初二物理岳麓版教案
物理教案设计是改善课堂教学的一种更高层次的探索,是提高课堂教学质量和效率的一项必要工作,它可以促进教学的系统化,使老师掌握讲课节奏。下面是小编为大家整理的5篇初二物理岳麓版教案内容,感谢大家阅读,希望能对大家有所帮助!
初二物理岳麓版教案【篇1】
生活中的圆周运动
整体设计
圆周运动是生活中普遍存在的一种运动.通过一些生活中存在的圆周运动,让学生理解向心力和向心加速度的作用,知道其存在的危害及如何利用.通过对航天器中的失重想象让学生理解向心力是由物体所受的合力提供的,任何一种力都有可能提供物体做圆周运动的向心力.通过对离心运动的学习让学生知道离心现象,并能充分利用离心运动且避免因离心运动而造成的危害.本节内容着重于知识的理解应用,学生对于一些内容不易理解,因此在教学时注意用一些贴近学生的生活实例或是让学生通过动手实验来得到结论.注意引导学生应用牛顿第二定律和有关向心力知识分析实例,使学生深刻理解向心力的基础知识;熟练掌握应用向心力知识分析两类圆周运动模型的步骤和方法.锻炼学生观察、分析、抽象、建模的解决实际问题的方法和能力;培养学生的主动探索精神、应用实践能力和思维创新意识.
教学重点
1.理解向心力是一种效果力.
2.在具体问题中能找到向心力,并结合牛顿运动定律求解有关问题.
教学难点
1.具体问题中向心力的来源.
2.关于对临界问题的讨论和分析.
3.对变速圆周运动的理解和处理.
课时安排
1课时
三维目标
知识与技能
1.知道如果一个力或几个力的合力的效果是使物体产生向心加速度,它就是圆周运动的物体所受的向心力,会在具体问题中分析向心力的来源.
2.能理解运用匀速圆周运动的规律分析和处理生产和生活中的具体实例.
3.知道向心力和向心加速度的公式也适用于变速圆周运动,会求变速圆周运动中物体在特殊点的向心力和向心加速度.
过程与方法
1.通过对匀速圆周运动的实例分析,渗透理论联系实际的观点,提高学生的分析和解决问题的能力.
2.通过匀速圆周运动的规律也可以在变速圆周运动中使用,渗透特殊性和一般性之间的辩证关系,提高学生的分析能力.
3.通过对离心现象的实例分析,提高学生综合应用知识解决问题的能力.
情感态度与价值观
培养学生的应用实践能力和思维创新意识;运用生活中的几个事例,激发学生的学习兴趣、求知欲和探索动机;通过对实例的分析,建立具体问题具体分析的科学观念.
教学过程
导入新课
情景导入
赛车在经过弯道时都会减速,如果不减速赛车就会出现侧滑,从而引发事故.大家思考一下我们如何才能使赛车在弯道上不减速通过?
课件展示自行车赛中自行车在通过弯道时的情景.
根据展示可以看出自行车在通过弯道时都是向内侧倾斜,这样的目的是什么?赛场有什么特点?学生讨论
结论:赛车和自行车都在做圆周运动,都需要一个向心力.而向心力是车轮与地面的摩擦力提供的,由于摩擦力的大小是有限的,当赛车与地面的摩擦力不足以提供向心力时赛车就会发生侧滑,发生事故.因此赛车在经过弯道时要减速行驶.而自行车在经过弯道时自行车手会将身体向内侧倾斜,这样身体的重力就会产生一个向里的分力和地面的摩擦力一起提供自行车所需的向心力,因此自行车手在经过弯道时没有减速.同样道理摩托车赛中摩托车在经过弯道时也不减速,而是通过倾斜摩托车来达到同样的目的.
下面大家考虑一下,火车在通过弯道时也不减速,那么我们如何来保证火车的安全呢?
复习导入
1.向心加速度的公式:an= =rω2=r( )2.
2.向心力的公式:Fn=m an= m =m rω2=mr( )2.
推进新课
一、铁路的弯道
课件展示观察铁轨和火车车轮的形状.
讨论与探究
火车转弯特点:火车转弯是一段圆周运动,圆周轨道为弯道所在的水平轨道平面.
受力分析,确定向心力(向心力由铁轨和车轮轮缘的相互挤压作用产生的弹力提供).
缺点:向心力由铁轨和车轮轮缘的相互挤压作用产生的弹力提供,由于火车质量大,速度快,由公式F向=mv2/r,向心力很大,对火车和铁轨损害很大.
