高中物理教案
教案包括教材简析和学生分析、教学目的、重难点、教学准备、教学过程及练习设计等。这里给大家分享高中物理教案,方便大家写高中物理教案时参考。
高中物理教案篇1
教学目标:
1.知道曲线运动是一种变速运动,它在某点的瞬时速度方向在曲线这一点的切线上。
2.理解物体做曲线运动的条件是所受合外力与初速度不在同一直线上。
3.培养学生观察实验和分析推理的能力。
4.激发学生学习兴趣,培养学生探究物理问题的习惯。
教学重难点:
1.重点:曲线运动的速度方向;物体做曲线运动的条件。
2.难点:物体做曲线运动的条件。
教学过程:
复习提问
前边几章我们研究了直线运动,同学们思考以下两个问题:
1.什么是直线运动?
2.物体做直线运动的条件是什么?在实际生活中,普遍发生的是曲线运动,那么什么是曲线运动?本节课我们就来学习这个问题。
新课学习
展示图片:卫星绕地球的运动人造地球转弯的火车
这几幅图中物体的运动轨迹有何特点?
(轨迹是曲线)
请大家举出一些生活中的曲线运动的例子
一、曲线运动的速度方向:
1思考:曲线运动与直线运动除了运动轨迹不同,还有什么区别?2.观察课本P32图6.1-1和图6.1-2
思考:砂轮打磨下来的炽热微粒。飞出去的链球,它们沿着什么方向?
3.讨论或猜测,曲线运动的速度方向应该怎样?
4.是不是象我们大家猜测的这样呢?让我们来看一个演示实验:教师演示课本P32演示实验验证学生的猜测,从而得到结论:
曲线运动速度的方向:切线方向
5.什么是曲线的切线呢?
结合课本P33图6.1-4阅读课本P33前两段加深曲线的切线的理解。
6.阅读课本P33第四段,试分析推理曲线运动是匀速运动还是变速运动?
速度是________(矢量.标量),所以只要速度方向变化,速度矢量就发生了________,也就具有________,因此曲线运动是________。
二、物体做曲线运动的条件:
1.提出问题:既然曲线运动是变速运动,那么由
可知具有加速度,又由可知受力不为零,那到底有什么样的特点呢?
2.实验探究
器材:光滑玻璃板小钢球磁铁
演示:小钢球在水平玻璃板上做匀速直线运动。
问题:给你一磁铁,如何使小钢球①加速仍做直线运动。②减速仍做直线运动。③做曲线运动。制定你的实验方案。
实验验证:请两名同学利用他们的方案来进行验证。演示给全体学生。
分析论证:
直线加速:的方向与的方向相同
②直线减速:的方向与的方向相反
③曲线运动:的`方向与成一夹角
结论:当物体所受的合力的方向与它的速度方向在同一直线时,物体做直线运动;当物体所受合力的方向与它的速度方向不在同一直线上时,物体就做曲线运动
3.物体做曲线运动的条件:当物体所受合力的方向与它的速度方向不在同一直线上时4.实践应用:
飞机扔炸弹,分析为什么炸弹做曲线运动?
讨论题:结合本节所学与前面知识体系来分类归纳力和运动的关系。
三、小结
同学们根据自身特点,各自进行。曲线运动是轨迹为的运动.
一、曲线运动的速度方向
1.曲线运动的方向是的
2.质点在某一点(或某一时刻)的速度方向是在曲线上这一点的
3.曲线运动一定是运动
二、物体做曲线运动的条件:
运动物体所受合外力的方向跟它的速度方向上。
高中物理教案篇2
教学目标:
(1)理解简谐振动的判断,掌握全过程的特点;
(2)理解简谐振动方程的物理含义与应用;
能力目标:
(1)培养对周期性物理现象观察、分析;
(2)训练对物理情景的理解记忆;
教学过程:
(一)、简谐振动的周期性:周期性的往复运动
(1)一次全振动过程:基本单元
平衡位置O:周期性的往复运动的对称中心位置
振幅A:振动过程振子距离平衡位置的最大距离
(2)全振动过程描述:
周期T:完成基本运动单元所需时间
T=2π
频率f:1秒内完成基本运动单元的次数
T=
位移S:以平衡位置O为位移0点,在全振动过程中始终从平衡位置O点指向振子所在位置速度V:物体运动方向
(二)、简谐振动的判断:振动过程所受回复力为线性回复力
(F=-KX)K:简谐常量
X:振动位移简谐振动过程机械能守恒:KA2=KX2+mV2=mVo2
(三)、简谐振动方程:
等效投影:匀速圆周运动(角速度ω=π)
位移方程:X=Asinωt
速度方程:V=Vocosωt
加速度:a=sinωt
线性回复力:F=KAsinωt
上述简谐振动物理参量方程反映振动过程的规律性
简谐振动物理参量随时间变化关系为正余弦图形
课堂思考题:(1)简谐振动与一般周期性运动的区别与联系是什么?
(2)如何准确描述周期性简谐振动?
(3)你知道的物理等效性观点应用还有哪些?
(四)、典型问题:
(1)简谐振动全过程的特点理解类
例题1、一弹簧振子,在振动过程中每次通过同一位置时,保持相同的物理量有()
A速度B加速度C动量D动能
例题2、一弹簧振子作简谐振动,周期为T,()
A.若t时刻和(t+Δt)时刻振子运动位移的大小相等、方向相同,则Δt一定等于T的整数倍;
B.若t时刻和(t+Δt)时刻振子运动速度的大小相等、方向相反;
C.若Δt=T,则在t时刻和(t+Δt)时刻振子运动加速度一定相等;
D.若Δt=T/2,则在t时刻和(t+Δt)时刻弹簧的长度一定相等
同步练习
练习1、一平台沿竖直方向作简谐运动,一物体置于振动平台上随台一起运动.当振动平台处于什么位置时,物体对台面的正压力最小
A.当振动平台运动到最低点
B.当振动平台运动到最高点时
C.当振动平台向下运动过振动中心点时
D.当振动平台向上运动过振动中心点时
练习2、水平方向做简谐振动的弹簧振子其周期为T,则:
A、若在时间Δt内,弹力对振子做功为零,则Δt一定是的整数倍
B、若在时间Δt内,弹力对振子做功为零,则Δt可能小于
C、若在时间Δt内,弹力对振子冲量为零,则Δt一定是T的整数倍
D、若在时间Δt内,弹力对振子冲量为零,则Δt可能小于
练习3、一个弹簧悬挂一个小球,当弹簧伸长使小球在位置时处于平衡状态,现在将小球向下拉动一段距离后释放,小球在竖直方向上做简谐振动,则:
A、小球运动到位置O时,回复力为零;
B、当弹簧恢复到原长时,小球的速度最大;
C、当小球运动到最高点时,弹簧一定被压缩;
D、在运动过程中,弹簧的最大弹力大于小球的重力;
(2)简谐振动的判断证明
例题、在弹簧下端悬挂一个重物,弹簧的劲度为k,重物的质量为m。重物在平衡位置时,弹簧的弹力与重力平衡,重物停在平衡位置,让重物在竖直方向上离开平衡位置,放开手,重物以平衡位置为中心上下振动,请分析说明是否为简谐振动,振动的.周期与何因素有关?
解析:当重物在平衡位置时,假设弹簧此时伸长了x0,
根据胡克定律:F=kx由平衡关系得:mg=kx0
确定平衡位置为位移的起点,当重物振动到任意位置时,此时弹簧的形变量x也是重物该时刻的位移,此时弹力F1=kx
由受力分析,根据牛顿第二定律F=Ma得:F1–mg=ma
由振动过程中回复力概念得:F回=F1–mg联立(1)、(3)得:F回=kx-kx0=k(x-x0)
由此可得振动过程所受回复力是线性回复力即回复力大小与重物运动位移大小成正比,其方向相反,所以是简谐振动。
由(2)得:a=-(x-x0),结合圆周运动投影关系式:a=-ω2(x-x0)得:ω2=
由ω=π得:T=2π此式说明该振动过程的周期只与重物质量的平方根成正比、跟弹簧的劲度的平方根成反比,跟振动幅度无关。
同步练习:
用密度计测量液体的密度,密度计竖直地浮在液体中。如果用手轻轻向下压密度计后,放开手,它将沿竖直方向上下振动起来。试讨论密度计的振动是简谐振动吗?其振动的周期与哪些因素有关?
(3)简谐振动方程推导与应用
例题:做简谐振动的小球,速度的最大值vm=0.1m/s,振幅A=0.2m。若从小球具有正方向的速度最大值开始计时,求:(1)振动的周期(2)加速度的最大值(3)振动的表达式
解:根据简谐振动过程机械能守恒得:KA2=mVm2
=Vm2/A2=0.25由T=2π=4π
a=-A=0.05(m/s2)由ω=π=0.5由t=0,速度最大,位移为0则
Acosφ=0v=-ωAsinφ则φ=-π/2即有x=0.2cos(0.5t–0.5π)
高中物理教案篇3
一、设计实验
让学生阐述自己进行实验的初步构想。
①器材。
②电路。
③操作。
对学生的实验方法提出异议,促使学生思索实验的改进。
锁定实验方案,板书合理的器材选择、电路图、数据记录方法、操作过程。学生按照学案的过程,补充实验器材,画电路图,并且简单陈述自己的实验操作过程。
学生根据老师提出的异议,讨论实验的改进方案,并修正器材、电路图、操作方法。设计实验部分是一个难点,教师要进行引导,不要轻易否定学生的想法,在设计过程中教师可以提出启发性的问题,让学生自我发现问题。
二、进行实验
教师巡视指导,帮助困难学生。学生以小组为单位进行实验。
实验数据之间的关系非常明显,要让学生从分析数据的过程中感受欧姆定律发现的逻辑过程,传授学生控制变量法。
三、分析论证
传授学生观察数据的方法,投影问题,让学生通过观察数据找到问题的答案,最终得到结论。学生根据教师投影出的问题观察数据,在回答问题的过程中发现规律。
四、评估交流
让学生讨论在实验中遇到的问题以及自己对问题的看法和解决办法,教师引领回答几个大家普遍遇到的问题。学生小组内讨论。
使学生意识到共同讨论可以发现自己的不足,借鉴别人的经验。
反思总结、当堂检测
扩展记录表格,让学生补充。
投影一道与生活有关的题目。学生补充表格。
学生在作业本上完成。这个练习很简单,但能使学生沿着前面的思维惯性走下去,强化学生对欧姆定律的认识。
这一道练习主要是让学生了解欧姆定律在生活中的应用。
课堂小结
让学生归纳这节课学到的知识,回顾实验的设计和操作过程,既强化了知识又锻炼了学生归纳整理知识的能力。学生归纳。
让学生意识到课堂回顾的重要性,并培养学生归纳整理的能力,对提高学生的自学能力有重要的作用。
五、教学反思
学生对实验方法的掌握既是重点也是难点,这个实验难度比较大,主要在实验的设计、数据的记录以及数据的分析方面。由于实验的难度比较大,学生出现错误的可能性也比较大,所以实验的评估和交流也比较重要。这些方面都需要教师的引导和协助,所以这次课采用启发式综合的教学方法。
初中物理新课程强调实现学生学习方式的根本变革,转变学生学习中这种被动的学习态度,提倡和发展多样化学习方式,特别是提倡自主、探究与合作的学习方式,让学生成为学习的主人,使学生的主体意识、能动性、独立性和创造性不断得到发展,发展学生的创新意识和实践能力。
一、要充分发挥学生的主体作用。
教师在教学中就要敢于“放”,让学生动脑、动手、动口、主动积极的学,要充分相信学生的能力。但是,敢“放”并不意味着放任自流,而是科学的引导学生自觉的完成探究活动。当学生在探究中遇到困难时,教师要予以指导。当学生的探究方向偏离探究目标时,教师也要予以指导。作为一名物理教师,如何紧跟时代的步伐,做新课程改革的领跑人呢?这对物理教师素质提出了更高的要求,向传统的教学观、教师观提出了挑战,迫切呼唤教学观念的转变和教师角色的再定位。
二,注重学法指导。
中学阶段形成物理概念,一是在大量的物理现象的基础上归纳、总结出来的;其次是在已有的概念、规律的基础上通过演绎出来的。所以,在课堂教学中教师应该改变以往那种讲解知识为主的传授者的角色,应努力成为一个善于倾听学生想法的聆听者。而在教学过程中,要想改变以往那种以教师为中心的传统观念就必须加强学生在教学这一师生双边活动中的主体参与。
三、教学方式形式多样,恰当运用现代化的教学手段,提高教学效率。
科技的发展,为新时代的教育提供了现代化的教学平台,为“一支粉笔,一张嘴,一块黑板加墨水”的传统教学模式注入了新鲜的血液。在新形势下,教师也要对自身提出更高的要求,提高教师的科学素养和教学技能,提高自己的计算机水平,特别是加强一些常用教学软件的学习和使用是十分必要的。
最后,在教学过程中应有意向学生渗透物理学的常用研究方法。例如理想实验法、控制变量法、转换法、等效替代法、以及模型法等。学生如果对物理问题的研究方法有了一定的了解,将对物理知识领会的更加深刻,同时研究物理问题的思维方法,增强了学习物理的能力。
思考。
高中物理教案篇4
一、教学目标
1.物理知识方面:
(1)理解匀速圆周运动是变速运动;
(2)掌握匀速圆周运动的线速度、角速度、周期的物理意义及它们间的数量关系;
(3)初步掌握向心力概念及计算公式。
2.通过匀速圆周运动、向心力概念的建立过程,培养学生观察能力、抽象概括和归纳推理能力。
3.渗透科学方法的教育。
二、重点、难点分析
向心力概念的建立及计算公式的得出是教学重点,也是难点。通过生活实例及实验加强感知,突破难点。
三、教具
1.转台、小伞;
2.细绳一端系一个小球(学生两人一组);
3.向心力演示器。
四、主要教学过程
(一)引入新课
演示:将一粉笔头分别沿竖直向下、水平方向、斜向上抛出,观察运动轨迹。
复习提问:粉笔头做直线运动、曲线运动的条件是什么?
启发学生回答:速度方向与力的方向在同一条直线上,物体做直线运动;不在同一直线上,做曲线运动。
进一步提问:在曲线运动中,有一种特殊的运动形式,物体运动的轨迹是一个圆周或一段圆弧(用单摆演示),称为圆周运动。请同学们列举实例。
(学生举例教师补充)
电扇、风车等转动时,上面各个点运动的轨迹是圆大到宇宙天体如月球绕地球的运动,小到微观世界电子绕原子核的运动,都可看做圆周运动,它是一种常见的运动形式。
提出问题:你在跑400米过弯道时身体为何要向弯道内侧微微倾斜?铁路和高速公路的转弯处以及赛车场的环形车道,为什么路面总是外侧高内侧低?可见,圆周运动知识在实际中是很有用的。
引入:物理中,研究问题的基本方法是从最简单的情况开始。
板书:匀速圆周运动
(二)教学过程设计
思考:什么样的圆周运动最简单?
引导学生回答:物体运动快慢不变。
板书:1.匀速圆周运动
物体在相等的时间里通过的圆弧长相等,如机械钟表针尖的运动。
思考:匀速周圆运动的一个显著特点是具有周期性。用什么物理量可以描述匀速圆周运动的快慢?
(学生自由发言)
板书:2.描述匀速圆周运动快慢的物理量恒量。
当t很短,s很短,即为某一时刻的瞬时速度。线速度其实就是物体做圆周运动的瞬时速度。当物体做匀速圆周运动时,各个时刻线速度大小相同,而方向时刻在改变。那么,线速度方向有何特点呢?
演示:水淋在小伞上,同时摇动转台。观察:水滴沿切线方向飞出。
思考:说明什么?
师生分析:飞出的水滴在离开伞的瞬间,由于惯性要保持原来的速度方向,因而表明了切线方向即为此时刻线速度的方向。
板书:方向:沿着圆周各点的切线方向。如图3。单位:rad/s。
(3)周期:质点沿圆周运动一周所用的时间。如:地球公转周期约365天,钟表秒针周期60s等,周期长,表示运动慢。(角速度、周期可由学生自己说出并看书完成)
板书:(师生共同完成)
思考:物体做匀速圆周运动时,v、ω、T是否改变?(ω、T不变,v大小不变、方向变。)讲述:匀速周周运动是匀速率圆周运动的简称,它是一种变速运动。
提出问题:匀速圆周运动是一种曲线运动,由物体做曲线运动的条件可知,物体必定受到一个与它的速度方向不在同一条直线上的合外力作用,这个合外力的方向有何特点呢?
学生小实验(两人一组):
线的一端系一小球,使小球在水平面内做匀速圆周运动。小球质量很小(可用橡皮塞等替代),甩动时线速度尽量大,小球重力与拉力相比可忽略,以保证拉线近似在水平方向。
观察并思考:
①小球受力?
②线的拉力方向有何特点?
③一旦线断或松手,结果如何?
(提问学生后板书并图示)
概括:要使物体做匀速圆周运动,必须使物体受到与速度方向垂直而指向圆心的力作用,故名向心力。
板书:3.向心力:物体做匀速圆周运动所需要的力。
提出问题:向心力的大小跟什么因素有关?
高中物理教案篇5
一、教学目标
1.物理知识方面的要求:
(1)掌握牛顿第二定律的文字内容和数学公式;
(2)理解公式中各物理量的意义及相互关系;
(3)知道在国际单位制中力的单位“牛顿”是怎样定义的。
2.以实验为基础,通过观察、测量、归纳得到物体的.加速度跟它的质量及所受外力的关系,进而总结出牛顿第二定律。培养学生的实验能力、概括能力和分析推理能力。
3.渗透物理学研究方法的教育。实验采用控制变量的方法对物体的a、F、m三个物理量进行研究;运用列表法处理数据,使学生知道结论是如何得出的;认识到由实验归纳总结物理规律是物理学研究的重要方法。
二、重点、难点分析
1.本节的重点内容是做好演示实验。让学生观察并读取数据,从而有说服力地归纳出a与F和m的关系,即可顺理成章地得出牛顿第二定律的基本关系式。因此,熟练且准确地操作实验就是本课的关键点。同时,也只有讲清实验装置、原理和圆满地完成实验才能使学生体会到物理学研究的方法,才能达到掌握方法、提高素质的目标。
2.牛顿第二定律的数学表达式简单完美,记住并不难。但要全面、深入理解该定律中各物理量的意义和相互关联;牢固掌握定律的物理意义和广泛的应用前景,对学生来说是较困难的。这一难点在本课中可通过定律的辨析和有针对性的巩固练习加以深化和突破,另外,还有待在后续课程的学习和应用过程中去体会和理解。
三、教具
文件大小:48K文件格式:doc下载地址:击本地免费下载地址
高中物理教案篇6
课堂教学设计
章节名称§4.1牛顿第一定律学科物理授课班级授课时数1设计者所属学校本节(课)教学内容分析?本节是在全章导入的基础上进行新课教学的。牛顿第一定律是牛顿定律的基石,正是因为它破除了长达近两千年的亚里士多德的错误,改变了人类的自然观和世界观,才导致牛顿第二定律得出。与此同时,它本身还包含着力、惯性、和参考系这些极富成果的科学概念,成为物理学理论的支柱和基石。本节课从力和运动状态改变之间的关系引入课题,通过随堂实验并结合学生已学过的伽利略理想实验,由此分析出力不是维持物体速度的原因,而是改变物体速度的原因。按着人类对知识的认识顺序,从亚里士多德的观点——伽利略的研究——笛卡尔的补充,然后引入了牛顿第一定律,并在此基础上引入了惯性概念,同时讨论了决定惯性大小的因素。这节课是初、高中知识相衔接的一节课程,学生已经了解了牛顿第一定律的基本内容,所以在教学设计上应以教材中有关“力是运动的原因还是改变运动的原因”这一问题认识的发展历史为线索,以科学思想、科学方法教育与思维能力培养为主要目标。教学的侧重点应放在理解人类认识“运动和力”的关系研究、思考、推理过程,学习科学研究中常用的理想实验方法。在牛顿第一定律内容的学习上,注重知识的理解及与生活实际的联系。为发挥学生学习的自主性,思维的积极性,本课采取学生自主探究模式组织教学。依据标准课程标准:了解亚里士多德关于力与运动的主要观点和研究方法。
了解伽利略的实验研究工作,认识伽利略有关实验的科学思想方法
教育技术标准:通过史实,初步了解近代实验科学产生的背景,认识实验对物理学发展的推动作用学情分析
?本节课所述内容在初中课本上已涉及到,初中课本中用到的标题是惯性定律,所以学生已有一定的基础,关键是如何让学生加深对牛顿第一定律的理解。对力和运动的关系,从日常经验出发,人们往往会产生错误的认识,所以使学生建立起运动改变的原因在于物体间的相互作用力的观点,不是轻而易举的事情。在对惯性的学习中,这仍是学生难于理解的问题。许多学生把物体具有保持匀速直线运动和静止状态的性质与物体在这种状态下的特点混为一谈。本节(课)教学目标知识和技能:⑴理解牛顿第一定律的内容和意义,了解伽利略理想实验的推理过程.
