簧测力计,把测力计的挂钩挂在A点上,则…….小红明白了。 ①你能说说教老师是怎么做的吗? ②小红在老师的指导下,把自己得出的“平衡条件”等式两边各改了一字,就变成了正确的结论,想一想她是怎么改的? 12、能否用量程为5N的弹簧测力计测一名同学的重? 需要的辅助器材: 应用的物理知识: 启发你这样创意的来源: (四)作业 课堂上没完成的练习 附:课后总结 教学目标 1、了解形变的概念,了解弹力是物体发生弹性形变时产生的. 2、能够正确判断弹力的有无和弹力的方向,正确画出物体受到的弹力. 3、掌握运用胡克定律计算弹簧弹力的方法. 能力目标 1、能够运用二力平衡条件确定弹力的大小. 2、针对实际问题确定弹力的大小方向,提高判断分析能力. 教学建议 一、基本知识技能: (一)、基本概念: 1、弹力:发生形变的物体,由于要回复原状,对跟它接触的物体会产生力的作用,这种力叫做弹力. 2、弹性限度:如果形变超过一定限度,物体的形状将不能完全恢复,这个限度叫做弹性限度. 3、弹力的大小跟形变的大小有关,形变越大,弹力也越大. 4、形变有拉伸形变、弯曲形变、和扭转形变. (二)、基本技能: 1、应用胡克定律求解弹簧等的产生弹力的大小. 2、根据不同接触面或点画出弹力的图示. 二、重点难点分析: 1、弹力是物体发生形变后产生的,了解弹力产生的原因、方向的判断和大小的确定是本节的教学重点. 2、弹力的有无和弹力方向的判断是教学中学生比较难掌握的知识点. 教法建议 一、关于讲解弹力的产生原因的教法建议 1、介绍弹力时,一定要把物体在外力作用时发生形状改变的事实演示好,可以演示椭圆形状玻璃瓶在用力握紧时的形状变化,也可以演示其它明显的形变实验,如矿泉水瓶的形变,握力器的形变,钢尺的形变,也可以借助媒体资料演示一些研究观察物体微小形变的方法.通过演示,介绍我们在做科学研究时,通常将微小变化“放大”以利于观察. 二、关于弹力方向讲解的教法建议 1、弹力的方向判断是本节的重点,可以将接触面的关系具体为“点——面(平面、曲面)”接触和“面——面”接触.举一些例子,将问题简单化.往往弹力的方向的判断以“面”或“面上接触点的切面”为准. 如所示的简单图示: 2、注意在分析两物体之间弹力的作用时,可以分别对一个物体进行受力分析,确切说明,是哪一个物体的形变对其产生弹力的作用.配合教材讲解绳子的拉力时,可以用具体的例子,画出示意图加以分析. 第三节弹力 教学方法:实验法、讲解法 教学用具:演示形变用的钢尺、橡皮泥、弹簧、重物(钩码). 教学过程设计 (一)、复习提问 1、重力是的产生原因是什么?重力的方怎样? 2、复习初中内容:形变;弹性形变. (二)、新课教学 由复习过渡到新课,并演示说明 1、演示实验1:捏橡皮泥,用力拉压弹簧,用力弯动钢尺,它们的形状都发生了改变,教师总结形变的概念. 形变:物体的形状或体积的变化叫做形变,形变的原因是物体受到了力的作用.针对橡皮泥形变之后形状改变总结出弹性形变的概念:能够恢复原来形状的形变叫做弹性形变.不能恢复原来形状的形变叫做塑性形变. 2、将钩码悬挂在弹簧上,弹簧另一端固定,弹簧被拉长,提问: (1)钩码受哪些力?(重力、拉力、这二力平衡) (2)拉力是谁加给钩码的?(弹簧) (3)弹簧为什么对钩码产生拉力?(弹簧发生了弹性形变) 由此引出弹力的概念: 3、弹力:发生弹性形变的物体,会对跟它直接接触的物体产生力的作用.这种力就叫弹力. 