问题:如何解决这个问题呢?(联系自行车通过弯道的情况考虑)
事实上在火车转弯处,外轨要比内轨略微高一点,形成一个斜面,火车受的重力和支持力的合力提供向心力,对内外轨都无挤压,这样就达到了保护铁轨的目的.
强调说明:向心力是水平的.
F向= mv02/r = F合= mgtanθ
v0= (1)当v= v0,F向=F合
内外轨道对火车两侧车轮轮缘都无压力.
(2)当v>v0,F向>F合时
外轨道对外侧车轮轮缘有压力.
(3)当v
内轨道对内侧车轮轮缘有压力.
要使火车转弯时损害最小,应以规定速度转弯,此时内外轨道对火车两侧车轮轮缘都无压力.
二、拱形桥
课件展示交通工具(自行车、汽车等)过拱形桥.
问题情境:
质量为m的汽车在拱形桥上以速度v行驶,若桥面的圆弧半径为R,试画出受力分析图,分析汽车通过桥的点时对桥的压力.通过分析,你可以得出什么结论?
画出汽车的受力图,推导出汽车对桥面的压力.
思路:在点,对汽车进行受力分析,确定向心力的来源;由牛顿第二定律列出方程求出汽车受到的支持力;由牛顿第三定律求出桥面受到的压力FN′=G 可见,汽车对桥的压力FN′小于汽车的重力G,并且,压力随汽车速度的增大而减小.
思维拓展
汽车通过凹形桥最低点时,汽车对桥的压力比汽车的重力大还是小呢?学生自主画图分析,教师巡回指导.
课堂训练
一辆质量m=2.0 t的小轿车,驶过半径R=90 m的一段圆弧形桥面,重力加速度g=10 m/s2.求:
(1)若桥面为凹形,汽车以20 m/s的速度通过桥面最低点时,对桥面压力是多大?
(2)若桥面为凸形,汽车以10 m/s的速度通过桥面点时,对桥面压力是多大?
(3)汽车以多大速度通过凸形桥面顶点时,对桥面刚好没有压力?
解答:(1)汽车通过凹形桥面最低点时,在水平方向受到牵引力F和阻力f.在竖直方向受到桥面向上的支持力N1和向下的重力G=mg,如图所示.圆弧形轨道的圆心在汽车上方,支持力N1与重力G=mg的合力为N1-mg,这个合力就是汽车通过桥面最低点时的向心力,即F向=N1-mg.由向心力公式有:N1-mg= 解得桥面的支持力大小为
N1= +mg=(2 000× +2 000×10)N=2.89×104 N
根据牛顿第三定律,汽车对桥面最低点的压力大小是2.98×104 N.
(2)汽车通过凸形桥面点时,在水平方向受到牵引力F和阻力f,在竖直方向受到竖直向下的重力G=mg和桥面向上的支持力N2,如图所示.圆弧形轨道的圆心在汽车的下方,重力G=mg与支持力N2的合力为mg-N2,这个合力就是汽车通过桥面顶点时的向心力,即F向=mg-N2,由向心力公式有mg-N2= 解得桥面的支持力大小为N2=mg =(2 000×10-2 000× )N=1.78×104 N
根据牛顿第三定律,汽车在桥的顶点时对桥面压力的大小为1.78×104 N.
(3)设汽车速度为vm时,通过凸形桥面顶点时对桥面压力为零.根据牛顿第三定律,这时桥面对汽车的支持力也为零,汽车在竖直方向只受到重力G作用,重力G=mg就是汽车驶过桥顶点时的向心力,即F向=mg,由向心力公式有mg= 解得:vm= m/s=30 m/s
汽车以30 m/s的速度通过桥面顶点时,对桥面刚好没有压力.
说一说
汽车不在拱形桥的点或最低点时,它的运动能用上面的方法求解吗?
汽车受到重力和垂直于支持面的支持力,将重力分解为平行于支持面和垂直于支持面的两个分力,这样,在垂直于支持面的方向上重力的分力和支持力的合力提供向心力.三、航天器中的失重现象
引导学生阅读教材“思考与讨论”中提出的问题情境,用学过的知识加以分析,发表自己的见解.上面“思考与讨论”中描述的情景其实已经实现,不过不是在汽车上,而是在航天飞行中.
假设宇宙飞船质量为M,它在地球表面附近绕地球做匀速圆周运动,其轨道半径近似等于地球半径R,航天员质量为m,宇宙飞船和航天员受到的地球引力近似等于他们在地面的重力.试求座舱对宇航员的支持力.此时飞船的速度多大?
通过求解,你可以得出什么结论?