⑵知道什么是惯性,会正确解释有关惯性的现象。
过程和方法:⑴通过斜面小车实验,培养学生的观察能力。
⑵通过实验分析,初步培养学生科学的思维方法
情感态度和价值观:⑴通过科学史的简介,对学生进行严谨的科学态度教育.
⑵通过伽利略的理想实验,给学生以科学方法论的教育.知识点学习目标描述知识点
编号学习
目标具体描述语句4.1-1理解理解力和运动的关系,知道物体的运动不需要力来维持.4.1-2掌握能清楚地描述伽利略关于力与运动的思想观念4.1-3掌握能准确表述牛顿第一定律(惯性定律)及理解其内在涵义4.1-4掌握理解惯性的概念,知道物体的质量是其惯性大小的量度教学重点和难点项目内?容解决措施教学重点通过对伽利略理想实验的分析得出牛顿第一定律。
?主要通过动手实验和教师分析引导学生学习教学难点1.明确“力是维持物体运动的原因”的观点是错误的。
2.利略理想实验的推理过程
?通过实验演示,多媒体课件,视屏,动手实验让学生逐步理解伽利略的推理过程及其观点教学媒体(资源)选择知识点
编号学习
目标媒体
类型媒体内容要点教学
作用使用
方式所?得?结?论占用
时间媒体
来源4.1-1理解课件历史的回顾B,DA力是维持物体运动的原因是错误的5分钟自制4.1-2掌握课件,模型,演示理想伽利略实验DB物体运动不需要力来维持15分钟网上下载4.1-3掌握课件,视频牛顿第一定律D,JF是实验定律,有两个方面的深层涵义10分钟自制4.1-4掌握课件,图片,惯性与质量G,KD物体的惯性大小只与质量有关10分钟网上下载①媒体在教学中的作用分为:A.提供事实,建立经验;B.创设情境,引发动机;C.举例验证,建立概念;D.提供示范,正确操作;E.呈现过程,形成表象;F.演绎原理,启发思维;G.设难置疑,引起思辨;H.展示事例,开阔视野;I.欣赏审美,陶冶情操;J.归纳总结,复习巩固;K.自定义。
②媒体的使用方式包括:A.设疑—播放—讲解;B.设疑—播放—讨论;C.讲解—播放—概括;D.讲解—播放—举例;E.播放—提问—讲解;F.播放—讨论—总结;G.边播放、边讲解;H.?边播放、边议论;I.学习者自己操作媒体进行学习;J.自定义。板书设计§4.1牛顿第一定律
一、历史的回顾
1.亚里士多德的观点
2.伽利略的观点
3.笛卡儿的观点
二、牛顿物理学的基石-----惯性定律
1.内容:?一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态。
2.说明:
(1)物体在不受力时,总保持匀速直线运动状态或静止状态
(2)物体运动状态的改变需要外力
3.惯性:物体具有保持原来匀速直线运动状态或静止状态的性质,这种性质叫做惯性
三、惯性与质量
1、定义:一切物体都具有保持原来静止状态或匀速直线运动状态不变的性质,叫惯性。
2、惯性是一切物体所固有的一种属性,一切物体在任何情况下都具有惯性
3、惯性只与质量有关,质量大的物体惯性大。
四、课堂练习
五、小节
??
关于教学策略选择的阐述(1)牛顿第一定律:第一阶段:采用“矛盾冲突法”,尽力展示生活体验、亚里士多德观点与伽利略思想实验矛盾冲突,激发学生探究欲望。第二阶段:实验探究。这一阶段要肯花时间,教师仅起一个指导者的作用,尽量让学生自己分析、交流、推论并表述出牛顿第一定律内容。第三阶段:主要以教师讲述的形式,指明牛顿第一定律的重要性、理想性,并通过对定律内容的理解指导,帮助学生认识力的作用在运动中只是“可以改变物体的运动状态”。
(2)惯性:除了课本上实验,还安排学生做一做运动物体由于惯性而表现出来的现象,以突出惯性“维持其原有运动状态”的实质。“安全带的作用”由教师利用多媒体系统或制仿真动态投影片予以展示。劳动中利用惯性的例子,如高空滑雪,对惯性的利害了解,以及认识到惯性是物体的固有属性,只与物体的质量有关,与物体的运动状态无关。教学中采用实例法。
教具和学具教具:计算机多媒体教学系统、CAI课件、有关网站下载图片资料等。学具:生和熟的鸡蛋,斜面、木板、透明胶布、棉布、毛巾、玻璃板、小车、刻度尺、盛有大半杯水的烧怀等。课堂教学过程结构设计教学
环节教师的活动学生的活动设计意图创设情境引入
新课(展示生活实例,创设情境,提出问题)
1.教师用生熟两个鸡蛋在光滑桌面上转动,并迅速按住鸡蛋再放开,要求学生观察现象并得出结果。
2.要求学生利用桌上的木块感受:轻推木块,木块就运动,撤去推力,木块就停止运动;
教师提问:物体的运动是不是一定需要力??
学生观察,动手实验并思考两种鸡蛋产生现象的原因。
学生动手实验:用力推木块,木块才运动,撤去力,木块就会停止运动思考原因。
(预测学生可能的回答:)
1.同意。生活中的很多例子都说明没有力就没有运动;
2.不同意。问题是教学活动的中心,“教育的真正目的是让人不断提出问题”。建构主义教学论认为复杂的学习领域应针对学习者先前的经验和兴趣,只有这样,才能激发学习者的积极性,学习才可能是主动的。本节课先从学生的生活和身边事例的实际情景出发,让学生通过实验观察发现物理现象,从生活体验和现象中得出自己的观点,并提出问题:到底谁的观点更准确。从而引出本节课所要解决的问题:力和运动的关系。培养学生从实验观察中发现问题、提出问题的能力,并能对问题进行表达的能力。新课
教学一、?历史的回顾
介绍亚里士多德对力与运动的观点
(制定计划与设计实验)
让学生利用桌子上的器材,自主设计实验方案,分别研究,验证自己的观点。考虑从两方面入手:⑴、力推物动,力撤物停。
⑵、力撤物不停。
播放冰壶视频
(进行实验与收集证据)
教师巡视并进行指导(先做完的组可先讨论你的实验结果,也可参观其他组
请小组代表展示自己的实验记录,并说明根据自己的实验结果你能得到什么结论?
多媒体展示实验结果
激发矛盾:两个实验,两种现象
引导学生:抓住矛盾,进行对比分析,纠正部分学生的错误认识。同时指出学生原有错误认识也是古希腊哲学家亚里士多德的观点:有力才有运动,力是维持运动的原因。
(分析与论证)
引导学生进行实验对比通过对比实验可以得出
结论:
木块或小车运动停下来的原因是摩擦力。
在此基础上进行逻辑推理,问:如果接触面非常光滑,摩擦很小,那运动的小球将会怎样?学生设计方案、选择器材、动手做实验
方案一:
(1)轻推木块,木块就运动,撤去推力,木块就停止运动
(2)用力猛推木块,撤去推力后,木块向前滑行一段距离后停下来;
(3)在木块下面垫上
几根铅笔(或者玻璃棒),用力推木块,当推力撤去后,木块向前滑行一段距离后停下来,而且比(2)中的滑得更远;
方案二:
⑴、轨道上铺毛巾,小车放在毛巾上,推它就动,不推就停。
⑵、撤去毛巾,让小车在轨道上,推一下小车,小车运动一段才停下来。
⑶、用小球代替小车,让它从同一高度滑下斜面,分别在毛巾、木板,玻璃三个水平接触面上运动
积极主动地做实验,合作完成实验并记录数据。
实验记录表:
学生代表分析实验结果,得出结论
实验次数
表面材料
阻力大小
滑行距离
毛巾
粗布条
光滑木版
推理想象
光滑表面
抓住矛盾、对比前后实验,明白摩擦力是关键,纠正错误认识:物体的运动一定需要力。
结合方案一、二中的第(2)步和第(3)步,对比发现,摩擦越小,滚动距离越远。
学生思考并发言。
高中物理教案篇7
【课前准备】
【课型】新授课【课时】2课时
【教学三维目标】
(一)知识与技能
1.理解电功的概念,知道电功是指电场力对自由电荷所做的功,理解电功的公式,能进行有关的计算.
2.理解电功率的概念和公式,能进行有关的计算.
3.知道电功率和热功率的区别和联系.
4.知道非纯电阻电路中电能与其他形式能转化关系,电功大于电热.
(二)过程与方法
通过有关实例,让学生理解电流做功的过程就是电能转化为其他形式能的过程.
(三)情感态度与价值观
通过学习进一步体会能量守恒定律的普遍性
【教学重点难点】
重点:电功和电热的计算
难点:电流做功的表达式的推导,纯电阻电路和非纯电阻电路在能量转化过程中的区别
【教学方法】理论、类比、探究、讨论、分析
【教学过程】
【复习引入】
【问题】用电器通电后,可以将电能转化成其他形式的能量,生活中常用的用电器,其能量的转化情况?
【回答】电灯把电能转化为内能和光能;电炉把电能转化为内能;电动机把电能转化为机械能;电解槽把电能转化为化学能。用电器把电能转化为其他形式能的过程,就是电流做功的过程。即电流做功的过程就是电能转化为其他形式能的过程,在转化过程中,遵循能量守恒,即有多少电能减少,就有多少其他形式的能增加。
【问题】用电器把电能转化成其他形式能的过程,就是电流做功的过程。电流做功的多少及电流做功的快慢与哪些因素有关呢?
5焦耳定律
一、电功和电功率
【展示】
【问题】如图所示,一段电路两端的电压为U,由于这段电路两端有电势差,电路中就有电场存在,电路中的自由电荷在电场力的作用下发生定向移动,形成电流I,在时间t内通过这段电路上任一横截面的电荷量q是多少?
【回答】在时间t内,通过这段电路上任一横截面的电荷量q=It。
【问题】这相当于在时间t内将这些电荷q由这段电路的一端移到另一端。在这个过程中,【问题】电场力做了多少功?
【回答】在这一过程中,电场力做的功W=qU=IUt
【问题】电流做功实质上是怎样的?
【回答】电流做功的实质是电路中电场力对定向移动的电荷做功。
【过渡】对于一段导体而言,两端电势差为U,把电荷q从一端搬至另一端,电场力的功W=qU,在导体中形成电流,且q=It(在时间间隔t内搬运的电荷量为q,则通过导体截面电荷量为q,I=q/t),所以电场力做功W=qU=IUt。在这段电路中电场力所做的功,也就是通常所说的电流所做的功,简称电功。
【问题】电功的定义式用语言如何表述?定义式?
【回答】电流在一段电路上所做的功等于这段电路两端的电压U,电路中的电流I和通电时间t三者的乘积。
定义式:W=UIT
【问题】电功的单位有哪些?
【回答】(1)在国际单位制中,电功的单位是焦耳,简称焦,符号是J.
(2)电功的常用单位有:千瓦时,俗称“度”,符号是kW·h.
【问题】1kW·h的物理意义是什么?1kW·h等于多少焦?
【回答】1kW·h表示功率为1kW的用电器正常工作1h所消耗的电能。
1kW·h=1000W×3600s=3.6×106J
【说明】使用电功的定义式计算时,要注意电压U的单位用V,电流I的单位用A,通电时间t的单位用s,求出的电功W的单位就是J。
【问题】在相同的时间里,电流通过不同用电器所做的功一般不同。在相同时间里,电流通过电力机车的电动机所做的功要显著大于通过电风扇的电动机所做的功。电流做功不仅有多少,而且还有快慢,如何描述电流做功的快慢呢?
高中物理教案篇8
滑轮
一、教学目的
1、通过本课教学,使学生认识滑轮,知道滑轮的作用及在实际中的应用。
2、培养学生的实验能力和分析综合能力。
3、使学生体会到自然事物是有规律的,只有掌握了自然规律,才能更好地利用自然和改造自然。
二、教学准备
分组实验材料:滑轮二个、铁架台、细绳、钩码、测力计。
演示材料:同分组材料一套。大滑轮一个、粗麻绳二根(组装动滑轮、拔河用)。挂图或幻灯片三张(旗杆上定滑轮图;吊车上定滑轮、动滑轮图;滑轮组示意图)。
三、教学过程
(一)教学引入
谈话:你知道旗杆上有个什么装置,能帮我们比较容易地把旗子升上去?
(二)学习新课
1、指导学生认识滑轮的构造及种类
(1)讲解:
安装在旗杆顶上的这种边缘有槽,能围绕轴转动的轮子叫滑轮。
(出示滑轮、讲解)
滑轮也是一种简单机械。(板书课题)
滑轮有二种,(出示滑轮组示意图)固定在支架上的滑轮叫定滑轮。
不固定被套在槽里的绳子拉着,与重物上下移动的滑轮叫动滑轮。
(2)提问,你还在什么地方看到过滑轮?
2、指导学生认识定滑轮的作用
(1)讨论:你认为旗杆顶上的定滑轮有什么作用?
(2)实验1(定滑轮不省力)。
①演示介绍实验装置及实验方法。
②学生分组实验(绳子两端各挂钩码)
③学生装汇报实验结果。(绳子两端各挂1个钩码,保持平衡)
④讨论:说明什么?(说明不省力,也不费力)
(3)讨论
谈话:既然定滑轮没有省力的作用,那么高高的旗杆顶上安装它必然会有其它作用,你知道什么?(分组讨论后汇报)向下用力,旗子向上升。工作方便。
(4)教师小结:
通过以上的实验和讨论,我们知道定滑轮虽然没有省力的作用,但它可以必变用力的方向,使工作方便。
3、指导学生认识动滑轮的作用
(1)讨论:动滑轮有什么作用?(教师希望学生能提出动滑轮工作不方便,动滑轮能省力。)
(2)演示实验(游戏:拔河)。
(在墙上固定绳子的一端,组装动滑轮让一名弱小同学,利用动滑轮作用与一名有力同学拔河,弱小同学胜。)
(去掉动滑轮装置拔河弱小同学败)
游戏后教师质疑:这是为什么呢?
(3)实验2(动滑轮省力)。
①分组测量提起一个钩码和一个滑轮时所用的力。
测量后学生汇报,教师板书记录下来。
②分组实验。(要求学生独立组装独立操作。)
③汇报实验结果,教师板书记录下来。
④讨论:通过以上研究你认为动滑轮有哪些作用?(动滑轮有省力的作用)
4、指导学生认识滑轮组的作用
(1)通过以上研究我们知道了定滑轮和动滑轮的作用(填出课本P48结论)。
(2)讨论:定滑轮、动滑轮各有什么优点?各有什么缺点?
怎样使用才能把两种滑轮的优点结合起来既省力又方便?
(3)分组实验:学生独立组装滑轮组实验。
(用钩码实验时教师要注意动滑
(4)教师小结:把定滑轮及动滑轮组合起来使用的装置叫滑轮组。滑轮组就可以发挥定滑轮和动滑轮各自的优点。
(学生填写P49结论)
(三)巩固
提问:吊车上都用了哪种滑轮?它有什么作用?(出示吊车图)
(四)布置作业
观察你的周围哪些地方应用了滑轮?
高中物理教案篇9
一、教学目标
1。知识目标
(1)掌握牛顿第二定律的文字资料和数学公式;
(2)理解公式中各物理量的好处及相互关系;
(3)明白在国际单位制中力的单位“牛顿”是怎样定义的。
2。潜力目标:
以实验为基础,透过观察、测量、归纳得到物体的加速度跟它的质量及所受外力的关系,进而总结出牛顿第二定律。培养学生的实验潜力、概括潜力和分析推理潜力。
3。方法目标
渗透物理学研究方法的教育。实验采用控制变量的方法对物体的a、F、m三个物理量进行研究;运用列表法处理数据,使学生明白结论是如何得出的;认识到由实验归纳总结物理规律是物理学研究的重要方法。
二、学法引导
1。以分组实验的方法,让学生带着问题去研究。
2。“控制变量法”是我们经常用来分析问题、解决问题的有效途径。
3。归纳总结,构成规律性认识。
三、重点?难点?疑点及解决办法
1。重点
师生协作,在完成实验基础上,讨论得出牛顿第二定律。并掌握牛顿第二定律的初步应用。
2。难点
物理公式在确定物理量的数量关系的同时也确定了物理量的因果及相互关系。
3。疑点
1)。从牛顿第二定律可知,无论怎样小的力都能够使物体产生加速度,但是当用力推一个停在地面上的较大的物体时,却推不动,这是什么原因呢?
2)。运用牛顿第二定律应注意的关键问题是什么?