就上述实验继续提问: (1)弹力产生的条件:物体直接接触并发生弹性形变. (2)弹力的方向 提问:课本放在桌子上.书给桌子的压力和桌子对书的支持力属于什么性质的力?其受力物体、施力物体各是什么?方向如何? 与学生讨论,然后总结: 4、压力的方向总是垂直与支持面而指向受力物体(被压物体). 5、支持力的方向总是垂直与支持面而指向受力物体(被支持物体). 继续提问:电灯对电线产生的拉力和电线对电灯产生的拉力又是什么性质的力? 其受力物体、施力物体各是谁?方向如何? 分析讨论,总结. 6、绳的拉力是绳对所拉物体的弹力,方向总是沿着绳而指向绳收缩的方向. 7、胡克定律 弹力的大小与形变有关,同一物体,形变越大,弹力越大.弹簧的弹力,与形变的关系为: 在弹性限度内,弹力的大小跟弹簧的伸长(或缩短)的长度成正比,即: 式中叫弹簧的倔强系数,单位:N/m.它由弹簧本身所决定.不同弹簧的倔强系数一般不相同.这个规律是英国科学家胡克发现的,叫胡克定律.胡克定律的适用条件:只适用于伸长或压缩形变. 8、练习使用胡克定律,注意强调为形变量的大小. 弹力高中物理教学反思 本节课注意了对学生开放性、创新性思维的培养。开放性创新性思维的培养不是一句口号,而应该落到实处,这是基础教育课程改革的要求,也是在教学实际中很难落实的一个问题。 一般情况下,教师在组织学生学习塑性和弹性的时候,往往是通过举出生活中或者学生能够接触的弹性物体和非弹性物体若干实例,通过归纳的方法得出塑性和弹性。在这个问题的处理上并没有按照往常的方法,而是让学生对教师给出的若干物体进行分类,潜移默化的对学生进行了方法教育。分类的标准不同,分类结果也就不同,学生的兴奋点就非常多,都试图依照不同的分类标准进行分类,学生的思维随着分类的翅膀在飞翔。 从学生的生活出发,关注学生的体验。物理不是独立和抽象于生活之外的,尤其在初中阶段来看更是如此。在组织教学的时候没有过分关注基本的知识和概念,而是从学生生活中常见的橡皮筋、海绵、弹簧、减震等学生常见常听的事物出发,学生在对物体的弹性和塑性有充分的感性基础上,总结出什么是塑性和弹性。关注学生自己的体验,让两位同学在拉测力计的活动中体验拉力的不同,认识到弹力的大小与弹性形变的物体的形变大小有关的。学生亲自参与到了物理知识的建构中,认识当然是非常深刻的。师生关系融洽和谐,这也是本节课的一个闪光点。 主要缺点: 学生在进行分类的时候没有充分放开学生的思维。为什么学生的分类答案都是与本节内容是对应的?为什么没有学生按照物质的组成去分?为什么没有按照物质的导电性能或者密度大小去分?这是受到了思维定势的影响,既然本节学习弹性和塑性,当然就是这一种分类方法。在以后的教学中应该让学生在充分分类的基础上,从中挑出一组依照弹性和塑性分类的一组,让学生分析这一种分类的标准是什么,同样回到了环节的主题。 知识目标 1、知道曲线运动是一种变速运动,它在某点的瞬时速度方向在曲线这一点的切线上。 2、理解物体做曲线运动的条件是所受合外力与初速度不在同一直线上。 能力目标 培养学生观察实验和分析推理的能力。 情感目标 激发学生学习兴趣,培养学生探究物理问题的习惯。 教学建议 教材分析 本节教材主要有两个知识点:曲线运动的速度方向和物体做曲线运动的条件。教材一开始提出曲线运动与直线运动的明显区别,引出曲线运动的速度方向问题,紧接着通过观察一些常见的现象,得到曲线运动中速度方向是时刻改变的,质点在某一点(或某一时刻)的速度方向是曲线的这一点(或这一时刻)的切线方向。再结合矢量的特点,给出曲线运动是变速运动。