其实在任何关闭了发动机,又不受阻力的飞行器中,都是一个完全失重的环境.其中所有的物体都处于完全失重状态.
四、离心运动
问题:做圆周运动的物体一旦失去向心力的作用,它会怎样运动呢?如果物体受的合力不足以提供向心力,它会怎样运动呢?
结论:如果向心力突然消失,物体由于惯性,会沿切线方向飞出去.如果物体受的合力不足以提供向心力,物体虽不能沿切线方向飞出去,但会逐渐远离圆心.这两种运动都叫做离心运动.
结合生活实际,举出物体做离心运动的例子.在这些例子中,离心运动是有益的还是有害的?你能说出这些例子中离心运动是怎样发生的吗?
参考答案:①洗衣机脱水②棉砂糖③制作无缝钢管④魔盘游戏⑤汽车转弯⑥转动的砂轮速度不能过大
汽车转弯时速度过大,会因离心运动造成交通事故
水滴的离心运动洗衣机的脱水筒
总结:1.提供的外力F超过所需的向心力,物体靠近圆心运动.
2.提供的外力F恰好等于所需的向心力,物体做匀速圆周运动.
3.提供的外力F小于所需的向心力,物体远离圆心运动.
4.物体原先在做匀速圆周运动,突然间外力消失,物体沿切线方向飞出.
例1 如图所示,杂技演员在做水流星表演时,用绳系着装有水的水桶,在竖直平面内做圆周运动,大家讨论一下满足什么条件水才能从水桶中流出来.若水的质量m=0.5 kg,绳长l=60 cm,求:
(1)点水不流出的最小速率.
(2)水在点速率v=3 m/s时,水对桶底的压力.
解析:(1)在点水不流出的条件是重力不大于水做圆周运动所需要的向心力
即mg≤ 则所求最小速率v0= m/s=2.42 m/s.
(2)当水在点的速率大于v0时,只靠重力提供向心力已不足,此时水桶底对水有一向下的压力,设为FN,由牛顿第二定律有
FN+mg= FN= -mg=2.6 N
由牛顿第三定律知,水对桶底的作用力FN′=FN=2.6 N,方向竖直向上.
答案:(1)2.42 m/s (2)2.6 N,方向竖直向上
提示:抓住临界状态,找出临界条件是解决这类极值问题的关键.
课外思考:若本题中将绳换成轻杆,将桶换成球,上面所求的临界速率还适用吗?
课堂训练
1.如图所示,在水平固定的光滑平板上,有一质量为M的质点P,与穿过中央小孔H的轻绳一端连着.平板与小孔是光滑的,用手拉着绳子下端,使质点做半径为a、角速度为ω1的匀速圆周运动.若绳子迅速放松至某一长度b而拉紧,质点就能在以半径为b的圆周上做匀速圆周运动.求质点由半径a到b所需的时间及质点在半径为b的圆周上运动的角速度.
解析:质点在半径为a的圆周上以角速度ω1做匀速圆周运动,其线速度为va=ω1a.突然松绳后,向心力消失,质点沿切线方向飞出以va做匀速直线运动,直到线被拉直,如图所示.质点做匀速直线运动的位移为s= ,则质点由半径a到b所需的时间为:t=s/va= /(ω1a).
当线刚被拉直时,球的速度为va=ω1a,把这一速度分解为垂直于绳的速度vb和沿绳的速度v′.在绳绷紧的过程中v′减为零,质点就以vb沿着半径为b的圆周做匀速圆周运动.根据相似三角形得 ,即 .则质点沿半径为b的圆周做匀速圆周运动的角速度为ω2=a2ω1/b2.
2.一根长l=0.625 m的细绳,一端拴一质量m=0.4 kg的小球,使其在竖直平面内绕绳的另一端做圆周运动,求:
(1)小球通过点时的最小速度;
(2)若小球以速度v=3.0 m/s通过圆周点时,绳对小球的拉力多大?若此时绳突然断了,小球将如何运动?
分析与解答:(1)小球通过圆周点时,受到的重力G=mg必须全部作为向心力F向,否则重力G中的多余部分将把小球拉进圆内,而不能实现沿竖直圆周运动.所以小球通过圆周点的条件应为F向≥mg,当F向=mg时,即小球受到的重力刚好全部作为通过圆周点的向心力,绳对小球恰好不施拉力,如图所示,此时小球的速度就是通过圆周点的最小速度v0,由向心力公式有:mg= 解得:G=mg= v0= m/s=2.5 m/s.