4。解决办法
对实验分析、剖析、讲解例题及师生互动等方式加以解决。
四、教具学具准备
1。展示平台、多媒体背投。
2。带滑轮的长木板两块、小车两辆、细线、砝码盘、砝码、铁夹、直尺等
五、主要教学过程
一)引入新课
由牛顿第必须律可知,力是改变物体运动状态的原因。而物体运动状态的改变是物体运动速度发生变化,即加速度不为零。因而力又是产生加速度的原因,加速度与力有关。
由牛顿第必须律还可知:一切物体总持续静止或匀速直线运动状态,这种性质叫惯性。而质量是物体惯性大小的量度,因而加速度跟质量有关。
那么物体运动的加速度跟物体质量及受力之间存在什么样的关系?我们透过实验来探求。
二)教学过程设计
1。实验设计
(1)启发学生按如下思路得出实验方法:对于一个物体(使m不变),不受力时加速度为零→受力后加速度不为零→受力越大则加速度越大。
用同样的力(使F不变)作用于不一样物体→质量小的易被拉动→质量越小加速度越大。
就是说,在研究三个变量的关系时,要使其中一个量不变,即控制变量的方法。
(2)启发学生按如下思路得出实验原理:测定物体加速度的方法有多种,如利用打点计时器、分析纸带等,这些方法较精确但费时→寻找一种用其它物理量直观反应加速度大小的办法→由运动学公式S=1/2st2可知,在相同的时光内位移与加速度成正比
我们的实验就是由两个小车在相同时光内的位移来反映加速度大小跟力和质量的关系
2。实验装置
在图1中a、b、c三个位置加装光滑金属环以控制线绳位置不使脱落;另外透过环a将两绳合并在一齐可直接用手操作,以避免铁夹操作的困难。这样虽然增大了阻力,但只需使木板稍前倾平衡摩擦力即可。木板侧面的刻度用以读出位移大小。
3。实验过程
(1)加速度跟力的关系
使用两个相同的小车,满足m1=m2,在连小车前的绳端分别挂一个钩码和两个钩码。将二小车拉至同一齐点处,记下位置。放手后经一段时光使二小车同时停止,满足时光t相同。读出二小车的位移填入表1:(投影)
表1
M/K 第一次 第二次
0。2K F/N S/m F/N S/m
0。2K 0。2 0。3
0。2K 0。1 0。1
将挂一个钩码的小车不变,将挂两个钩码的小车前换为三个钩码,重复实验。
引导学生分析力的比值和位移的比值,透过比较可得,在误差允许的范围内,。
(2)加速度跟质量的关系
将小车1上加0。2kg砝码,使m1=2m2;二小车前面绳端都挂一个钩码,使F1=F2。将二小车拉至同一齐点处放开经一段时光使其同时停止,读出各小车位移记入表2:(投影)
表2
MF/N 第一次 第二次
0。1K M/K S/m F/N S/m
0。1K 0。4 0。6
0。1K 0。2 0。2
引导学生分析质量的比值和位移的比值,透过比较可得,在误差允许的范围内,
a1/a2=m2/m1 或 a∝
4。定律导出
成正比,跟物体的质量成反比,即牛顿第二定律的基本关系。写成数学
(2)上式可写为等式F=kma,式中k为比例常数。如果公式中的物理量选取适宜的单位,就能够使k=1,则公式更为简单。
在国际单位制中,力的单位是牛顿。牛顿这个单位就是根据牛顿第二定律来定义的:使质量是1kg的物体产生1m/s2的加速度的力为1N,即1N=1kg?m/s2。
可见,如果都用国际单位制中的单位,就能够使k=1,那么公式则简化为F=ma,这就是牛顿第二定律的数学公式。
(3)当物体受到几个力的作用时,牛顿第二定律也是正确的,但是这时F代表的是物体所受外力的合力。牛顿第二定律更一般的表述是:
物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。
数学公式是:F合=ma。
5。定律的理解
牛顿第二定律是由物体在恒力作用下做匀加速直线运动的情形下导出的,但由力的独立作用原理可推广到几个力作用的状况,以及应用于变力作用的某一瞬时。还应注意到定律表述的最后一句话,即加速度与合外力的方向关系,就是说,定律具有矢量性、瞬时性和独立性,所以掌握牛顿第二定律还要注意以下几点:
(1)定律中各物理量的好处及关系
F合是物体(研究对象)所受的合外力,m是研究对象的质量,如果研究对象是几个物体,则m为几个物体的质量和。a为研究对象在合力F合作用下产生的加速度;a与F合的方向一致。
(2)定律的物理好处
从定律可看到:一物体所受合外力恒定时,加速度也恒定不变,物体做匀变速直线运动;合外力随时光改变时,加速度也随时光改变;合外力为零时,加速度也为零,物体就处于静止或匀速直线运动状态。
牛顿第二定律以简单的数学形式证明了运动和力的关系。
6。例题
在光滑的水平桌面上,有一个质量为2K的物体,用两个互为1200的两个10N的水平方向上的力作用在物体上,求物体的加速度是多少?
(1)学生阅读例题
(2)解答:
如图所示,建立平面直角坐标系,把力F1和F2分别沿x轴和y轴的方向分解,F1的两个分力为:
F2的&39;两个分力为:
F1y和F2y大小相等,方向相反,相互抵消,F1x和F2x的方向相同,所以:
已知合力F合和质量m,据F合=ma,即可求得:
透过上方的例题,引导学生总结出用牛顿第二定律解题的一般步骤
1)选对象
2)分析力(画受力图)
3)建坐标
4)分解力
5)列方程
6)解联立(联立方程,求解结果)
7。总结、扩展:
1。学习用控制变量法研究问题,解决问题。
2。掌握牛顿第二定律及公式。牛顿第必须律确定了力的涵义,指出力是改变物体运动状态的原因,牛顿第二定律则描述出力是怎样改变物体运动状态的即力与物体加速度成正比,物体加速度方向与力的方向相同。
3。掌握牛顿第二定律的矢量性、同时性和独立性原理。
4。掌握运用牛顿第二定律解题的一般步骤。
高中物理教案篇10
一、教学目标
1.在学习机械能守恒定律的基础上,研究有重力、弹簧弹力以外其它力做功的情况,学习处理这类问题的方法。
2.对功和能及其关系的理解和认识是本章教学的重点内容,本节教学是本章教学内容的总结。通过本节教学使学生更加深入理解功和能的关系,明确物体机械能变化的规律,并能应用它处理有关问题。
3.通过本节教学,使学生能更加全面、深入认识功和能的关系,为学生今后能够运用功和能的观点分析热学、电学知识,为学生更好理解自然界中另一重要规律——能的转化和守恒定律打下基础。
二、重点、难点分析
1.重点是使学生认识和理解物体机械能变化的规律,掌握应用这一规律解决问题的方法。在此基础上,深入理解和认识功和能的关系。
2.本节教学实质是渗透功能原理的观点,在教学中不必出现功能原理的名称。功能原理内容与动能定理的区别和联系是本节教学的难点,要解决这一难点问题,必须使学生对“功是能量转化的量度”的认识,从笼统、肤浅地了解深入到十分明确认识“某种形式能的变化,用什么力做功去量度”。
3.对功、能概念及其关系的认识和理解,不仅是本节、本章教学的重点和难点,也是中学物理教学的重点和难点之一。通过本节教学应使学生认识到,在今后的学习中还将不断对上述问题作进一步的分析和认识。
三、教具
投影仪、投影片等。
四、主要教学过程
(一)引入新课
结合复习机械能守恒定律引入新课。
提出问题:
1.机械能守恒定律的内容及物体机械能守恒的条件各是什么?
评价学生回答后,教师进一步提问引导学生思考。
2.如果有重力、弹簧弹力以外其它力对物体做功,物体的机械能如何变化?物体机械能的变化和哪些力做功有关呢?物体机械能变化的规律是什么呢?
教师提出问题之后引起学生的注意,并不要求学生回答。在此基础上教师明确指出:
机械能守恒是有条件的。大量现象表明,许多物体的机械能是不守恒的。例如从车站开出的车辆、起飞或降落的飞机、打入木块的子弹等等。
分析上述物体机械能不守恒的原因:从车站开出的车辆机械能增加,是由于牵引力(重力、弹力以外的力)对车辆做正功;射入木块后子弹的机械能减少,是由于阻力对子弹做负功。
重力和弹力以外的其它力对物体做功和物体机械能变化有什么关系,是本节要研究的中心问题。
(二)教学过程设计
提出问题:下面我们根据已掌握的动能定理和有关机械能的知识,分析物体机械能变化的规律。
1.物体机械能的变化
问题:质量m的小滑块受平行斜面向上拉力F作用,沿斜面从高度h1上升到高度h2处,其速度由v1增大到v2,如图所示,分析此过程中滑块机械能的变化与各力做功的关系。
引导学生根据动能定理进一步分析、探讨小滑块机械能变化与做功的关系。归纳学生分析,明确:
选取斜面底端所在平面为参考平面。根据动能定理∑W=ΔEk,有
由几何关系,有sinθ•L=h2-h1
即FL-fL=E2-E1=ΔE
引导学生理解上式的物理意义。在学生回答的基础上教师明确指出:
(1)有重力、弹簧弹力以外的其它力对物体做功,是使物体机械能发生变化的原因;
(2)重力和弹簧弹力以外其它力对物体所做功的代数和,等于物体机械能的变化量。这是物体机械能变化所遵循的基本规律。
2.对物体机械能变化规律的进一步认识
(1)物体机械能变化规律可以用公式表示为W外=E2-E1或W外=ΔE
其中W外表示除重力、弹簧弹力以外其它力做功的代数和,E1、E2分别表示物体初、末状态的机械能,ΔE表示物体机械能变化量。
(2)对W外=E2-E1进一步分析可知:
(i)当W外>0时,E2>E1,物体机械能增加;当W外<0时,E2
(ii)若W外=0,则E2=E1,即物体机械能守恒。由此可以看出,W外=E2-E1是包含了机械能守恒定律在内的、更加普遍的功和能关系的表达式。
(3)重力、弹簧弹力以外其它力做功的过程,其实质是其它形式的能与机械能相互转化的过程。
例1.质量4.0×103kg的汽车开上一山坡。汽车沿山坡每前进100m,其高度升高2m。上坡时汽车速度为5m/s,沿山坡行驶500m后速度变为10m/s。已知车行驶中所受阻力大小是车重的0.01倍,试求:(1)此过程中汽车所受牵引力做功多少?(2)汽车所受平均牵引力多大?取g=10m/s2。本题要求用物体机械能变化规律求解。
引导学生思考与分析:
(1)如何依据W外=E2-E1求解本题?应用该规律求解问题时应注意哪些问题?
(2)用W外=E2-E1求解本题,与应用动能定理∑W=Ek2-Ek1有什么区别?
归纳学生分析的结果,教师明确给出例题求解的主要过程:
取汽车开始时所在位置为参考平面,应用物体机械能变化规律W外=E2-E1解题时,要着重分析清楚重力、弹力以外其它力对物体所做的功,以及此过程中物体机械能的变化。这既是应用此规律解题的基本要求,也是与应用动能定理解题的重要区别。
例2.将一个小物体以100J的初动能从地面竖直向上抛出。物体向上运动经过某一位置P时,它的动能减少了80J,此时其重力势能增加了60J。已知物体在运动中所受空气阻力大小不变,求小物体返回地面时动能多大?
引导学生分析思考:
(1)运动过程中(包括上升和下落),什么力对小物体做功?做正功还是做负功?能否知道这些力对物体所做功的比例关系?
(2)小物体动能、重力势能以及机械能变化的关系如何?每一种形式能量的变化,应该用什么力所做的功量度?
归纳学生分析的结果,教师明确指出:
(1)运动过程中重力和阻力对小物体做功。
(2)小物体动能变化用重力、阻力做功的代数和量度;重力势能的变化用重力做功量度;机械能的变化用阻力做功量度。
(3)由于重力和阻力大小不变,在某一过程中各力做功的比例关系可以通过相应能量的变化求出。
(4)根据物体的机械能E=Ek+Ep,可以知道经过P点时,物体动能变化量大小ΔEk=80J,机械能变化量大小ΔE=20J。
例题求解主要过程:
上升到点时,物体机械能损失量为
由于物体所受阻力大小不变,下落过程中物体损失的机械能与上升过程相同,因此下落返回地面时,物体的动能大小为
E′k=Ek0-2ΔE′=50J
本例题小结:
通过本例题分析,应该对功和能量变化有更具体的认识,同时应注意学习综合运用动能定理和物体机械能变化规律解决问题的方法。
思考题(留给学生课后练习):
(1)运动中物体所受阻力是其重力的几分之几?
(2)物体经过P点后还能上升多高?是前一段高度的几分之几?
五、课堂小结
本小结既是本节课的第3项内容,也是本章的小结。
3.功和能
(1)功和能是不同的物理量。能是表征物理运动状态的物理量,物体运动状态发生变化,物体运动形式发生变化,物体的能都相应随之变化;做功是使物体能量发生变化的一种方式,物体能量的变化可以用相应的力做功量度。
(2)力对物体做功使物体能量发生变化,不能理解为功变成能,而是通过力做功的过程,使物体之间发生能量的传递与转化。
(3)力做功可以使物体间发生能的传递与转化,但能的总量是保持不变的。自然界中,物体的能量在传递、转化过程中总是遵循能量守恒这一基本规律的。
六、说明
本节内容的处理应根据学生具体情况而定,学生基础较好,可介绍较多内容;学生基础较差,不一定要求应用物体机械能变化规律解题,只需对功和能关系有初步了解即可。
高中物理教案篇11
教学目标
一、知识目标
1、知道什么是反冲运动,能举出几个反冲运动的实例;
2、知道火箭的飞行原理和主要用途。
二、能力目标
1、结合实际例子,理解什么是反冲运动;
2、能结合动量守恒定律对反冲现象做出解释;
3、进一步提高运用动量守恒定律分析和解决实际问题的能力
三、德育目标
1、通过实验,分析得到什么是反冲运动,培养学生善于从实验中总结规律和热心科学研究的兴趣、勇于探索的品质。
2、通过介绍我国成功地研制和发射长征系列火箭的事实,结合我国古代对于火箭的发明和我国的现代火箭技术已跨入世界先进先烈,激发学生热爱社会主义的情感。
教学重点
1、知道什么是反冲。
2、应用动量守恒定律正确处理喷气式飞机、火箭一类问题。
教学难点
如何应用动量守恒定律分析、解决反冲运动。
教学方法
1、通过观察演示实验,总结归纳得到什么是反冲运动。
2、结合实例运用动量守恒定律解释反冲运动。
教学用具
反冲小车、玻璃棒、气球、酒精、反冲塑料瓶等
课时安排
1课时
教学步骤
导入新课
[演示]拿一个气球,给它充足气,然后松手,观察现象。
[学生描述现象]释放气球后,气球内的气体向后喷出,气球向相反的方向飞出。
[教师]在日常生活中,类似于气球这样的运动很多,本节课我们就来研究这种。
新课教学
(一)反冲运动火箭
1、教师分析气球所做的运动
给气球内吹足气,捏紧出气孔,此时气球和其中的气体作为一个整体处于静止状态。松开出气孔时,气球中的气体向后喷出,气体具有能量,此时气体和气球之间产生相互作用,气球就向前冲出。
2、学生举例:你能举出哪些物体的运动类似于气球所作的运动?
学生:节日燃放的礼花。喷气式飞机。反击式水轮机。火箭等做的运动。
3、同学们概括一下上述运动的特点,教师结合学生的叙述总结得到:
某个物体向某一方向高速喷射出大量的液体,气体或弹射出一个小物体,从而使物体本身获得一反向速度的现象,叫反冲运动
4、分析气球。火箭等所做的反冲运动,得到:
在反冲现象中,系统所受的合外力一般不为零;
但是反冲运动中如果属于内力远大于外力的情况,可以认为反冲运动中系统动量守恒。
(二)学生课堂用自己的装置演示反冲运动。
1、学生做准备:拿出自己的在课下所做的反冲运动演示装置。
2、学生代表介绍实验装置,并演示。
学生甲:
装置:在玻璃板上放一辆小车,小车上用透明胶带粘中一块浸有酒精的棉花。
实验做法:点燃浸有酒精的棉花,管中的酒精蒸气将橡皮塞冲出,同时看到小车沿相反方向运动。
学生乙:
装置:二个空摩丝瓶,在它们的底部用大号缝衣针各钻一个小洞,这样做成二个简易的火箭筒,在铁支架的立柱端装上顶轴,在放置臂的两侧各装一只箭筒,再把旋转系统放在顶轴上,往火箭筒内各注入约4mL的酒精,并在火箭筒下方的棉球上注入少量酒精。点燃酒精棉球,片刻火箭筒内的酒精蒸气从尾孔中喷出,并被点燃,这时可以看到火箭旋转起来。
学生丙:用可乐瓶做一个水火箭,方法是用一段吸管和透明胶带在瓶上固定一个导向管,瓶口塞一橡皮塞,在橡皮塞上钻一孔,在塞上固定一只自行车车胎上的进气阀门,并在气门芯内装上小橡皮管,在瓶中先注入约1/3体积的水,用橡皮塞把瓶口塞严,将尼龙线穿过可乐瓶上的导向管,使线的一端拴在门的上框上,另一端拴在板凳腿上,要使线拉直,将瓶的进气阀与打气筒相接,向筒内打气到一定程度时,瓶塞脱开,水从瓶口喷出,瓶向反方向飞去。
过渡引言:同学们通过自己设计的实验装置得到并演示了什么是反冲运动,那么反冲运动在实际生活中有什么应用呢?下边我们来探讨这个问题。
(三)反冲运动的应用和防止
1、学生阅读课文有关内容。
2、学生回答反冲运动应用和防止的实例。
学生:反冲有广泛的应用:灌溉喷水器、反击式水轮机、喷气式飞机、火箭等都是反冲的重要应用。
学生:用枪射击时,要用肩部抵住枪身,这是防止或减少反冲影响的实例。
3、用多媒体展示学生所举例子。
4、要求学生结合多媒体展示的物理情景对几个物理过程中反
冲的应用和防止做出解释说明:
①对于灌溉喷水器,
当水从弯管的喷嘴喷出时,弯管因反冲而旋转,可以自动地改变喷水的方向。
②对于反击式水轮机:当水从转轮的叶片中流出时,转轴由于反冲而旋转带动发电机发电。
③对于喷气式飞机和火箭,它们靠尾部喷出气流的反冲作用而获得很大的速度。
④用枪射击时,子弹向前飞去枪身向后发生反冲,枪身的反冲会影响射击的准确性,所以用步枪时我们要把枪身抵在肩部,以减少反冲的影响。
教师:通过我们对几个实例的分析,明确了反冲既有有利的一面,同时也有不利的一面,在看待事物时我们要学会用一分为二的观点。
我们知道:反冲现象的一个重要应用是火箭,下边我们一认识火箭:
(四)火箭:
1、演示:把一个废旧白炽灯泡敲碎取出里面的一根细玻璃管,往细玻璃管装由火柴刮下的药粉,把细管放在支架上,用火柴或其他办法给细管加热。
现象:当管内的药粉点燃时,生成的燃气从细口迅速喷出,细管便向相反方向飞去。教师讲述:上述装置就是火箭的原理模型。
2、多媒体演示古代火箭,现代火箭的用途及多级火箭的工作过程,同时学生边看边阅读课文。
3、用实物投影仪出示阅读思考题:
①介绍一下我国古代的火箭。?
②现代的火箭与古代火箭有什么相同和不同之处?
③现代火箭主要用途是什么?
④现代火箭为什么要采用多级结构?
4、学生解答上述问题:
①我国古代的火箭是这样的:
在箭上扎一个火药筒,火药筒的前端是封闭的,火药点燃后生成的燃气以很大速度向后喷出,火箭由于反冲而向前运动。
②现代火箭与古代火箭原理相同,都是利用反冲现象来工作的。
但现代火箭较古代火箭结构复杂得多,现代火箭主要由壳体和燃料两大部分组成,壳体是圆筒形的,前端是封闭的尖端,后端有尾喷管,燃料燃烧产生的高温高压燃气从尾喷管迅速喷出,火箭就向前飞去。
③现代火箭主要用来发射探测仪器、常规弹头或核弹头,人造卫星或宇宙飞船,即利用火箭作为运载工具。
④在现代技术条件下,一级火箭的最终速度还达不到发射人造卫星所需要的速度,发射卫星时要使用多级火箭。
用CAI课件展示多级火箭的工作过程:
多级火箭由章单级火箭组成,发射时先点燃第一级火箭,燃料用完工以后,空壳自动脱落,然后下一级火箭开始工作。
教师介绍:多级火箭能及时把空壳抛掉,使火箭的总质量减少,因而能够达到很高的温度,可用来完成洲际导弹,人造卫星、宇宙飞船等的发射工作,但火箭的级数不是越多越好,级数越多,构造越复杂,工作的可靠性越差,目前多级火箭一般都是三级火箭。
那么火箭在燃料燃尽时所能获得的最终速度与什么有关系呢?