关于物体做曲线运动的条件,教材从实验入手得到:当运动物体所受合外力的&39;方向跟它的速度方向不在同一直线上时,物体就做曲线运动。再通过实例加以说明,最后从牛顿第二定律角度从理论上加以分析。教材的编排自然顺畅,适合学生由特殊到一般再到特殊的认知规律,感性知识和理性知识相互渗透,适合对学生进行探求物理知识的训练:创造情境,提出问题,探求规律,验证规律,解释规律,理解规律,自然顺畅,严密合理。本节教材的知识内容和能力因素,是对前面所学知识的重要补充,是对运动和力的关系的进一步理解和完善,是进一步学习的基础。 教法建议 “关于曲线运动的速度方向”的教学建议是:首先让学生明确曲线运动是普遍存在的,通过图片、动画,或让学生举例,接着提出问题,怎样确定做曲线运动的物体在任意时刻速度的方向呢?可让学生先提出自己的看法,然后展示录像资料,让学生总结出结论。接着通过分析速度的矢量性及加速度的定义,得到曲线运动是变速运动。 “关于物体做曲线运动的条件”的教学建议是:可以按照教材的编排先做演示实验,引导学生提问题:物体做曲线运动的条件是什么?得到结论,再从力和运动的关系角度加以解释。如果学生基础较好,也可以运用逻辑推理的方法,先从理论上分析,然后做实验加以验证。 教学设计方案 教学重点:曲线运动的速度方向;物体做曲线运动的条件 教学难点:物体做曲线运动的条件 一、曲线运动的速度方向: (一)让学生举例:物体做曲线运动的一些实例 (二)展示图片资料 1、上海南浦大桥 2、导弹做曲线运动 3、汽车做曲线运动 (三)展示录像资料: 1、弯道上行驶的自行车 通过以上内容增强学生对曲线运动的感性认识,紧接着提出曲线运动的速度方向问题: (四)让学生讨论或猜测,曲线运动的速度方向应该怎样? (五)展示录像资料2:火星儿沿砂轮切线飞出3:沾有水珠的自行车后轮原地运转 (六)让学生总结出曲线运动的方向 (七)引导学生分析推理:速度是矢量→速度方向变化,速度矢量就发生了变化→具有加速度→曲线运动是变速运动。 二、物体做曲线运动的条件: [方案一] (一)提出问题,引起思考:沿水平直线滚动的小球,若在它前进的方向或相反方向施加外力,小球的运动情况将如何?若在其侧向施加外力,运动情况将如何? (二)演示实验;钢珠在磁铁作用下做曲线运动的情况,或钢珠沿水平直线运动之后飞离桌面的情况。 (三)请同学分析得出结论,并通过其它实例加以巩固。 (四)引导同学从力和运动的关系角度从理论上加以分析。 [方案二] (一)由物体受到合外力方向与初速度共线时,物体做直线运动引入课题,教师提出问题请同学思考:如果合外力垂直于速度方向,速度的大小会发生改变吗?进而将问题展开,运用力的分解知识,引导学生认识力改变运动状态的两种特殊情况: 1、当力与速度共线时,力会改变速度的大小; 2、力与速度方向垂直时,力只会改变速度方向。 最后归结到:当力与初速度成角度时,物体只能做曲线运动,确定物体做哪一种运动的依据是合外力与初速度的关系。 (二)通过演示实验加以验证,通过举生活实例加以巩固: 展示课件三,人造卫星做曲线运动,让学生进一步认识曲线运动的相关知识。高中物理教案创新篇3
高中物理教案创新篇4
高中物理教案创新篇5
高中物理教案创新篇6
高中物理教案创新篇7
高中物理教案创新篇8
高中物理教案创新篇9
高中物理教案创新篇10
高中物理教案创新篇11
高中物理教案创新篇12
高中物理教案创新篇13
高中物理教案创新篇14
高中物理教案创新篇15