(2)小球通过圆周点时,若速度v大于最小速度v0,所需的向心力F向将大于重力G,这时绳对小球要施拉力F,如图所示,此时有F+mg= 解得:F= -mg=(0.4× -0.4×10)N=1.76 N
若在点时绳子突然断了,则提供的向心力mg小于需要的向心力 ,小球将沿切线方向飞出做离心运动(实际上是平抛运动).
课堂小结
本节课中需要我们掌握的关键是:一个要从力的方面认真分析,搞清谁来提供物体做圆周运动所需的向心力,能提供多大的向心力,是否可以变化;另一个方面从运动的物理量本身去认真分析,看看物体做这样的圆周运动究竟需要多大的向心力.如果供需双方正好相等,则物体将做稳定的圆周运动;如果供大于需,则物体将偏离圆轨道,逐渐靠近圆心;如果供小于需,则物体将偏离圆轨道,逐渐远离圆心;如果外力突然变为零,则物体将沿切线方向做匀速直线运动.布置作业
教材“问题与练习”第1、2、3、4题.
板书设计
8.生活中的圆周运动
一、铁路的弯道
1.轨道水平:外轨对车的弹力提供向心力
轨道斜面:内外轨无弹力时重力和支持力的合力提供向心力
二、拱形桥
拱形桥:FN=G-m 凹形桥:FN=G+m 三、航天器的失重现象
四、离心运动
1.离心现象的分析与讨论
2.离心运动的应用与防止
活动与探究
课题:到公园里亲自坐一下称为“魔盘”的娱乐设施,并研究、讨论:“魔盘”上的人所需向心力由什么力提供?为什么转速一定时,有的人能随之一起做圆周运动,而有的人逐渐向边缘滑去?
观察并思考:
1.汽车、自行车等在水平面上转弯时,为什么速度不能过大?
2.观察滑冰运动员及摩托车运动员在弯道处的姿势,并分析其受力情况.
习题详解
1.解答:因为正常工作时转动轴受到的水平作用力可认为是零,所以转动轴OO′将受到的作用力完全是由小螺丝钉P做圆周运动时需要的向心力引起的.
故力F=mω2r=m(2πn)2r=0.01×(2×3.14×1 000)2×0.20 N=7.89×104 N.
2.解答:这辆车拐弯时需要的向心力为F= =2.0×103× N=1.6×104 N>1.4×104 N
所以这辆车会发生侧滑.
3.解答:(1)汽车在桥顶时受力分析如图所示.
汽车通过拱形桥
则据牛顿第二定律有G-FN= ①
代入数据可得FN=7 600 N,所以由牛顿第三定律有汽车对地面的压力为7 600 N.
(2)当FN=0时,汽车恰好对桥没有压力,此时可得汽车的速度为v=22.4 m/s(g取10 m/s2).
(3)由①式可知,对同样的车速,拱桥圆弧的半径越大,汽车对桥的压力就越大,所以拱桥的半径比较大些安全.
(4)因为腾空时FN=0,所以其速度v= m/s=7 900 m/s
即需要7 900 m/s的速度才能腾空.
4.解答:对小孩的受力分析如图所示,则据牛顿第二定律有
FN-G= 由机械能守恒定律有mgl(1-cos60°)= 两式联立代入数据可得FN=450N,故秋千板摆到最低点时,小孩对秋千板的压力是450N.
设计点评
本节课重点是圆周运动中向心力和向心加速度的应用,关键问题是要找出向心力是由谁来提供.圆周运动和生活密切相关,学生容易受到生活中的定势思维所干扰,对向心力分析不足,所以教学中列举了生活中大量的常见现象,并借助生活中的事例进行辨析,通过师生分析、论证从而得出了正确的结论.