5、出示下列问题:
火箭发射前的总质量为M、燃料燃尽后的质量为m,火箭燃气的喷射速度为v1,燃料燃尽后火箭的飞行速度v为多大?
[学生分析并解答]:
解:在火箭发射过程中,由于内力远大于外力,所以动量守恒。
发射前的总动量为0,发射后的总动量为(M-m)v-mv1(以火箭的速度方向为正方向)则:(M-m)v-mv1=0
师生分析得到:燃料燃尽时火箭获得的最终速度由喷气速度及质量比M/m决定。
巩固训练水平方向射击的大炮,炮身重450kg,炮弹射击速度是450m/s,射击后炮身后退的距离是45cm,则炮受地面的平均阻力是多大?
小结
1、当物体的一部分以一定的速度离开物体时,剩余部分将获得一个反向冲量而向相反方向运动,这种向相反方向的运动,通常叫做反冲运动。
2、对于反冲运动,所遵循的规律是动是守恒定律,在具体的计算中必须严格按动量守恒定律的解题步骤来进行。
3、反冲运动不仅存在于宏观低速物体间,也存在于微观高速物体。
高中物理教案篇12
(一)内容及解析
1、内容:本节主要介绍欧姆定律的基本知识。
2、解析:这一节概念初中学过,要进行复习,讲述的重点内容是欧姆定律的应用。这一节内容关系到后面闭合电路的学习,要加强对这一节的练习。
(二)目标及其解析
1.知道电荷的定向运动形成电流,知道导体中产生电流的条件.
2.知道电流的概念和定义式,并能进行有关的计算.
3.知道什么是电阻及电阻的单位.
4.会用欧姆定律并能用来解决有关电路的问题.
思考题1.电流是如何形成的?
思考题2.为什么导体两端有电压,导体中就会产生电流呢?
思考题3.在I——U曲线中?,图线的斜率表示的物理意义是什么?
解析:导体内有自由移动的电荷,这些带电粒子做无规则移动时不会形成电流,电荷有正和负,因此规定正电荷定向运动的方向为电流方向。电阻对电流有阻碍作用。
(三)教学问题诊断分析
1、学生在学习知识过程中,初中知识没有学好或遗忘,在实际进行电路计算时容易出现问题。
2、在电子发生转移,使物体带正、负电荷结合到化学知识,学生对交叉学科的学习也存在着困难。
3、应用U—I图像分析具体问题时,不会把数学知识应用到物理问题上。
(四)、教学支持条件分析
为了加强学生对这部分知识的学习,帮助学生克服在学习过程中可能遇到的障碍,本节课要对初中电路进行复习,对化学的有关知识也要复习。
(五)、教学过程设计
1、教学基本流程
概述本章内容→本节学习要点→欧姆定律→图像讨论→练习、小结
2、教学情景
问题1形成电流的条件分别是什么?
设计意图:知道导体中存在电流的条件是两端存在电压
问题2电流的方向是如何规定的?
设计意图:电荷分为正、负电荷两种。
问题3电流的定义式是什么?单位有那些?它们之间有什么关系?
设计意图:知道电流的大小和单位
问题4公式I=U/R表示的物理意义是什么?
设计意图:知道欧姆定律的内容
问题5电阻的单位有那些?它们之间有什么关系?
设计意图:知道电阻的意义和单位
例题1.现有四对电阻,其中总电阻最小的一对是()
A.两个5Ω串联B.一个10Ω和一个5Ω并联
C.一个100Ω和一个0.1Ω并联D.一个2Ω和一个3Ω串联
点拨:根据两个电阻R1、R2并联总电阻的计算公式:
由这公式可知,并联后的总电阻小于R1,同例可证并联电阻也小于R2,即并联总电阻小于组成并联电路中的任一个电阻,所以答案C的总电阻比0.1Ω还要小,是本题所选之答案.
【变式】欧姆定律的表达式为,在电压U一定的条件下,导体的电阻R越小,通过导体的电流I越。两个电阻R1和R2(R1>R2)串联接入电路中,通过R1的电流(填“大于”、“等于”或“小于”)通过R2的电流.
例题2.如图所示的两导体AB、CD串联在某一电路中,若它们组成的材料和长度相同,粗细不同,则()
A、.AB的电阻小,通过BC的电流大
B.、AB的电阻大,通过BC的电流小
C、.AB的电阻小,通过它们的电流一样大
D.、AB的电阻大,通过它们的电流一样大
点拨:导体的电阻跟导体的材料、长度、粗细、温度有关,现在AB、CD材料相同、长度相同就是AB细,BC粗,所以AB的电阻大;另外AB和CD串联,串联电路里的电流处处相等,所以答案为:D
另外:根据欧姆定律可知AB两端的电压大于BC两端的电压
【变式】把甲、乙两段电阻线接在相同的电压下,甲线中的电流大于乙线中的电流,忽略温度的影响,下列判断中错误的是()
高中物理教案篇13
一、预习目标 预习“光的干涉”,初步了解产生光的明显干涉的条件以及出现明暗条纹的规律。 二、预习内容 1、请同学们回顾机械波的干涉现象以及产生的条件; 2、对机械波而言,振动加强的点表明该点是两列波的,该点的位移随时间(填变化或者不变化);振动减弱的点表明该点是两列波的; 3、不仅机械波能发生干涉,电磁波等一切波都能发生干涉,所以光若是一种波,则光也应该能发生干涉 4、相干光源是指: 5、光的干涉现象: 6、光的干涉条件是: 7、杨氏实验证明: 8、光屏上产生亮条纹的条件是 ;光屏上产生暗条纹的条件是 9、光的干涉现象在日常生活中很少见的,这是为什么? 三、提出疑惑 同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中 疑惑点疑惑内容 课内探究学案 一、学习目标 1.说出什么叫光的`干涉 2.说出产生明显干涉的条件 3.准确记忆产生明暗条纹的规律 学习重难点:产生明暗条纹规律的理解 二、学习过程 (一)光的干涉 探究一:回顾机械波的干涉 1.干涉条件: 2.干涉现象: 3.规律总结 探究二:光的干涉条件及出现明暗条纹的规律 1.光产生明显干涉的条件是什么? 2.产生明暗条纹时有何规律: (1)两列振动步调相同的光源: (2)两列振动步调正好相反的光源: (三)课堂小结 (四)当堂检测 1、在杨氏双缝实验中,如果(BD) A、用白光做光源,屏上将呈现黑白相间的条纹 B、用红光做光源,屏上将呈现红黑相间的条纹. C、用红光照射一条狭缝,用紫光照射另一条狭缝,屏上将呈现彩色条纹 D、用紫光作为光源,遮住其中一条狭缝,屏上将呈现间距不等的条纹. 2、20__年诺贝尔物理学家将授予对激光研究做处杰出贡献的三位科学家。如图所示是研究激光相干性的双缝干涉示意图,挡板上有两条狭缝S1、S2,由S1和S2发出的两列波到达屏上时会产生干涉条纹。已知入射激光波长为λ,屏上的P点到两缝S1和S2的距离相等,如果把P处的亮条纹记做0号亮 条纹,由P向上数与0号亮纹相邻的是1号亮纹,与 1号亮纹相邻的亮纹为2号亮纹,设P1处的亮纹恰好 是10号亮纹,直线S1P1的长度为r1,S2P1的长度为 r2,则r2-r1等于(B) A、5λB、10λ.C、20λD、40λ 课后练习与提高 1.在双缝干涉实验中,入射光的波长为λ,若双缝处两束光的振动情况恰好相同,在屏上距两缝波程差d1=地方出现明条纹;在屏上距两缝波程差d2= 地方出现暗条纹;若双缝处两束光的振动情况恰好相反,在屏上距两缝波程差d3=地方出现明条纹;在屏上距两缝波程差d4= 地方出现暗条纹。 2. 用白光光源进行双缝实验,若用一个纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光片遮盖另一条缝,则 (A)干涉条纹的宽度将发生改变. (B)产生红光和蓝光的两套彩色干涉条纹. (C)干涉条纹的亮度将发生改变. (D)不产生干涉条纹[D】 3.双缝干涉中屏幕E上的P点处是明条纹.若将缝S2盖住,并在S1S2连线的垂直平分面处放一高折射率介质反射面M,如图所示,则此时[A] (A)P点处仍为明条纹. (B)P点处为暗条纹. (C)不能确定P点处是明条纹还是暗条纹. (D)无干涉条纹. 教学目标 1、知识与技能 (1)了解地球表面物体的万有引力两个分力的大小关系,计算地球质量; (2)行星绕恒星运动、卫星的运动的共同点:万有引力作为行星、卫星圆周运动的向心力,会用万有引力定律计算天体的质量; (3)了解万有引力定律在天文学上有重要应用。 2.过程与方法: (1)培养学生根据数据分析找到事物的主要因素和次要因素的一般过程和方法; (2)培养学生根据事件的之间相似性采取类比方法分析新问题的能力与方法; (3)培养学生归纳总结建立模型的能力与方法。 3.情感态度与价值观: (1)培养学生认真严禁的科学态度和大胆探究的心理品质; (2)体会物理学规律的简洁性和普适性,领略物理学的优美。 教学重难点 教学重点 地球质量的计算、太阳等中心天体质量的计算。 教学难点 根据已有条件求中心天体的质量。 教学工具 多媒体、板书 教学过程 一、计算天体的质量 1.基本知识 (1)地球质量的计算 ①依据:地球表面的物体,若不考虑地球自转,物体的重力等于地球对物体的万有引力,即 ②结论: 只要知道g、R的值,就可计算出地球的质量. (2)太阳质量的计算 ①依据:质量为m的行星绕太阳做匀速圆周运动时,行星与太阳间的万有引力充当向心力,即 ②结论: 只要知道卫星绕行星运动的周期T和半径r,就可以计算出行星的质量. 2.思考判断 (1)地球表面的物体,重力就是物体所受的万有引力.(×) (2)绕行星匀速转动的卫星,万有引力提供向心力.(√) (3)利用地球绕太阳转动,可求地球的质量.(×) 3.探究交流 若已知月球绕地球转动的周期T和半径r,由此可以求出地球的质量吗?能否求出月球的质量呢? 【提示】能求出地球的质量.利用 为中心天体的质量.做圆周运动的月球的质量m在等式中已消掉,所以根据月球的周期T、公转半径r,无法计算月球的质量. 二、发现未知天体 1.基本知识 (1)海王星的发现 英国剑桥大学的学生亚当斯和法国年轻的天文学家勒维耶根据天王星的观测资料,利用万有引力定律计算出天王星外“新”行星的轨道.1846年9月23日,德国的加勒在勒维耶预言的位置附近发现了这颗行星——海王星. (2)其他天体的发现 近100年来,人们在海王星的轨道之外又发现了冥王星、阋神星等几个较大的天体. 2.思考判断 (1)海王星、冥王星的发现表明了万有引力理论在太阳系内的正确性.(√) (2)科学家在观测双星系统时,同样可以用万有引力定律来分析.(√) 3.探究交流 航天员翟志刚走出“神舟七号”飞船进行舱外活动时,要分析其运动状态,牛顿定律还适用吗? 【提示】适用.牛顿将牛顿定律与万有引力定律综合,成功分析了天体运动问题.牛顿定律对物体在地面上的运动以及天体的运动都是适用的. 三、天体质量和密度的计算 【问题导思】 1.求天体质量的思路是什么? 2.有了天体的质量,求密度还需什么物理量? 3.求天体质量常有哪些方法? 1.求天体质量的思路 绕中心天体运动的其他天体或卫星做匀速圆周运动,做圆周运动的天体(或卫星)的向心力等于它与中心天体的万有引力,利用此关系建立方程求中心天体的质量. 2.计算天体的质量 下面以地球质量的计算为例,介绍几种计算天体质量的方法: (1)若已知月球绕地球做匀速圆周运动的周期为T,半径为r,根据万有引力等于向心力,即 (2)若已知月球绕地球做匀速圆周运动的半径r和月球运行的线速度v,由于地球对月球的引力等于月球做匀速圆周运动的向心力,根据牛顿第二定律,得 (3)若已知月球运行的线速度v和运行周期T,由于地球对月球的引力等于月球做匀速圆周运动的向心力,根据牛顿第二定律,得 (4)若已知地球的半径R和地球表面的重力加速度g,根据物体的重力近似等于地球对物体的引力,得 解得地球质量为 3.计算天体的密度 若天体的半径为R,则天体的密度ρ 误区警示 1.计算天体质量的方法不仅适用于地球,也适用于其他任何星体.注意方法的拓展应用.明确计算出的是中心天体的质量. 2.要注意R、r的区分.R指中心天体的半径,r指行星或卫星的轨道半径.以地球为例,若绕近地轨道运行,则有R=r. 例:要计算地球的质量,除已知的一些常数外还需知道某些数据,现给出下列各组数据,可以计算出地球质量的有哪些?() A.已知地球半径R B.已知卫星绕地球做匀速圆周运动的轨道半径r和线速度v C.已知卫星绕地球做匀速圆周运动的线速度v和周期T D.已知地球公转的周期T′及运转半径r′ 【答案】ABC 归纳总结:求解天体质量的技巧 天体的质量计算是依据物体绕中心天体做匀速圆周运动,万有引力充当向心力,列出有关方程求解的,因此解题时首先应明确其轨道半径,再根据其他已知条件列出相应的方程. 四、分析天体运动问题的思路 【问题导思】 1.常用来描述天体运动的物理量有哪些? 2.分析天体运动的主要思路是什么? 3.描述天体的运动问题,有哪些主要的公式? 1.解决天体运动问题的基本思路 一般行星或卫星的运动可看做匀速圆周运动,所需要的向心力都由中心天体对它的万有引力提供,所以研究天体时可建立基本关系式: 2.四个重要结论 设质量为m的天体绕另一质量为M的中心天体做半径为r的匀速圆周运动 以上结论可总结为“越远越慢,越远越小”. 误区警示 1.由以上分析可知,卫星的an、v、ω、T与行星或卫星的质量无关,仅由被环绕的天体的质量M和轨道半径r决定. 2.应用万有引力定律求解时还要注意挖掘题目中的隐含条件,如地球的公转周期是365天,自转一周是24小时,其表面的重力加速度约为9.8m/s2. 例:)据报道,天文学家近日发现了一颗距地球40光年的“超级地球”,名为“55Cancrie”,该行星绕母星(中心天体)运行的周期约为地球绕太阳运行周期的480(1),母星的体积约为太阳的60倍.假设母星与太阳密度相同,“55Cancrie”与地球均做匀速圆周运动,则“55Cancrie”与地球的() 【答案】B 归纳总结:解决天体运动的关键点 解决该类问题要紧扣两点:一是紧扣一个物理模型:就是将天体(或卫星)的运动看成是匀速圆周运动;二是紧扣一个物体做圆周运动的动力学特征,即天体(或卫星)的向心力由万有引力提供.还要记住一个结论:在向心加速度、线速度、角速度和周期四个物理量中,只有周期的值随着轨道半径的变大而增大,其余的三个都随轨道半径的变大而减小 五、双星问题的分析方法 例:天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T,两颗恒星之间的距离为r,试推算这个双星系统的总质量.(引力常量为G) 归纳总结:双星系统的特点 1.双星绕它们共同的圆心做匀速圆周运动,它们之间的距离保持不变; 2.两星之间的万有引力提供各自需要的向心力; 3.双星系统中每颗星的角速度相等; 4.两星的轨道半径之和等于两星间的距离. 1.内容:物体的加速度跟所受的台力成正比,跟物体的质量成反比,加速度的方向跟合力的方向相同 2.表达式F=ma 3.理解 (1)同向性:加速度的方向与力的方向始终一致 (2)瞬时性;加速度与力是瞬间的对应量,即同时产生、同时变化、同时消失 (3)同体性:加速度和合外力(还有质量)是同属一个物体的 (4)独立性:当物体受到几个力的作用时,各力将独立地产生与其对应的加速度,而物体表现出来的实际加速度是物体所受各力产生加速度叠加的结果。 教学准备 教学目标 1、掌握牛顿第二定律相关知识; 2、了解控制变量法,培养学生动手实验能力和分析概括知识的能力。 教学重难点 重点:牛顿第二定律的知识及其应用;难点:实验演示的操作。 教学工具 教学课件 教学过程 一、复习引入: 1、我们讲了牛顿第一定律,它的内容是什么呢? 一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。也就是说,没有外力作用时,物体保持原来的状态,静止的保持静止、运动的保持匀速运动。那如果有外力作用呢? (引导回答)有外力作用----状态改变----速度改变----有加速度产生。 在上节课中我们还讲了:质量是物体惯性大小的量度,质量越大的,状态越难改变。这就涉及到三个物理量:力、加速度和质量,三者之间到底有何关系呢?我们这节课就来研究它。 二、进行新课 1、实验介绍 实验是我们掌握物理知识的一个重要途径,今天就利用实验来帮助我们解决这个问题。F、m、a三者都是变量,在研究此类问题时,我们先使其中一个量保持不变,来研究另外两个量的关系,这就是控制变量法。 (1)原理:F可以用弹簧秤测量,m可以用天平测量,那加速度呢? a=(S2-S1)/T2 测量加速度的方法:a=(Vt-V0)/t2 S=V0t+at2/2------------S=at2/2------------a=2S/t2 (2)设计 在光滑的导轨上放一量小车,一端系有细绳,绕过定滑轮后吊着砝码,砝码质量远小于小车质量。 受到恒力作用的小车做匀速直线运动,有S=V0t+at2/2----S=at2/2------a=2S/t2,为了便于比较,我们取两个小车做双轨实验。当时间t相同时,有a1/a2=S1/S2。 (3)实验操作(1) 平衡摩擦力;将两辆质量相同的小车放在导轨上;系上细绳,跨过定滑轮挂上质量不同的砝码;利用控制杆控制两辆小车同时运动;记录数据。 (4)实验操作(2) 将两辆质量不同的小车放在导轨上;系上细绳,跨过定滑轮挂上质量相同的砝码。 利用控制杆控制两辆小车同时运动;记录数据。 2、实验结论 m一定时,F与a成正比;F一定时,m与a成反比。 3、牛顿第二定律 内容:物体的加速度与力成正比,与质量成反比。公式:F=Kma;注:取国际单位时,K等于1。 平衡摩擦力分析(导出)牛顿第二定律更一般的表述:物体的加速度与合外力成正比,与质量成反比,加速度的方向与外力的方向相同。 三、本节小结 课后习题 完成课后作业第1、2、3题。 【教学目标】 知识技能1.初步了解一些物理现象2.对教师讲解的内容有所理解 过程与方法: 通过讲解和实验,让学生初步了解学习物理知识和研究物理问题的方法。 情感、态度和价值观:1.在教学中渗透人文主义教育 2.通过实验教学,激发学生的学习兴趣 【教学重点】 激发学生学习 兴趣,了解学习物理知识和研究物理问题的方法。 【教学方法】 演示法、讨论法。 【课时安排】 1课时 【教学过程】 一、引入新课 同学们,今天我们开始学习一门新的学科—物理,你听别人说过物理吗?你心中的物理是怎样的呢?谁起来说一下?(让学生起来说说自己的看法) 二、新课教学 1.演示几个实验,说明物理是十分有趣的。 (让学生先猜测现象,再演示) (1)器材:一大一小两只试管(尺寸十分接近),水,红墨水。 做法:大试管装入过半的水,管口朝上,放入小试管,倒过来,水流下,管上升。 现象:试管自动上升。 (2)器材:漏斗,乒乓球。 做法:一个乒乓球放在一个倒扣的漏斗中,通过漏斗嘴用力吹下面的乒乓球。 现象:乒乓球悬在空中不下落。 拓展:让学生撕下两张纸,用力吹两张纸的中央,发现纸靠近。 (3)器材:两只大烧杯,鸡蛋,清水,盐水。 做法:把一只鸡蛋分别放入两个大烧杯中。 现象:鸡蛋有浮有沉。 (4)器材:导线,开关,电池组,小灯泡,变阻器。 做法:连好电路,闭和开关,移动滑片,观察小灯泡的发光情况。 现象:灯变亮。 2.物理不仅有趣,而且是十分有用的,它能帮助我们解释生活中的许多现象。 (让学生先说说自己的看法,教师再解析) 提问1:人听到子弹声再躲来的及吗?为什么? 解析:子弹出膛飞行时的速度比声音快,所以来不及。 提问2:我们对着水中看到的鱼用手去抓,能抓到吗? 解析:抓不到,我们看到的是像,真正的鱼在像的下边。 提问3:黄浦江边的路灯,水中的像为什么是一道光柱? 解析:古诗云“月黑见渔灯,孤光一点荧。微微风簇浪,散做满河星”,起伏的水面相当于许多平面镜,每盏灯在水里有好多像,连在一起就成了一道光柱。 提问4:冬天的冰花结在玻璃的内表面还是外表面? 解析:外表面。 提问5:在光滑的路面上,空身容易摔倒,还是肩挑重物容易摔倒? 解析:空身。 小结:同学们,今天对所提的问题的分析,大家可能还领会不了,没关系,随着以后的学习大家就会明白其中的奥秘。 3.怎样学好物理。 (1)勤于观察,勤于动手。 引导学生观察课本插图,勉励学生“纸上得来终觉浅,绝知学问要躬行”。 (2)勤于思考,重在理解。 不能死记硬背,贵在理解,要多问,“为学贵有疑,有疑贵问师”,不要以为问老师一些简单的问题会遭到耻笑,而不问。 (3)联系实际,联系社会。 我们学了知识以后,如果能解释生活中的现象,就完成了一次飞跃,如果遇到生活中的疑问,又从课本中找到根据,就又完成一次飞跃。 (4)像科学家那样探究。 介绍伽利略的贡献:伽利略望远镜,伽利略温度计等。 尊称:近代科学之父 引导学生阅读课本第八页“伽利略对摆动的研究”,并讨论材料后的几个问题。 小结:学习物理,就要仔细观察周围的世界,发现问题,提出假设,善于动手,加以实践,找到规律。 三、作业: 阅读“科学之旅”,说说你打算怎样学好物理课。 知识目标 1、知道产生的条件; 2、能在简单的问题中,根据物体的运动状态,判断静的有无、大小和方向;知道存在着静; 3、掌握动摩擦因数,会在具体问题中计算滑动,掌握判定方向的方法; 4、知道影响动摩擦因数的因素; 能力目标 1、通过观察演示实验,概括出产生的条件以及的特点,培养学生的观察、概括能力.通过静与滑动的区别对比,培养学生的分析综合能力. 情感目标 渗透物理方法的教育在分析物体所受时,突出主要矛盾,忽略次要因素及无关因素,总结出产生的条件和规律. 教学建议 一、基本知识技能: 1、两个互相接触且有相对滑动或的物体,在它们的接触面上会产生阻碍相对运动的,称为滑动; 2、两个物体相互接触,当有相对滑动的趋势,但又保持相对静止状态时,在它们接触面上出现的阻碍相对滑动的作用力 3、两个物体间的滑动的大小跟这两个物体接触面间的压力大小成正比. 4、动摩擦因数的大小跟相互接触的两个物体的材料有关. 5、的方向与接触面相切,并且跟物体相对运动或相对运动趋势相反. 6、静存在值——静. 二、重点难点分析: 1、本节课的内容分滑动和静两部分.重点是产生的条件、特性和规律,通过演示实验得出关系. 2、难点是在理解滑动计算公式时,尤其是理解水平面上运动物体受到的时,学生往往直接将重力大小认为是压力大小,而没有分析具体情况. 教法建议 一、讲解有关概念的教法建议 介绍滑动和静时,从基本的事实出发,利用二力平衡的知识使学生接受的存在.由于的内容是本节的难点,所以在讲解时不要求“一步到位”,关于的概念可以通过实验、学生讨论来理解. 1、可以让学生找出生活和生产中利用的例子; 2、让学生思考讨论,如: (1)、一定都是阻力; (2)、静止的物体一定受到静; (3)、运动的物体不可能受到静; 主要强调:是接触力,是阻碍物体间的相对运动或相对运动趋势的,但不一定阻碍物体的运动,即在运动中也可以充当动力,如传送带的例子. 二、有关讲解的大小与什么因素有关的教法建议 1、滑动的大小,跟相互接触物体材料及其表面的光滑程度有关;跟物体间的正压力有关;但和接触面积大小无关.注意正压力的解释. 2、滑动的大小可以用公式:动摩擦因数跟两物体表面的关系,并不是表面越光滑,动摩擦因数越小.实际上,当两物体表面很粗糙时,由于接触面上交错齿合,会使动摩擦因数很大;对于非常光滑的表面,尤其是非常清洁的表面,由于分子力起主要作用,所以动摩擦因数更大,表面越光洁,动摩擦因数越大.但在力学中,常称“物体表面是光滑的”这是忽略物体之间的的一种提法,实际上是一种理想化模型,与上面叙述毫无关系. 3、动摩擦因数是一个无单位的物理量,它能直接影响物体的运动状态和受力情况. 4、静的大小,随外力的增加而增加,并等于外力的大小.但静不能无限度的增大,而有一个值,当外力超过这个值时,物体就要开始滑动,这个限度的静叫做静.实验证明,静由公式所决定,叫做静摩擦因数,为物体所受的正压力.的大小变化随着外力的变化关系如图:滑动的大小小于静,但一般情况下认为两者相等. 教学准备 教学目标 知识与技能 1.知道时间和时刻的区别和联系. 2.理解位移的概念,了解路程与位移的区别. 3.知道标量和矢量,知道位移是矢量,时间、时刻和路程是标量. 4.能用数轴或一维直线坐标表示时刻和时间、位置和位移. 5.知道时刻与位置、时间与位移的对应关系. 过程与方法 1.围绕问题进行充分的讨论与交流,联系实际引出时间、时刻、位移、路程等,要使学生学会将抽象问题形象化的处理方法. 2.会用坐标表示时刻与时间、位置和位移及相关方向 3.会用矢量表示和计算质点位移,用标量表示路程. 情感态度与价值观 1.通过时间位移的学习,要让学生了解生活与物理的关系,同时学会用科学的思维看待事实. 2.通过用物理量表示质点不同时刻的不同位置,不同时间内的不同位移(或路程)的体验,领略物理方法的奥妙,体会科学的力量. 3.养成良好的思考表述习惯和科学的价值观. 4.从知识是相互关联、相互补充的思想中,培养同学们建立事物是相互联系的唯物主义观点. 教学重难点 教学重点 1.时间和时刻的概念以及它们之间的区别和联系 2.位移的概念以及它与路程的区别. 教学难点 1.帮助学生正确认识生活中的时间与时刻. 2.理解位移的概念,会用有向线段表示位移 教学工具 多媒体、板书 教学过程 一、时刻和时间间隔 1.基本知识 (1)时刻是指某一瞬间,时间间隔表示某一过程. (2)在表示时间的数轴上,时刻用点来表示,时间用线段来表示. (3)在国际单位制中,表示时间和时刻的单位是秒,它的符号是s. 2.思考判断 (1)时刻和时间间隔都是时间,没有本质区别.(×) (2)飞机8点40分从上海起飞,10点05分降落到北京,分别指的是两个时间间隔.(×) (3)20年10月25日23时33分在西昌成功将第16颗北斗导航卫星发射升空.25日23时33分,指的是时刻.(√) 探究交流 时间的常用单位有哪些?生活中、实验室中有哪些常用的计时仪器? 【提示】在国际单位制中,时间的单位是秒,常用单位有分钟、小时,还有年、月、日等.生活中用各种钟表来计时,实验室和运动场上常用停表来测量时间,若要比较精确地研究物体的运动情况,有时需要测量和记录很短的时间,学校的实验室中常用电磁打点计时器或电火花计时器来完成. 二、路程和位移 1.基本知识 (1)路程 物体运动轨迹的长度. (2)位移 ①物理意义:表示物体(质点)位置变化的物理量. ②定义:从初位置到末位置的一条有向线段. ③大小:初、末位置间有向线段的长度. ④方向:由初位置指向末位置. 2.思考判断 (1)路程的大小一定大于位移的大小.(×) (2)物体运动时,路程相等,位移一定也相等.(×) (3)列车里程表中标出的北京到天津122km,指的是列车从北京到天津的路程.(√) 探究交流 一个人从北京去重庆,可以乘火车,也可以乘飞机,还可以先乘火车到武汉,然后再乘轮船沿长江到重庆,如图所示,则他的运动轨迹、位置变动、走过的路程和他的位移是否相同? 【提示】他的运动轨迹不同,走过的路程不同;他的位置变动相同,位移相同. 三、矢量和标量 1.基本知识 (1)矢量 既有大小又有方向的物理量.如位移、力等. (2)标量 只有大小、没有方向的物理量.如质量、时间、路程等. (3)运算法则 两个标量的加减遵从算术加减法,而矢量则不同,后面将学习到. 2.思考判断 (1)负5m的位移比正3m的位移小.(×) (2)李强向东行进5m,张伟向北行进也5m,他们的位移不同.(√) (3)路程是标量,位移是矢量.(√) 探究交流 温度是标量还是矢量?+2℃和-5℃哪一个温度高? 【提示】温度是标量,其正、负表示相对大小,所以+2℃比-5℃温度高. 1.教学目标 (1)知识与技能:(学生学会了什么)了解、掌握、认识...... (2)过程与方法:经历(通过)对......的探究过程,初步学会......,提高......的能力。 (3)情感态度与价值观:学习物理知识的兴趣,学好物理的信心,用物理知识解决生活实际问题的意识。 2.教学重点与难点 重点:新概念的理解及其应用、实验探究。 难点:新概念的理解、总结实验规律、各种规律的灵活应用。 3.教学过程 (1)新课导入(常用的导入方法实验导入、联系实际导入、直接导入) 采用联系实际导入法:讲述从北京到重庆的各种路线,导入新课:位移。 (2)新课讲授(知识点条理清晰的呈现) ①简单讲解本节课基础知识点(例:矢量、标量)。 ②归纳总结该课题中的重点知识内容。尤其对该注意的一些情况设置易错点,进行强调。可以设计分组讨论环节(例:判断路程和位移)。 ③拓展延伸,将所学知识拓展延伸到实际题目中,去解决实际生活中的问题。 在新授课里面一定要表现出讲课的大体流程,但是不必太过详细。 (3)巩固练习 练习题一 练习题二 (4)小结作业 ①请学生代表总结本节课的收获。 ②布置课后作业。 4.板书设计 一、教学目标 1.知识与技能 (1)知道曲线运动是一种变速运动,它在某点的瞬时速度方向在曲线这一点的切线上; (2)理解物体做曲线运动的条件是所受合外力与初速度不在同一直线上. 2.方法与过程 (1)类比直线运动认识曲线运动、瞬时速度方向的判断和曲线运动的条件; (2)通过实验观察培养学生的实验能力和分析归纳的能力. 3.情感态度与价值观 激发学生学习兴趣,培养学生探究物理问题的习惯. 二、教学重难点 1.曲线运动中瞬时速度方向的判断 2.理解物体做曲线运动的条件 三、教学过程 1.新课导入,引入曲线运动 教师:在必修一里我们学习了直线运动,我们知道物体做直线运动时他的运动轨迹是直线,需要满足的条件是物体所受的合力与速度的方向在同一条直线上。但在现实生活中,很多物体做的并非是直线运动,比如玩过山车的游客的运动、火车在其轨道上的运动、风中摇曳着的枝条的运动、人造地球围绕地球的运动(图片)。 问题1:在这几幅图片中,物体的运动轨迹有什么特点? (运动的轨迹是一条曲线) 教师:我们把像这样运动轨迹是曲线的运动叫做曲线运动。 设计意图:通过复习直线运动引入生活中更为常见的曲线运动,并借助实例归纳出曲线运动的概念,帮助学生认识曲线运动。 2.曲线运动的方向 问题2:我们知道物体在做直线运动时,物体的速度方向始终是保持不变的,那么在做曲线运动时,物体的速度的方向又有什么特点呢? (方向时刻在改变) 问题3:那么,我们该如何确定物体做曲线运动时每时每刻所对应速度的方向呢? 教师:我们来猜想一下,钢珠从弯曲的玻璃管中滚落出来,运动方向会是下面那一种情况呢? 学生:猜想 教师:现在咱们从理论上分析一下,钢珠从弯曲玻璃管中滚落出来的运动方向 当B点无限接近A点时,这条割线变成了曲线在A点的切线,这一过程中AB段的平均速度变成了A点的瞬时速度,瞬时速度的方向沿切线方向。所以钢珠从弯曲玻璃管中滚落出来的运动方向也应该沿试管出口处的切线方向。 下面咱们通过“钢珠滚落”的实验视频验证咱们的猜想及理论推导是否正确。 学生:观看视频 总结:曲线运动速度方向沿曲线某一点的&39;切线方向。 教师:所以在日常生活中我们可以看到这样的画 学生:砂轮打磨过程中砂轮边缘的火星是沿砂轮边沿的切线方向飞出;下雨天我们撑着伞将伞快速转动时,我们发现雨滴不再沿着伞的边沿竖直下落,而是沿着伞边沿的切线方向飞出去。 教师:(思考)我们知道曲线运动每时每刻的速度方向,那曲线运动是匀速运动还是变速运动呢? 学生:变速运动,速度是矢量,曲线运动中速度的方向是不断在变化的。 画一画:画一条物体做曲线运动的轨迹,在轨迹上任意取四个点,作出在这四个点时,物体运动的方向。 设计意图:类比直线运动中速度,从实验猜想、理论推导再到实验验证以及生活中的实际应用四个角度出发组织学生对曲线运动速度方向的探讨,强化学生对曲线运动时速度方向的认识,突出本节的重难点。 3.曲线运动的条件 思考:物体做曲线运动需要满足什么条件呢? 教师我们来看一个实验的视频,看看钢球在不同条件下是如何运动的 学生:(描述实验现象)钢珠在没有受到侧面磁铁的作用时做直线运动,受到侧面磁铁作用时,偏离原来直线的的运动轨迹,做曲线运动。 教师:咱们一起分析一下物体的运动情况 学生:画出钢球曲线运动轨迹上任意四点出的速度方向和大致的受力方向 教师:大家观察每一点处钢珠的受力方向和速度方向有什么特点? 学生:受力方向和速度方向都不在同一条直线上。 教师:由此我们可以得出结论,物体做曲线运动时需要满足的条件是物体所受合力与速度的方向不在同一条直线上。 教师:大家再观察各点的受力方向与钢珠运动轨迹之间有什么关系? 学生:力都指向轨迹弯曲的一侧。 设计意图:通过指导学生通过视屏观察实验现象,并对对曲线运动轨迹上任意几点速度方向及受力方向的分析得出曲线运动的条件,同时激发学生的兴趣,提高学生的实验能力和分析归纳的能力. 4.拓展 为什么砂轮? 设计意图:通过动手实践强化学生对本节重点内容的理解掌握。 教学目标 知识与技能 1.理解平抛运动是匀变速运动,其加速度为g. 2.掌握抛体运动的位置与速度的关系. 过程与方法 1.掌握平抛运动的特点,能够运用平抛规律解决有关问题. 2.通过例题分析再次体会平抛运动的规律. 情感、态度与价值观 1.有参与实验总结规律的热情,从而能更方便地解决实际问题. 2.通过实践,巩固自己所学的知识. 教学重难点 教学重点 分析归纳抛体运动的规律 教学难点 应用数学知识分析归纳抛体运动的规律. 教学过程 [新课导入] 上一节我们已经通过实验探究出平抛运动在竖直方向和水平方向上的运动规律,对平抛运动的特点有了感性认识.这一节我们将从理论上对抛体运动的规律作进一步分析,学习和体会在水平面上应用牛顿定律的方法,并通过应用此方法去分析没有感性认识的抛体运动的规律. [新课教学] 一、抛体的位置 我们以平抛运动为例来研究抛体运动所共同具有的性质. 首先我们来研究初速度为。的平抛运动的位置随时间变化的规律.用手把小球水平抛出,小球从离开手的瞬间(此时速度为v,方向水平)开始,做平抛运动.我们以小球离开手的位置为坐标原点,以水平抛出的方向为x轴的方向,竖直向下的方向为y轴的方向,建立坐标系,并从这一瞬间开始计时. 师:在抛出后的运动过程中,小球受力情况如何? 生:小球只受重力,重力的方向竖直向下,水平方向不受力. 师:那么,小球在水平方向有加速度吗?它将怎样运动? 生:小球在水平方向没有加速度,水平方向的分速度将保持v不变,做匀速直线运动. 师:我们用函数表示小球的水平坐标随时间变化的规律将如何表示? 生:x=vt 师:在竖直方向小球有加速度吗?若有,是多大?它做什么运动?它在竖直方向有初速度吗? 生:在竖直方向,根据牛顿第二定律,小球在重力作用下产生加速度g.做自由落体运动,而在竖直方向上的初速度为0. 师:那根据运动学规律,请大家说出小球在竖直方向的坐标随时间变化的规律. 生:y=1/2gt2 师:小球的位置能否用它的坐标(x,y)描述?能否确定小球在任意时刻t的位置? 生:可以. 师:那么,小球的运动就可以看成是水平和竖直两个方向上运动的合成.t时间内小球合位移是多大? 生: 师:若设s与+x方向(即速度方向)的夹角为θ,如图6.4—1,则其正切值如何求? 生: [例1]一架飞机水平匀速飞行.从飞机上海隔ls释放一个铁球,先后释放4个,若不计空气阻力,从地面上观察4个小球() A.在空中任何时刻总是捧成抛物线,它们的落地点是等间距的 B.在空中任何时刻总是排成抛物线,它们的落地点是不等间距的 C.在空中任何时刻总在飞机正下方,排成竖直的直线,它们的落地点是等间距的 D.在空中任何时刻总在飞机的正下方,捧成竖直的直线,它们的落地点是不等间距的。 解析:因为铁球从飞机上释放后做平抛运动,在水平方向上有与飞机相同的速度.不论铁球何时从飞机上释放,铁球与飞机在水平方向上都无相对运动.铁球同时还做自由落体运动,它在竖直方向将离飞机越来越远.所以4个球在落地前始终处于飞机的正下方,并排成一条直线,又因为从飞机上每隔1s释放1个球,而每个球在空中运动的时间又是相等的,所以这4个球落地的时间也依次相差1s,它们的落地点必然是等间距的.若以飞机为参考系观察4个铁球都做自由落体运动.此题把曲线运动利用分解的方法“化曲为直”,使其成为我们所熟知的直线运动,则据运动的独立性,可以分别在这两个方向上用各自的运动规律研究其运动过程. 二、抛体的速度 师:由于运动的等时性,那么大家能否根据前面的结论得到物体做平抛运动的时间? 生:由y=1/2gt2得到,运动时间 师:这说明了什么问题? 生:这说明了做平抛运动的物体在空中运动的时间仅取决于下落的高度,与初速度无关. 师:那么落地的水平距离是多大? 生:落地的水平距离 师:这说明了什么问题? 生:这说明了平抛运动的水平位移不仅与初速度有关系,还与物体的下落高度有关. 师:利用运动合成的知识,结合图6.4—2,求物体落地速度是多大?结论如何? 生:落地速度,即落地速度也只与初速度v和下落高度h有关. 师:平抛运动的速度与水平方向的夹角为a,一般称为平抛运动的偏角.实际上,常称为平抛运动的偏角公式,在一些问答题中可以直接应用此结论分析解答 [例2]一个物体以l0m/s的速度从10m的水平高度抛出,落地时速度与地面的夹角θ是多少(不计空气阻力)? [例3]在5m高的地方以6m/s的初速度水平抛出一个质量是10kg的物体,则物体落地的速度是多大?从抛出点到落地点发生的位移是多大?(忽略空气阻力,取g=10m/s2) [交流与讨论] 应用运动的合成与分解的方法我们探究了做平抛运动的物体的位移和速度.请大家根据我们探究的结果研究一下平抛运动的物体位移和速度之间存在什么关系. 参考解答:根据前面的探究结果我们知道,物体的位移,与x轴的夹角的正切值为tanθ=gt/2v.物体的速度,与x轴的夹角的正切值为tanθ=gt/v.可以看到位移和速度的大小没有太直接的关系,但它们的方向与x轴夹角的正切是2倍关系.利用这个关系我们就可以很方便地计算物体速度或位移的方向了.师:在(2)中,与匀变速直线运动公式vt2=v02+2as,形式上一致的,其物理意义相同吗?生:物理意义并不相同,在中的h,并不是平抛运动的位移,而是竖直方向上的位移,在 中的s就是表示匀速直线运动的位移.对于平抛运动的位移,是由竖直位移和水平位移合成而得的. 师:平抛运动的轨迹是曲线(抛物线),某一时刻的速度方向即为曲线上物体所在位置的切线方向.设物体运动的时间为t,则这一时刻的速度与竖直方向夹角的正切值tanβ=v0/gt,而物体下落的高度为h==1/2gt2.如图6.4—3. 图中的A点为速度的切线与抛出点的水平线的交点,C点为物体所在位置的竖直线与水平线的交点,从图中可以看出A为水平线段OC的中点.平抛运动的这一重要特征,对我们分析类平抛运动,特别是带电粒子在电场中偏转是很有帮助的. 平抛运动常分解成水平方向和竖直方向的两个分运动来处理,由于竖直分运动是初速度为零的匀加速直线运动,所以初速度为零的匀加速直线运动的公式和特点均可以在此应用.另外,有时候根据具体情况也可以将平抛运动沿其他方向分解. 三、斜抛运动 师:如果物体抛出时的速度不是沿水平方向,而是斜向上方或斜向下方的(这种情况称为斜抛),它的受力情况是什么样的?加速度又如何? 生:它的受力情况与平抛完全相同,即在水平方向仍不受力,加速度仍是0;在竖直方向仍只受重力,加速度仍为g. 师:实际上物体以初速度v沿斜向上或斜向下方抛出,物体只在重力作用下的运动,如何表示?与平抛是否相同? 生:斜抛运动沿水平方向和竖直方向初速度与平抛不同,分别是vx=vcosθ和vy=sinθ. 由于物体运动过程中只受重力,所以水平方向速度vx=vcosθ保持不变,做匀速直线运动;而竖直方向上因受重力作用,有竖直向下的重力加速度J,同时有竖直向上的初速度vy=sinθ,因此做匀减速运动(是竖直上抛运动,当初速度向斜下方,竖直方向的分运动为竖直下抛运动),当速度减小到。时物体上升到点,此时物体由于还受到重力,所以仍有一个向下的加速度g,将开始做竖直向下的加速运动.因此,斜抛运动可以看成是水平方向速度为vx=vcosθ的匀速直线运动和竖直方向初速度为vy=sinθ的竖直上抛或竖直下抛运动的合运动. 师:斜抛运动分斜上抛和斜下抛(由初速度方向确定)两种,下面以斜上抛运动为例讨论. 师:斜抛运动的特点是什么? 生:特点:加速度a=g,方向竖直向下,初速度方向与水平方向成一夹角θ斜向上,θ=90°时为竖直上抛或竖直下抛运动θ=0°时为平抛运动. 师:常见的处理方法: ①将斜上抛运动分解为水平方向的匀速直线运动和竖直方向的竖直上抛运动,这样有由此可以得到哪些特点? 生:由此可得如下特点:a.斜向上运动的时间与斜向下运动的时间相等;b.从轨道点将斜抛运动分为前后两段具有对称性,如同一高度上的两点,速度大小相等,速度方向与水平线的夹角相同. 师:②将斜抛运动分解为沿初速度方向的斜向上的匀速直线运动和自由落体运动两个分运动,用矢量合成法则求解. ③将沿斜面和垂直斜面方向作为x、y轴,分别分解初速度和加速度后用运动学公式解题. [交流与讨论] 对于斜抛运动我们只介绍下船上抛和斜下抛的研究方法,除了平抛、斜上抛、斜下抛外,抛体运动还包括竖直上抛和竖直下抛,请大家根据我们研究前面几种抛体运动的方法来研究一下竖直上抛和竖直下抛. 参考解答:对于这两种运动来说,它们都是直线运动,但这并不影响用运动的合成与分解的方法来研究它们.这个过程我们可以仿照第一节中我们介绍的匀加速运动的分解过程.对竖直上抛运动,设它的初速度为v0,那么它的速度就可以写成v=v0—gt的形式,位移写成x=v0t—gt2/2的形式.那这样我们就可以进行分解了.把速度写成v1=v0,v2=—gt的形式,把位移写成xl=v0t,x2=—gt2/2的形式,这样我们可以看到,竖直上抛运动被分解成了一个竖直向上的匀速直线运动和一个竖直向上的匀减速运动.对于竖直下抛运动可以采取同样的方法进行处理. 课后小结 1.具有水平速度的物体,只受重力作用时,形成平抛运动. 2.平抛运动可分解为水平匀蓬运动和竖直自由落体运动.平抛位移等于水平位移和竖直位移的矢量和;平抛瞬时速度等于水平速度和竖直速度的矢量和. 3.平抛运动是一种匀变速曲线运动. 4.如果物体受到恒定合外力作用,并且合外力跟初速度垂直,形成类似平抛的匀变速曲线运动,只需把公式中的g换成a,其中a=F合/m. 说明: 1.干抛运动是学生接触到的第一个曲线运动,弄清其成固是基础,水平初速度的获得是同题的关键,可归纳众两种; (1)物体被水平加速:水平抛出、水干射出、水平冲击等; (2)物体与原来水平运动的载体脱离,由于惯性而保持原来的水平速度. 2.平抛运动的位移公式和速度公式中有三个含有时间t,应根据不同的已知条件来求时间.但应明确:平抛运动的时间完全由抛出点到落地点的竖直高度确定(在不高的范国内g恒定),与抛出的速度无关. 研究性实验:(1)研究匀变速运动练习使用打点计时器: 1.构造:见教材。 2.操作要点:接50HZ,4---6伏的交流电S1S2S3S4 正确标取记:在纸带中间部分选5个点。T。T。T。T。 3.重点:纸带的分析01234 a.判断物体运动情况: 在误差范围内:如果S1=S2=S3=......,则物体作匀速直线运动。 如果?S1=?S2=?S3=.......=常数,则物体作匀变速直线运动。 b.测定加速度: 公式法:先求?S,再由?S=aT2求加速度。 图象法:作v-t图,求a=直线的斜率 c.测定即时速度:V1=(S1+S2)/2TV2=(S2+S3)/2T 测定匀变速直线运动的加速度: 1.原理::?S=aT2 2.实验条件: a.合力恒定,细线与木板是平行的。 b.接50HZ,4-6伏交流电。 3.实验器材:电磁打点计时器、纸带、复写纸片、低压交流电源、小车、细绳、一端附有滑轮的长木板、刻度尺、钩码、导线、两根导线。 4.主要测量: 选择纸带,标出记数点,测出每个时间间隔内的位移S1、S2、S3。。。。图中O是任一点。 5.数据处理:0123456 根据测出的S1、S2、S3.......。S1。S2。S3。S4。S5。S6。 用逐差法处理数据求出加速度: S4-S1=3a1T2,S5-S2=3a2T2,S6-S3=3a3T2 a=(a1+a2+a3)/3=(S4+S5+S6-S1-S2-S3)/9T2 测匀变速运动的即时速度:(同上) (2)研究平抛运动 1.实验原理: 用一定的方法描出平抛小球在空中的轨迹曲线,再根据轨迹上某些点的位置坐标,由h=求出t,再由x=v0t求v0,并求v0的平均值。 2.实验器材: 木板,白纸,图钉,未端水平的斜槽,小球,刻度尺,附有小孔的卡片,重锤线。 3.实验条件: a.固定白纸的木板要竖直。 b.斜槽未端的切线水平,在白纸上准确记下槽口位置。 c.小球每次从槽上同一位置由静止滑下。 (3)研究弹力与形变关系 方法归纳: (1)用悬挂砝码的方法给弹簧施加压力 (2)用列表法来记录和分析数据(如何设计实验记录表格) (3)用图象法来分析实验数据关系 步骤: 1以力为纵坐标、弹簧伸长为横坐标建立坐标系 2根据所测数据在坐标纸上描点 3按照图中各点的分布和走向,尝试作出一条平滑的曲线(包括直线) 4以弹簧的伸重工业自变量,写出曲线所代表的函数,首先尝试一次函数,如不行则考虑二次函数,如看似象反比例函数,则变相关的量为倒数再研究一下是否为正比关系(图象是否可变为直线)----化曲为直的方法等。 5解释函数表达式中常数的意义。 2.注意事项:所加砝码不要过多(大)以免弹簧超出其弹性限度 一、教学目标 1、在开普勒第三定律的基础上,推导得到万有引力定律,使学生对此规律有初步理解。 2、介绍万有引力恒量的测定方法,增加学生对万有引力定律的感性认识。 3、通过牛顿发现万有引力定律的思考过程和卡文迪许扭秤的设计方法,渗透科学发现与科学实验的方法论教育。 二、重点、难点分析 1、万有引力定律的推导过程,既是本节课的重点,又是学生理解的难点,所以要根据学生反映,调节讲解速度及方法。 2、由于一般物体间的万有引力极小,学生对此缺乏感性认识,又无法进行演示实验,故应加强举例。 三、教具 卡文迪许扭秤模型。 四、教学过程 (一)引入新课 1、引课:前面我们已经学习了有关圆周运动的知识,我们知道做圆周运动的物体都需要一个向心力,而向心力是一种效果力,是由物体所受实际力的合力或分力来提供的。另外我们还知道,月球是绕地球做圆周运动的,那么我们想过没有,月球做圆周运动的向心力是由谁来提供的呢?(学生一般会回答:地球对月球有引力。) 我们再来看一个实验:我把一个粉笔头由静止释放,粉笔头会下落到地面。 实验:粉笔头自由下落。 同学们想过没有,粉笔头为什么是向下运动,而不是向其他方向运动呢?同学可能会说,重力的方向是竖直向下的,那么重力又是怎么产生的呢?地球对粉笔头的引力与地球对月球的引力是不是一种力呢?(学生一般会回答:是。)这个问题也是300多年前牛顿苦思冥想的问题,牛顿的结论也是:yes。 既然地球对粉笔头的引力与地球对月球有引力是一种力,那么这种力是由什么因素决定的,是只有地球对物体有这种力呢,还是所有物体间都存在这种力呢?这就是我们今天要研究的万有引力定律。 板书:万有引力定律 (二)教学过程 1、万有引力定律的推导 首先让我们回到牛顿的年代,从他的角度进行一下思考吧。当时“日心说”已在科学界基本否认了“地心说”,如果认为只有地球对物体存在引力,即地球是一个特殊物体,则势必会退回“地球是宇宙中心”的说法,而认为物体间普遍存在着引力,可这种引力在生活中又难以观察到,原因是什么呢?(学生可能会答出:一般物体间,这种引力很小。如不能答出,教师可诱导。)所以要研究这种引力,只能从这种引力表现比较明显的物体——天体的问题入手。当时有一个天文学家开普勒通过观测数据得到了一个规律:所有行星轨道半径的3次方与运动周期的2次方之比是一个定值,即开普勒第 其中m为行星质量,R为行星轨道半径,即太阳与行星的距离。也就是说,太阳对行星的引力正比于行星的质量而反比于太阳与行星的距离的平方。 而此时牛顿已经得到他的第三定律,即作用力等于反作用力,用在这里,就是行星对太阳也有引力。同时,太阳也不是一个特殊物体,它 用语言表述,就是:太阳与行星之间的引力,与它们质量的乘积成正比,与它们距离的平方成反比。这就是牛顿的万有引力定律。如果改 其中G为一个常数,叫做万有引力恒量。(视学生情况,可强调与物体重力只是用同一字母表示,并非同一个含义。) 应该说明的是,牛顿得出这个规律,是在与胡克等人的探讨中得到的。 2、万有引力定律的理解 下面我们对万有引力定律做进一步的说明: (1)万有引力存在于任何两个物体之间。虽然我们推导万有引力定律是从太阳对行星的引力导出的,但刚才我们已经分析过,太阳与行星都不是特殊的物体,所以万有引力存在于任何两个物体之间。也正因为此,这个引力称做万有引力。只不过一般物体的质量与星球相比过于小了,它们之间的万有引力也非常小,完全可以忽略不计。所以万有引力定律的表述是: 板书:任何两个物体都是相互吸引的,引力的大小跟两个物体的质 其中m1、m2分别表示两个物体的质量,r为它们间的距离。 (2)万有引力定律中的距离r,其含义是两个质点间的距离。两个物体相距很远,则物体一般可以视为质点。但如果是规则形状的均匀物体相距较近,则应把r理解为它们的几何中心的距离。例如物体是两个球体,r就是两个球心间的距离。 (3)万有引力是因为物体有质量而产生的引力。从万有引力定律可以看出,物体间的万有引力由相互作用的两个物体的质量决定,所以质量是万有引力的产生原因。从这一产生原因可以看出:万有引力不同于我们初中所学习过的电荷间的引力及磁极间的引力,也不同于我们以后要学习的分子间的引力。 3、万有引力恒量的测定 牛顿发现了万有引力定律,但万有引力恒量G这个常数是多少,连他本人也不知道。按说只要测出两个物体的质量,测出两个物体间的距离,再测出物体间的引力,代入万有引力定律,就可以测出这个恒量。但因为一般物体的质量太小了,它们间的引力无法测出,而天体的质量太大了,又无法测出质量。所以,万有引力定律发现了100多年,万有引力恒量仍没有一个准确的结果,这个公式就仍然不能是一个完善的等式。直到100多年后,英国人卡文迪许利用扭秤,才巧妙地测出了这个恒量。 这是一个卡文迪许扭秤的模型。(教师出示模型,并拆装讲解)这个扭秤的主要部分是这样一个T字形轻而结实的框架,把这个T形架倒挂在一根石英丝下。若在T形架的两端施加两个大小相等、方向相反的力,石英丝就会扭转一个角度。力越大,扭转的角度也越大。反过来,如果测出T形架转过的角度,也就可以测出T形架两端所受力的大小。现在在T形架的两端各固定一个小球,再在每个小球的附近各放一个大球,大小两个球间的距离是可以较容易测定的。根据万有引力定律,大球会对小球产生引力,T形架会随之扭转,只要测出其扭转的角度,就可以测出引力的大小。当然由于引力很小,这个扭转的角度会很小。怎样才能把这个角度测出来呢?卡文迪许在T形架上装了一面小镜子,用一束光射向镜子,经镜子反射后的光射向远处的刻度尺,当镜子与T形架一起发生一个很小的转动时,刻度尺上的光斑会发生较大的移动。这样,就起到一个化小为大的效果,通过测定光斑的移动,测定了T形架在放置大球前后扭转的角度,从而测定了此时大球对小球的引力。卡文迪许用此扭秤验证了牛顿万有引力定律,并测定出万有引力恒量G的数值。这个数值与近代用更加科学的方法测定的数值是非常接近的。 卡文迪许测定的G值为6.754×10—11,现在公认的G值为6.67×10—11。需要注意的是,这个万有引力恒量是有单位的:它的单位应该是乘以两个质量的单位千克,再除以距离的单位米的平方后,得到力的单位牛顿,故应为Nm2/kg2。 板书:G=6.67×10—11Nm2/kg2 由于万有引力恒量的数值非常小,所以一般质量的物体之间的万有引力是很小的,我们可以估算一下,两个质量50kg的同学相距0.5m时之间的万有引力有多大(可由学生回答:约6.67×10—7N),这么小的力我们是根本感觉不到的。只有质量很大的物体对一般物体的引力我们才能感觉到,如地球对我们的引力大致就是我们的重力,月球对海洋的引力导致了潮汐现象。而天体之间的引力由于星球的质量很大,又是非常惊人的:如太阳对地球的引力达3.56×1022N。 五、课堂小结 本节课我们学习了万有引力定律,了解了任何两个有质量的物体之间都存在着一种引力,这个引力正比于两个物体质量的乘积,反比于两个物体间的距离。其大小的决定式为: 其中G为万有引力恒量:G=6.67×10—11Nm2/kg2 另外,我们还了解了科学家分析物体、解决问题的方法和技巧,希望对我们今后分析问题、解决问题能够有所借鉴。 六、说明 1、设计思路:本节课由于内容限制,以教师讲授为主。为能够吸引学生,引课时设计了一些学生习以为常的但又没有细致思考过的问题。讲授过程中以物理学史为主线,让学生以科学家的角度分析、思考问题。力争抓住这节课的有利时机,渗透“没有绝对特殊的物体”这一引起物理学几次革命性突破的辩证唯物主义观点。 2、卡文迪许扭秤模型为自制教具,可仿课本插图用金属杆等焊制,外面可用有机玻璃制成外壳,并可拆卸。 教学目标 知识与技能 1.理解平抛运动是加速度为g的匀变速运动,其水平方向是匀速直线运动,竖直方向为自由落体运动. 2.了解斜抛运动及运动的合成与分解的迁移应用. 过程与方法 会用平抛运动的规律解答相关问题,以数学中的抛物线方程及图象为工具建立物理模型,理解抛体运动的规律及处理方法. 情感、态度与价值观 1.体会各学科之间的联系与发展,培养空间想象能力和数学计算能力以及知识方法的应用能力. 2.领略抛体运动的对称与和谐,培养对科学的好奇心和求知欲. 教学重难点 1.知道什么是抛体运动,什么是平抛运动.知道平抛运动是匀变速曲线运动,加速度为g. 2.用运动的分解、合成结合牛顿运动定律研究抛体运动的特点,知道平抛运动可分为水平方向的匀速直线运动和竖直方向的自由落体运动. 3.能应用平抛运动的规律交流讨论并解决实际问题.在得出平抛运动规律的基础上进而分析斜抛运动.掌握研究抛体运动的一般方法. 教学过程 一、抛体运动 探究交流:体育运动中投掷的链球、铅球、铁饼、标枪等(如图所示),都可以看做是抛体运动吗?都可以看成是平抛运动吗? 1.基本知识 (1)定义 以一定的速度将物体抛出,物体只受重力作用的运动. (2)平抛运动 初速度沿水平方向的抛体运动. (3)平抛运动的特点 ①初速度沿水平方向.②只受重力作用. 2.思考判断 (1)水平抛出的物体所做的运动就是平抛运动.(×) (2)平抛运动中要考虑空气阻力的作用.(×) (3)平抛运动的初速度与重力垂直.(√) 二、平抛运动的速度 1.基本知识 将物体以初速度v0水平抛出,由于物体只受重力作用,t时刻的速度为: (1)水平方向:vx=v0. (2)竖直方向:vy=gt. (4)速度变化特点:由于平抛运动的物体只受重力作用,所以其加速度恒为g,因此在平抛运动中速度的变化量Δv=gΔt,由于g是常量,所以任意两个相等的时间间隔内速度的变化量相等,方向竖直向下,即任意两个相等的时间间隔内速度的变化相同,如图所示. 2.思考判断 (1)平抛运动的物体初速度越大,下落得越快.(×) (2)做平抛运动的物体下落时,速度与水平方向的夹角θ越来越大.(√) (3)如果下落时间较长,平抛运动的物体的速度方向变为竖直方向.(×) 3.探究交流 平抛运动中,竖直方向的分速度vy=gt,除该公式外,还有求vy的公式吗? 【提示】由于竖直分运动是自由落体运动,所以 例:关于平抛物体的运动,以下说法正确的是() A.做平抛运动的物体,速度和加速度都随时间的增加而增大 B.做平抛运动的物体仅受到重力的作用,所以加速度保持不变 C.平抛物体的运动是匀变速运动 D.平抛物体的运动是变加速运动 【答案】BC 三、平抛运动的位移 1.基本知识 将物体以初速度v0水平抛出,经时间t物体的位移为: 2.思考判断 (1)平抛运动合位移的方向与合速度的方向一致.(×) (2)平抛运动合位移的大小等于物体的路程.(×) (3)平抛运动中,初速度越大,落地时间越长.(×) 3.探究交流 飞机向某灾区投放救灾物资,要使物资准确落到指定地点,是飞到目标正上方投放,还是提前投放? 【提示】物资离开飞机前具有与飞机相同的水平方向的速度,当离开飞机后,由于惯性,它们仍然要保持原有的水平向前的运动速度,另外,物资又受到重力作用,于是物资一方面在水平方向向前运动,另一方面向下加速运动,因此,只有提前投放,才能使物资准确落到指定地方. 4.小结:平抛运动的特点 1.速度特点:平抛运动的速度大小和方向都不断变化,故它是变速运动. 2.轨迹特点:平抛运动的运动轨迹是曲线,故它是曲线运动. 3.加速度特点:平抛运动的加速度为自由落体加速度,恒定不变,故它是匀变速运动. 综上所述,平抛运动的性质为匀变速曲线运动. 例:关于平抛运动,下列说法正确的是() A.平抛运动是匀变速运动 B.平抛运动是变加速运动 C.任意两段时间内加速度相同 D.任意两段相等时间内速度变化相同 【答案】ACD 四、平抛运动的研究方法和规律 【问题导思】 1.如何研究平抛运动比较简单? 2.平抛运动的合速度、合位移怎么求出? 3.试推导平抛运动的轨迹方程. 1.平抛运动的研究方法 (1)由于平抛运动是匀变速曲线运动,速度、位移的方向时刻发生变化,无法直接应用运动学公式,因此研究平抛运动问题时采用运动分解的方法. (2)平抛运动一般分解为竖直方向上的自由落体运动和水平方向上的匀速直线运动. 2.平抛运动的规律 (1)分运动 五、平抛运动的几个重要推论 【问题导思】 1.平抛运动的飞行时间与初速度有关吗? 2.平抛运动的落地速度决定于哪些因素? 3.平抛运动的速度偏向角与位移偏向角间的关系如何? 1.平抛运动的时间 A.tanφ=sinθB.tanφ=cosθ C.tanφ=tanθD.tanφ=2tanθ 【答案】D 六、平抛运动的临界问题 例:如图所示,女排比赛时,排球场总长为18m,设球网高度为2m,运动员站在网前3m处正对球网跳起将球水平击出.若击球的高度为2.5m,为使球既不触网又不越界,求球的速度范围. 2.思考判断 (1)斜抛运动和平抛运动在竖直方向上做的都是自由落体运动.(×) (2)斜抛运动和平抛运动在水平方向上做的都是匀速直线运动.(√) (3)斜抛运动和平抛运动的加速度相同.(√) 3.探究交流 对斜上抛运动,有一个点,该点的速度是零吗?为什么 【提示】在斜上抛运动的点,竖直分速度为零.水平分速度等于v0cosθ.故该点的速度v=v0cosθ. 教学目标 (1)通过演示实验认识加速度与质量和和合外力的定量关系。 (2)会用准确的文字叙述牛顿第二定律并掌握其数学表达式。 (3)通过加速度与质量和和合外力的定量关系,深刻理解力是产生加速度的原因这一规律。 (4)认识加速度方向与合外力方向间的矢量关系,认识加速度与和外力间的瞬时对应关系。 (5)能初步运用运动学和牛顿第二定律的知识解决有关动力学问题。 能力目标 通过演示实验及数据处理,培养学生观察、分析、归纳总结的能力;通过实际问题的处理,培养良好的书面表达能力。 情感目标 培养认真的科学态度,严谨、有序的思维习惯。 教材分析 1、通过演示实验,利用控制变量的方法研究力、质量和加速度三者间的关系:在质量不变的前题下,讨论力和加速度的关系;在力不变的前题下,讨论质量和加速度的关系。 2、利用实验结论总结出牛顿第二定律:规定了合适的力的单位后,牛顿第二定律的表达式从比例式变为等式、 3、进一步讨论牛顿第二定律的确切含义:公式中的表示的是物体所受的合外力,而不是其中某一个或某几个力;公式中的和均为矢量,且二者方向始终相同,所以牛顿第二定律具有矢量性;物体在某时刻的加速度由合外力决定,加速度将随着合外力的变化而变化,这就是牛顿第二定律的瞬时性。 教法建议 1、要确保做好演示实验,在实验中要注意交代清楚两件事:只有在砝码质量远远小于小车质量的前题下,小车所受的拉力才近似地认为等于砝码的重力(根据学生的实际情况决定是否证明);实验中使用了替代法,即通过比较小车的位移来反映小车加速度的大小。 2、通过典型例题让学生理解牛顿第二定律的确切含义。 3、让学生利用学过的重力加速度和牛顿第二定律,让学生重新认识出中所给公式。 教学重点: 牛顿第二定律 教学难点: 对牛顿第二定律的理解 教学过程: 示例: 一、加速度、力和质量的关系 介绍研究方法(控制变量法):先研究在质量不变的前题下,讨论力和加速度的关系;再研究在力不变的前题下,讨论质量和加速度的关系、介绍实验装置及实验条件的保证:在砝码质量远远小于小车质量的条件下,小车所受的拉力才近似地认为等于砝码的重力、介绍数据处理方法(替代法):根据公式可知,在相同时间内,物体产生加速度之比等于位移之比、 以上内容可根据学生情况,让学生充分参与讨论、本节书涉及到的演示实验也可利用气垫导轨和计算机,变为定量实验。 二、牛顿第二运动定律(加速度定律) 1、实验结论:物体的加速度根作用力成正比,跟物体的质量成反比、加速度方向跟引起这个加速度的力的方向相同。 2、力的单位的规定:若规定:使质量为1kg的物体产生1m/s2加速度的力叫1N、则公式中的=1。(这一点学生不易理解) 3、牛顿第二定律: 物体的加速度根作用力成正比,跟物体的质量成反比、加速度方向跟引起这个加速度的力的方向相同。 教学目标 知识与技能 1.知道时间和时刻的区别和联系. 2.理解位移的概念,了解路程与位移的区别. 3.知道标量和矢量,知道位移是矢量,时间、时刻和路程是标量. 4.能用数轴或一维直线坐标表示时刻和时间、位置和位移. 5.知道时刻与位置、时间与位移的对应关系. 过程与方法 1.围绕问题进行充分的讨论与交流,联系实际引出时间、时刻、位移、路程等,要使学生学会将抽象问题形象化的.处理方法. 2.会用坐标表示时刻与时间、位置和位移及相关方向 3.会用矢量表示和计算质点位移,用标量表示路程. 情感态度与价值观 1.通过时间位移的学习,要让学生了解生活与物理的关系,同时学会用科学的思维看待事实. 2.通过用物理量表示质点不同时刻的不同位置,不同时间内的不同位移(或路程)的体验,领略物理方法的奥妙,体会科学的力量. 3.养成良好的思考表述习惯和科学的价值观. 4.从知识是相互关联、相互补充的思想中,培养同学们建立事物是相互联系的唯物主义观点. 教学重难点 教学重点 1.时间和时刻的概念以及它们之间的区别和联系 2.位移的概念以及它与路程的区别. 教学难点 1.帮助学生正确认识生活中的时间与时刻. 2.理解位移的概念,会用有向线段表示位移. 教学工具 教学课件 多媒体课件 教学过程 [引入新课] 师:上节课我们学习了描述运动的几个概念,大家想一下是哪几个概念? 生:质点、参考系、坐标系. 师:大家想一下,如果仅用这几个概念,能不能全面描述物体的运动情况? 生:不能. 师:那么要准确、全面地描述物体的运动,我们还需要用到哪些物理概念? 一部分学生可能预习过教材,大声回答,一部分学生可能忙着翻书去找. 师指导学生快速阅读教材第一段,并粗看这节课的黑体字标题,提出问题:要描述物体的机械运动,本节课还将从哪几个方面去描述? 生通过阅读、思考,对本节涉及的概念有个总体印象,知道这些概念都是为了进一步描述物体的运动而引入的,要研究物体的运动还要学好这些基本概念. 引言:宇宙万物都在时间和空间中存在和运动.我们每天按时上课、下课、用餐、休息。从幼儿园、小学、中学,经历一年又一年,我们在时间的长河里成长.对于时间这个名词,我们并不陌生,你能准确说出时间的含义吗?物体的任何机械运动都伴随着物体在空间中位置的改变,你们用什么来量度物体位置的改变呢?这就是我们今天要研究的课题--§1.2时间和位移. [新课教学] 一、时刻和时间间隔 [讨论与交流] 指导学生仔细阅读“时刻和时间间隔”一部分,然后用课件投影展示本校作息时间表. 师:同时提出问题; 1.结合教材,你能列举出哪些关于时间和时刻的说法? 2.观察教材第14页图1.2-1,如何用数轴表示时间? 学生在教师的指导下,自主阅读,积极思考,然后每四人一组展开讨论,每 组选出代表,发表见解,提出问题. 生:我们开始上课的“时间”:8:00就是指的时刻;下课的“时间”:8:45也是指的时刻.这样每个活动开始和结束的那一瞬间就是指时刻. 生:我们上一堂课需要45分钟,做眼保健操需要5分钟,这些都是指时间间隔,每一个活动所经历的一段时间都是指时间间隔. 师:根据以上讨论与交流,能否说出时刻与时间的概念. 教师帮助总结并回答学生的提问. 师:时刻是指某一瞬时,时间是时间间隔的简称,指一段持续的时间间隔。两个时刻的间隔表示一段时间. 让学生再举出一些生活中能反映时间间隔和时刻的实例,并让他们讨论. 教师利用课件展示某一列车时刻表,帮助学生分析列车运动情况. (展示问题)根据下列“列车时刻表”中的数据,列车从广州到长沙、郑州和北京西站分别需要多长时间? T15站名T16 18:19北京西14:58 00:3500:41郑州08:4208:36 05:4905:57武昌03:2803:20 09:1509:21长沙23:5923:5l 16:25广州16:52 参考答案:6小时59分、15小时50分、22小时零6分. (教师总结) 师:平常所说的“时间”,有时指时刻,有时指时间间隔,如有人问你:“你们什么时间上课啊?”这里的时间是指时间间隔吗? 生:不是,实际上这里的时间就是指的时刻. 师:我们可以用数轴形象地表示出时刻和时间间隔. 教师课件投放教材图1.2-1所显示的问题,将其做成F1ash动画. 学生分组讨论,然后说说怎样用时间轴表示时间和时刻. 生:时刻:在时间坐标轴上用一点来表示时刻.时间:两个时刻的间隔表示一段时间.一段时间在时间坐标轴上用一线段表示. 师:为了用具体数字说明时间,必须选择某一时刻作为计时起点,计时起点的选择是人为的.单位秒(s). 师:下图1-2-1给出了时间轴,请你说出第3秒,前3秒,第3秒初第3秒末,第n秒的意义. 答: 1.学习了时间与时刻,蓝仔、红孩、紫珠和黑柱发表了如下一些说法,正确的是…() A.蓝仔说,下午2点上课,2点是我们上课的时刻 B.红孩说,下午2点上课,2点是我们上课的时间 C.紫珠说,下午2点上课,2点45分下课,上课的时刻是45分钟 D.黑柱说,2点45分下课,2点45分是我们下课的时间 答案:A 2.关于时刻和时间,下列说法中正确的是() A.时刻表示时间较短,时间表示时间较长B.时刻对应位置,时间对应位移 C.作息时间表上的数字表示时刻D.1min内有60个时刻 答案:BC 解析:紧扣时间和时刻的定义及位置、位移与时刻、时间的关系,可知B、C正确,A错.一段时间内有无数个时刻,因而D错. 以下提供几个课堂讨论与交流的例子,仅供参考. [讨论与交流]:我国在20__年10月成功地进行了首次载人航天飞行.10月15日09时0分,“神舟”五号飞船点火,经9小时40分50秒至15日18时40分50秒,我国宇航员杨利伟在太空中层示中国国旗和联合国旗,再经11小时42分10秒至16日06时23分,飞船在内蒙古中部地区成为着陆.在上面给出的时间或时刻中,哪些指的是时间,哪些又指的是时刻? 参考答案:这里的“10月15日09时0分”、“15日18时40分50秒”和“16日06时23分”,分别是指这次航天飞行点火、展示国旗和着陆的时刻,而“9小时40分50秒”和“11小时62分10秒”分别指的是从点火到展示国旗和从展示国旗到着陆所用的时间. 二、路程和位移 (情景展示)中国西部的塔克拉玛干沙漠是我国的沙漠,在沙漠中,远眺不见边际,抬头不见飞鸟.沙漠中布满了100~200m高的沙丘.像大海的巨浪,人们把它称为“死亡之海”. 许多穿越这个沙漠的勇士常常迷路,甚至因此而丧生.归结他们失败的原因都是因为在沙漠中搞不清这样三个问题:我在哪里?我要去哪里?选哪条路线?而这三个问题涉及三个描述物体运动的物理量:位置、位移、路程. 师:(投影中国地图)让学生思考:从北京到重庆,观察地图,你有哪些不同的选择?这些选择有何相同或不同之处? 生:从北京到重庆,可以乘汽车,也可以乘火车或飞机,还可以中途改变交通工具.选择的路线不同,运动轨迹不同,但就位置变动而言,都是从北京来到了重庆. 师:根据上面的学习,你能给出位移及路程的定义吗? 生:位移:从物体运动的起点指向运动的终点的有向线段.位移是表示物体位置变化的物理量.国际单位为米(m). 路程:路程是质点实际运动轨迹的长度.(板) 在坐标系中,我们也可以用数学的方法表示出位移. 实例:质点从A点运动到B点,我们可以用有方向的线段来表示位移,从初始位置A向末位置B画有向线段,展示教材图1.2-3. [讨论与交流] 请看下面的一段对话,找出里面的哪些语言描述了位置,哪些语言描述了位置的变动.哪些是指路程,哪些是指位移. 甲:同学,请问红孩去哪里了? 乙:他去图书室了,五分钟前还在这儿. 甲:图书室在哪儿? 乙指着东北的方向说:在那个方位. 甲:我还是不知道怎么走过去,有最近的路可去吗? 乙:你可以从这儿向东到孔子像前再往北走,就能看见了. 丙加入进来,说道;也可以先向北走,再向东,因为那边有好风景可看. 甲:最近要多远? 乙:大概要三百米吧. 丙开玩笑说;不用,你如果能从索道直线到达也就是一百米. 乙:别骗人了,哪有索道啊! 丙:我是开玩笑的,那只好辛苦你了,要走曲线. 甲:谢谢你们两位,我去找他了. 学生分组讨论后,选代表回答问题. 生1:乙手指的方向--东北,就是甲在找红孩的过程中发生的位移的方向. 生2:里面的三百米是指路程,一百米的直线距离是指位移的大小. 生3:他们谈话的位置和图书室是两个位置,也就是甲在找红孩过程中的初末位置. 请你举出生活中更常见的例子说明路程和位移.(围绕跑道跑一圈的位移和路程) [讨论与思考] 1.(用课件展示中国地图)在地图上查找上海到乌鲁木齐的铁路.请根据地图中的比例尺估算一下,坐火车从上海到乌鲁木齐的位移和经过的路程分别是多少? 阅读下面的对话: 甲:请问到市图书馆怎么走? 乙:从你所在的市中心向南走400m到一个十字路口,再向东走300m就到了. 甲:谢谢! 乙:不用客气. 请在图1-2-3上把甲要经过的路程和位移表示出来. 师:请你归纳一下:位移和路程有什么不同? 生1:位移是矢量,有向线段的长度表示其大小,有向线段的方向表示位移的方向. 生2:质点的位移与运动路径无关,只与初位置、末位置有关. 生3:位移与路程不同,路程是质点运动轨迹的长度,路程只有大小没有方向,是标量. 教师提出问题 师:位移的大小有没有等于路程的时候? 学生讨论后回答,并交流自己的看法. 生:在直线运动中,位移的大小就等于路程。 教师适时点拨,画一往复直线运动给学生讨论. 生:在单方向的直线运动中,位移的大小就等于路程. 教师总结 师:只有在单向直线运动中,位移的大小才等于路程,在其他情况中,路程要大于位移的大小. [课堂训练] 下列关于位移和路程的说法中,正确的是………………() A位移大小和路程不一定相等,所以位移才不等于路程 B位移的大小等于路程,方向由起点指向终点 C位移描述物体相对位置的变化,路程描述路径的长短 D位移描述直线运动,路程描述曲线运动 答案:C 解析:A选项表述的因果关系没有意义,故A错.位移的方向可以用从初位置指末位置的有向线段来表示,但位移的大小并不等于路程,往往是位移的大小小于等于路程,故选项B错.位移和路程是两个不同的物理量,位移描述物体位置的变化,路程描述物体运动路径的长短,所以选项C正确.位移的大小和路程不一定相等,只有当物体做单向直线运动时,位移的大小才等于路程.无论是位移还是路程都既可以描述直线运动,也可以描述曲线运动,故选项D也是错误的. 三、矢量和标量 师:像位移这样的物理量,既有大小又有方向,我们以前学过的物理量很多都只有大小,没有方向,请同学们回忆并说给大家听听. 学生讨论后回答 生:温度、质量、体积、长度、时间、路程. 对于讨论中学生可能提出这样的问题,像电流、压强这两个学生学过的物理量,它们是有方向的,但它们仍然是标量.这在以后的学习中会更进一步加深对矢量和标量的认识. 学生阅读课文后,说说矢量和标量的算法有什么不同. 生:两个标量相加遵从算术加法的法则. [讨论与思考] 一位同学从操场中心A出发,向北走了40m,到达C点,然后又向东走了30m,到达B点.用有向线段表明他第一次、第二次的位移和两次行走的合位移(即代表他的位置变化的最后结果的位移).三个位移的大小各是多少?你能通过这个实例总结出矢量相加的法则吗? 解析:画图如图1-2-4所示.矢量相加的法则是平行四边形法则. [讨论与思考] 气球升到离地面80m高空时,从气球上掉下一物体,物体又上升了10m高后才开始下落,规定向上方向为正方向.讨论并回答下列问题,体会矢量的表示方向. (1)物体从离开气球开始到落到地面时的位移大小是多少米?方向如何? (2)表示物体的位移有几种方式?其他矢量是否都能这样表示?注意体会“+”“-”号在表示方向上的作用. 解析:(1)一80m,方向竖直向下;(2)到现在有三种:语言表述法,如“位移的大小为80m,方向竖直向下”;矢量图法;“+”“一”号法,如“规定竖直向上为正方向,则物体的位移为一80m”. [课堂训练] (播放1500m比赛的录像片断) 在标准的运动场上将要进行1500米赛跑,上午9时20分50秒,发令枪响,某运动员从跑道上最内圈的起跑点出发,绕运动场跑了3圈多,到达终点,成绩是4分38秒.请根据上面的信息讨论以下问题,并注意题中有关时间、时刻、路程、位置变化的准确含义. (1)该运动员从起跑点到达终点所花的时间是多少?(4分38秒)起跑和到达的时刻分别是多少?(上午9时20分50秒、上午9时25分28秒) (2)该运动员跑过的路程是多少?(1500米)他的位置变化如何?(起跑点到终点的连线) 四、直线运动的位置和位移 提出问题:我们怎样用数学的方法描述直线运动的位置和位移? 如果物体做的是直线运动,运动中的某一时刻对应的是物体处在某一位置,如果是一段时间,对应的是这段时间内物体的位移. 如图1-2-6所示,物体在时刻t1处于“位置”x1,在时刻t2运动到“位置”x2 那么(x2-x1)就是物体的“位移”,记为Δx=x2-x1 可见,要描述直线运动的位置和位移,只需建立一维坐标系,用坐标表示位置,用位置坐标的变化量表示物体位移. 在一维坐标系中,用正、负表示运动物体位移的方向.如图1-2-7所示汽车A的位移为负值,B的位移则为正值.表明汽车B的位移方向为x轴正向,汽车A的位移方向为x轴负向. 课后小结 时间和时刻这两个概念是同学们很容易混淆的,同学们要掌握时间坐标轴.在时间轴上,用点表示时刻,用线段表示一段时间间隔.位移和路程是两个不同的物理量,位移是用来表示质点变动的,它的大小等于运动物体初、末位置间的距离,它的方向是从初位置指向末位置,是矢量;而路程是物体实际运动路径的长度,是标量.只有物体做单向直线运动时,其位移大小才和路程相等,除此以外,物体的位移的大小总是小于路程.找位移的办法是从初位置到末位置间画有向线段.有向线段的方向就是位移的方向,有向线段的长度就是位移的大小.时刻对应位置,时间对应位移.在位置坐标轴上,用点来表示位置,用有向线段来表示位移. 本节课用到的数学知识和方法:用数轴来表示时间轴和位移轴,在时间轴上,点表示时刻,线段表示时间间隔.要选计时起点(零时刻),计时起点前的时刻为负,计时起点后的时刻为正;在位移轴上,点表示某一时刻的位置,线段表示某段时间内的位移.要选位置参考点(位置零点),直线运动中,可选某一单一方向作为正方向,朝正方向离开参考点的位置都为正,朝负方向离开参考点的位置都为负.位移方向与规定方向相同时为正,相反时为负.标量遵从算术加法的法则,矢量遵从三角形定则(或平行四边形定则,以后会学到,不让学生知道). 课后习题 教材第16页问题与练习。 教学目标 知识目标 1、知道什么是机械运动,什么是参考系,知道运动和静止的相对性. 2、理解质点的概念,知道质点是用来代替实际物体的有质量的点,是一种理想化的物理模型,知道是否能把研究对象看作质点要根据研究的问题决定. 3、知道时间和时刻的区别与联系. 4、理解位移的概念,知道位移是表示质点位置变化的物理量,是矢量,能够区别位移和路程. 能力目标 1、培养学生自主学习的能力,训练学生发现问题,提出问题,解决问题的能力. 2、培养学生的实验能力,学会使用打点计时器,并会通过分析纸带上的数据得出相应的结论. 情感目标 1、激发学生学习兴趣,培养学生良好的意志品质. 教材分析 本节教材主要有以下一些概念:机械运动,参考系,质点,时刻和时间间隔,位移和路程,重点是质点和位移的概念,难点是位移概念.教材在本章开始处列举了大量的实例,给出机械运动的概念,在本节一开始,也是通过生动的实例,给出参考系的概念,接着从研究对象的角度,学习质点的概念,渗透理想化思维方法;再进一步学习时刻与时间,位移和路程等概念.每一小节重点突出,又相互关联,实例鲜明,配图恰当,便于学生的接受,是进一步学习的基础. 教法建议 本节教材的特点是概念较多,很多知识初中时学过,并且这些知识与生活实际密切相关,建议让同学自学讨论的方法进行,可让同学提前预习或课上给出时间看书,教师提出一些问题,或让同学看书后提出问题,展开讨论,达到掌握知识,提高能力的目的,并结合多媒体资料加深理解和巩固. 教学设计示例 教学重点:质点和位移的概念 教学难点:位移概念的引入与理解 主要设计: 一、参考系: (一)提出问题,引起思考和讨论. 1、什么叫机械运动?请举一些实例说明. 2、描述物体是否运动,先要选定什么?看什么量是否在改变?什么叫参考系?为什么说运动是绝对的,静止是相对的? 3、同一运动,如果选取的参考系不同,运动情况一般不同,请举例说明. 4、选择参考系的原则是什么?(虽然参考系可以任意选取,但实际上总是本着观测方便和使运动的描述尽可能简单的原则选取) (二)展示多媒体资料,加深理解(穿插在讨论问题之间进行) 1、太阳系资料:行星绕太阳运转情况. 2、银河系资料:星系旋转情况. 3、电子绕原子核运转情况. 4、飞机空投物资情况. 二、质点: (一)提出问题,引起思考和讨论: 1、投掷手榴弹时怎样测量投掷距离?把教室的椅子从第五排移到第一排怎样测量椅子移动的距高?汽车绕操场一周怎样测量它经过的距离?以上几种情况用不用考虑这些物体的形状和大小? 2、什么叫质点? 3、小物体一定能看成质点吗?大物体一定不能看成质点吗?请举例说明? 4、什么叫轨迹?什么叫直线运动?什么叫曲线运动? (二)展示多媒体资料,加深理解. 1、火车(200米长)穿山洞(100米长)情况. 2、地球公转及自转情况. (三)总结提高: 1、对于什么样的物体才可以看成质点的问题,关键在于对物体的运动情况进行具体分析,在我们研究的问题中,物体的形状、大小,各部分运动的差异等,如果对我们研究的问题影响不大,就可以把该物体看成一个质点. 2、学习质点概念时,要有意识地向学生介绍一种科学抽象的方法,我们抓住问题中物体的主要特征,简化对物体的研究,把物体看成一个点,这是实际物体的一种理想化模型,是实际物体的一种近似. 三、时刻和时间间隔 提出问题,引起思考和讨论. 1、“上午8时开始上课”,到“8时45分下课”,这里“8时”和“8时45分”的含义各是什么?“每一节课45分”的含义又是什么? 2、“现在是北京时间8点整”中“8点”的含义是什么? 3、校百米纪录是10.21s、第2s末、第2s内的含义各是什么? 四、位移和路程 (一)提出问题引起思考和讨论: 1、说“物体由A点移动500米到达B点”,清楚吗? 2、如何描述物体位置的变化? 3、什么叫位移?为什么说位移是矢量? 4、位移和路程有什么区别?它们之间有关系吗? (二)展示多媒体资料,加深理解. 1、从天津到上海,海、陆、空三种路线抵达情况. 2、在400米跑道上进行200米跑和400米跑情况. 探究活动 1、请你手托一石子水平匀速前进,突然释放石子,观察石子的运动情况?再请站在路边的人观察石子的运动情况.二者观察到的运动轨迹一样吗?请解释原因. 2、找一份《旅客列车时刻表》分析一下趟列车全程运行的总时间?各站点的停留时间?相邻两站间的运行时间? 教学目标 知识目标 1、知道曲线运动是一种变速运动,它在某点的瞬时速度方向在曲线这一点的切线上。 2、理解物体做曲线运动的条件是所受合外力与初速度不在同一直线上。 能力目标 培养学生观察实验和分析推理的能力。 情感目标 激发学生学习兴趣,培养学生探究物理问题的习惯。 教材分析 本节教材主要有两个知识点:曲线运动的速度方向和物体做曲线运动的条件。教材一开始提出曲线运动与直线运动的明显区别,引出曲线运动的速度方向问题,紧接着通过观察一些常见的现象,得到曲线运动中速度方向是时刻改变的,质点在某一点(或某一时刻)的速度方向是曲线的这一点(或这一时刻)的切线方向。再结合矢量的特点,给出曲线运动是变速运动。关于物体做曲线运动的条件,教材从实验入手得到:当运动物体所受合外力的方向跟它的速度方向不在同一直线上时,物体就做曲线运动。再通过实例加以说明,最后从牛顿第二定律角度从理论上加以分析。教材的编排自然顺畅,适合学生由特殊到一般再到特殊的认知规律,感性知识和理性知识相互渗透,适合对学生进行探求物理知识的训练:创造情境,提出问题,探求规律,验证规律,解释规律,理解规律,自然顺畅,严密合理。本节教材的知识内容和能力因素,是对前面所学知识的重要补充,是对运动和力的关系的进一步理解和完善,是进一步学习的`基础。 教法建议 “关于曲线运动的速度方向”的教学建议是:首先让学生明确曲线运动是普遍存在的,通过图片、动画,或让学生举例,接着提出问题,怎样确定做曲线运动的物体在任意时刻速度的方向呢?可让学生先提出自己的看法,然后展示录像资料,让学生总结出结论。接着通过分析速度的矢量性及加速度的定义,得到曲线运动是变速运动。 “关于物体做曲线运动的条件”的教学建议是:可以按照教材的编排先做演示实验,引导学生提问题:物体做曲线运动的条件是什么?得到结论,再从力和运动的关系角度加以解释。如果学生基础较好,也可以运用逻辑推理的方法,先从理论上分析,然后做实验加以验证。 教学设计方案 教学重点:曲线运动的速度方向;物体做曲线运动的条件 教学难点:物体做曲线运动的条件 主要教学过程设计: 一、曲线运动的速度方向: (一)让学生举例:物体做曲线运动的一些实例 (二)展示图片资料 1、上海南浦大桥 2、导弹做曲线运动 3、汽车做曲线运动 (三)展示录像资料: 1、弯道上行驶的自行车通过以上内容增强学生对曲线运动的感性认识,紧接着提出曲线运动的速度方向问题: (四)让学生讨论或猜测,曲线运动的速度方向应该怎样? (五)展示录像资料 1:火星儿沿砂轮切线飞出 2:沾有水珠的自行车后轮原地运转 (六)让学生总结出曲线运动的方向 (七)引导学生分析推理:速度是矢量→速度方向变化,速度矢量就发生了变化→具有加速度→曲线运动是变速运动。 二、物体做曲线运动的条件: [方案一] (一)提出问题,引起思考:沿水平直线滚动的小球,若在它前进的方向或相反方向施加外力,小球的运动情况将如何?若在其侧向施加外力,运动情况将如何? (二)演示实验;钢珠在磁铁作用下做曲线运动的情况,或钢珠沿水平直线运动之后飞离桌面的情况。 (三)请同学分析得出结论,并通过其它实例加以巩固。 (四)引导同学从力和运动的关系角度从理论上加以分析。 [方案二] (一)由物体受到合外力方向与初速度共线时,物体做直线运动引入课题,教师提出问题请同学思考:如果合外力垂直于速度方向,速度的大小会发生改变吗?进而将问题展开,运用力的分解知识,引导学生认识力改变运动状态的两种特殊情况: 1、当力与速度共线时,力会改变速度的大小; 2、力与速度方向垂直时,力只会改变速度方向。 最后归结到:当力与初速度成角度时,物体只能做曲线运动,确定物体做哪一种运动的依据是合外力与初速度的关系。 (二)通过演示实验加以验证,通过举生活实例加以巩固: 展示课件三,人造卫星做曲线运动,让学生进一步认识曲线运动的相关知识。 课件2,抛出的手榴弹做曲线运动,加强认识。 探究活动 观察并思考,现实生活中物体做曲线运动的实例,并分析物体所受合外力的情况与各点速度的关系。 学习目标: 1.知道滑动摩擦产生的条件,会正确判断滑动摩擦力的方向。 2.会用公式F=μFN计算滑动摩擦力的大小,知道影响动摩擦因数的大小因素。 3.知道静摩擦力的产生条件,能判断静摩擦力的有无以及大小和方向。 4.理解静摩擦力。能根据二力平衡条件确定静摩擦力的大小。 学习重点: 1.滑动摩擦力产生的条件及规律,并会用F摩=μFN解决具体问题。 2.静摩擦力产生的条件及规律,正确理解静摩擦力的概念。 学习难点: 1.正压力FN的确定。 2.静摩擦力的有无、大小的判定。 主要内容: 一、摩擦力 一个物体在另一个物体上滑动时,或者在另一个物体上有滑动的趋势时我们会感到它们之间有相互阻碍的作用,这就是摩擦,这种情况下产生力我们就称为摩擦力。固体、液体、气体的接触面上都会有摩擦作用。 二、滑动摩擦力 1.产生:一个物体在另一个物体表面上相对于另一个物体发生相对滑动时,另一个物体阻碍它相对滑动的力称为滑动摩擦力。 2.产生条件:相互接触、相互挤压、相对运动、表面粗糙。 ①两个物体直接接触、相互挤压有弹力产生。 摩擦力与弹力一样属接触作用力,但两个物体直接接触并不挤压就不会出现摩擦力。挤压的效果是有压力产生。压力就是一个物体对另一个物体表面的垂直作用力,也叫正压力,压力属弹力,可依上一节有关弹力的知识判断有无压力产生。 ②接触面粗糙。当一个物体沿另一物体表面滑动时,接触面粗糙,各凹凸不平的部分互相啮合,形成阻碍相对运动的力,即为摩擦力。凡题中写明“接触面光滑”、“光滑小球”等,统统不考虑摩擦力(“光滑”是一个理想化模型)。 ③接触面上发生相对运动。 特别注意:“相对运动”与“物体运动”不是同一概念,“相对运动”是指受力物体相对于施力物体(以施力物体为参照物)的位置发生了改变;而“物体的运动”一般指物体相对地面的位置发生了改变。 3.方向:总与接触面相切,且与相对运动方向相反。 这里的“相对”是指相互接触发生摩擦的物体,而不是相对别的物体。滑动摩擦力的方向跟物体的相对运动的方向相反,但并非一定与物体的运动方向相反。 4.大小:与压力成正比F=μFN ①压力FN与重力G是两种不同性质的力,它们在大小上可以相等,也可以不等,也可以毫无关系,用力将物块压在竖直墙上且让物块沿墙面下滑,物块与墙面间的压力就与物块重力无关,不要一提到压力,就联想到放在水平地面上的物体,认为物体对支承面的压力的大小一定等于物体的重力。 ②μ是比例常数,称为动摩擦因数,没有单位,只有大小,数值与相互接触的______、接触面的______程度有关。在通常情况下,μ<1。 ③计算公式表明:滑动摩擦力F的大小只由μ和FN共同决定,跟物体的运动情况、接触面的大小等无关。 5.滑动摩擦力的作用点:在两个物体的接触面上的受力物体上。 问题:1.相对运动和运动有什么区别?请举例说明。 2.压力FN的值一定等于物体的重力吗?请举例说明。 3.滑动摩擦力的大小与物体间的接触面积有关吗? 4.滑动摩擦力的大小跟物体间相对运动的速度有关吗? 三、静摩擦力 1.产生:两个物体满足产生摩擦力的条件,有相对运动趋势时,物体间所产生的阻碍相对运动趋势的力叫静摩擦力。 2.产生条件: ①两物体直接接触、相互挤压有弹力产生; ②接触面粗糙; ③两物体保持相对静止但有相对运动趋势。 所谓“相对运动趋势”,就是说假设没有静摩擦力的存在,物体间就会发生相对运动。比如物体静止在斜面上就是由于有静摩擦力存在;如果接触面光滑.没有静摩擦力,则由于重力的作用,物体会沿斜面下滑。 一、教材分析 本节教材选自人民教育出版社全日制普通高中课程标准实验教科书(物理2·必修)第五章《曲线运动》第六节《向心力》。 教材的内容方面来看,本章节主要讲解了向心力的定义、定义式、方向及验证向心力的表达式,变速圆周运动和一般曲线运动。前面几节已经学习了曲线运动、圆周运动、向心加速度,这节讲的是描述使物体做圆周运动的合外力,是对物体运动认识上的升华,为接下来万有引力的的学习奠定了基础。所以在整个教材体系中起了承上启下的作用,并且这样的安排由简单到复杂,符合学生的认知规律。 从教材的地位和作用方面来看,本章节是运动学中的重要概念,也是高一年级物理课程中比较重要的概念之一,是对物体运动认识上的升华,它把运动学和动力学联系在了一起,具有承上启下的桥梁作用,也是学生知识系统中不可或缺的重要组成部分。 二、学情分析 【知识基础方面】在学习本节课前学生已经学习了曲线运动、圆周运动、向心加速度,具备了探究向心力的基本知识和基本技能,这为本节课的探究性学习起到了铺垫作用。 【思维基础方面】高一的学生通过初中科学和第一学期的学习,具有了一定的物理思维方法和较强的计算能力,但接受能力尚欠缺,需要教师正确的引导和启发。 【情感态度方面】在学生的生活经验中,与向心力有关的现象有,但是有一些是错误的这就给学生理解向心力的概念带来困难。 三、教学目标 【知识技能目标】理解向心力的定义; 能说出向心力的定义、写出向心力的定义式和单位理解向心力的作用效果;用圆锥摆粗略验证向心力的表达式; 【过程方法目标】 通过对向心力,向心加速度,圆周运动,牛顿第二定律的理解与学习,相互联系,体验对物理概念的学习方法 【情感态度与价值观目标】 通过用概念前后联系的方法得出加速度的概念,感悟到探索问题解决问题的兴趣和学无止境的观点; 通过向心力的教学引导学生从现实的生活经历与体验出发,激发学生的学习兴趣;通过一些有趣的实验实验,加深学生的印象,容易让学生理解,引起学生兴趣; 四、重点与难点 重点:向心力表达式验证,向心力来源与作用效果。设定一定运动情景,来验证向心力表达式。来源进行举例说明,进行受力分析。(重点如何落实) 难点:向心力表达式的验证。通过用圆锥摆粗滤验证表达式,通过圆锥摆做匀速圆周运动解释原理,分析其在运动角度和手里角度的合外力,测量数据与测量器材,一步步得出表达式的正确。(难点咋么突破) 五、教学方法与手段 教学方法:演示法,讲授法,讨论法教学手段:多媒体,口述 六、教学过程 1.引入 回顾本章内容,复习向心加速度,放一个有关视屏,向同学提问物体为甚么做圆周运动? 2.新课教学(熟悉一下过渡) 一、做小球做圆周运动的实验,多问题进行思考,得出向心力特点进行总结 二、教授有关向心力的有关知识并进行一定补充。 三、用圆锥摆粗滤验证向心力表达式小结:向心力定义表达式高中物理教案篇14
高中物理教案篇15
高中物理教案篇16
高中物理教案篇17
高中物理教案篇18
高中物理教案篇19
高中物理教案篇20
高中物理教案篇21
高中物理教案篇22
高中物理教案篇23
高中物理教案篇24
高中物理教案篇25
高中物理教案篇26
高中物理教案篇27
高中物理教案篇28
高中物理教案篇29
高中物理教案篇30