初二物理岳麓版教案【篇2】
[教学要求]
1、力的示意图
2、力的分类
[重点难点]
1、力的分类
[教学要求]
1、力的示意图:(表示力的意思的图,一为逗乐,二为揭示物体名词的命名方式)
用有向线段表示力的方向和作用点的图,叫做力的示意图。(力的图示和力的示意图的区别在于,力的图示除表示力的方向和作用点外,还表示力的大小。即力的大小、方向、作用点,正好是力的三要素。而力的示意图中并不表示力的大小)
2、力的分类(力有许多种分类方式,比如力可以分成接触力和非接触力。但今天我们学习的是其它的分类方法)
①按力的性质分--重力、摩擦力; 弹力、电场力、磁场力、分子力等(性质力)
②按力的效果分--引力、斥力; 压力、支持力、浮力、动力、阻力、拉力等
(每个分类前两个力的后面之所以用分号分开,目的是说,前面的两个力老师直接给出它们是什么力,也通过这四个力让同学们知道什么是“性质力”什么是“效果力”。后面的力,告诉同学们名称,让同学们试着自己分析是性质力还是效果力。以增强同学们的分析能力。这比直接把几个力都写出来效果好多了。)
(这里还有两个没有学过的知识,老师可以提前简单地做一下介绍。第一个是“弹力”,我告诉同学们说,“弹力”这一概念是中学物理中同学们遇到的第一个难理解的概念,它包括三层含义,先是“变形”二是“恢复原状”,三是“产生弹力”,然后叙述:发生形变的物体,由于要恢复原状,对跟它接触的物体产生力的作用,这个力就是弹力。第二个是“电场力”,让同学们想象小学学到的“摩擦起电”中带电体吸引轻小物体,初中学到的“同种电荷相互排斥,异种电荷相互吸引”,实际上物理学上把这种力叫做电场力;同理,磁体间的作用力就叫磁场力。)
(实际上到目前为止,我们所见到的性质力一般不超过这六种)
[巩固练习](练习时间:三分钟)
把下列的力按“性质力”和“效果力”进行分类
弹力、重力、动力、摩擦力、磁力、阻力、压力、支持力、拉力、斥力、引力。
初二物理岳麓版教案【篇3】
一、教学目标
1、 理解自由落体运动,知道它是初速度为零的匀加速直线运动
2、明确物体做自由落体运动的条件
3、理解重力加速度概念,知道它的大小和方向,知道在地球上不同的地方,重力加速度的大小是不同的
4、培养学生实验、观察、推理、归纳的科学意识和方法
5、通过对伽利略自由落体运动研究的学习,培养学生抽象思维能力,并感受先辈大师崇尚科学、勇于探索的人格魅力
二、重点难点
理解在同一地点,一切物体在自由落体运动中的加速度都相同是 本节的重点
掌握并灵活运用自由落体运动规律解决实际问题是难点
三、教学方法
实验—观察—分析—总结
四、教具
牛顿管、抽气机、电火花计时器、纸带、重锤、学生电源、铁架台
五、教学过程
(一)、课前提问:初速为零的匀加速直线运动的规律是怎样的?
vt=at
s =at2/2
vt2 =2as
(二)、自由落体运动
演示1:左手掷一金属片,右手掷一张纸片,在讲台上方从同一高度由静止开始同时释放,让学生观察二者是否同时落地.然后将纸片捏成纸团,重复实验 ,再观察二者是否同时落地.
结论:第一次金属片先落下,纸片后落下,第二次几乎同时落下。
提问:解释观察的现象
显然,空气对纸的阻力影响了纸片的下落,而当它被撮成纸团以后,阻力减小,纸片和金属片才几乎同时着地。
假设纸片和金属片处在真空中同时从同一高度下落,会不会同时着地呢?
演示2:牛顿管实验
自由落体运动:物体只在重力作用下从静止开始下落的运动,叫做自由落体运动。
显然物体做自由落体运动的条件是:
(1)只受重力而不受其他任何力,包括空气阻力。
(2) 从静止开始下落
实际上如果空气阻力的作用同重力相比很小,可以忽略不计,物体的下落也可以看做自由落体运动。
(三)自由落体运动是怎样的直线运动呢?
学生分组实验(每二人一组)
将电火花计时器呈竖直方向固定在铁架台上,让纸带穿过计时器,纸带下方固定在重锤上,先用手提着纸带,使重物静止在靠近计时器下放,然后接通电源,松开纸带,让重物自由下落,计时器就在纸带上打下一系列小点。
运用该纸带分析重锤的运动,可得到:
1、自由落体运动是初速度为零的匀加速直线运动
2、重锤下落的加速度为a=9.8m/s2
(四)自由落体加速度
1、学生阅读课文
提问:什么是重力加速度?标准值为多少?方向指向哪里?用什么字母表示?(略)
2、重力加速度的大小有什么规律?
(1)在地球上同一地点,一切物体的重力加速度都相同。
(2)在地球上不同的地方,重力加速度是不同的,由教材第37页表格可知,纬度愈高,数值愈大。
(3)在通常的计算中,可以把g取作9.8m/s2,在粗略的计算中,还可以把g取作10m/s2
(五)自由落体运动的规律
vt=gt
h=(1/2)gt2 g取9.8m/s2
vt2=2gh
注意式中的h是指下落的高度
(六)课外作业
1、阅读《伽利略对自由落体运动的研究》
2、教材第38页练习八(1)至(4)题
初二物理岳麓版教案【篇4】
课前预习学案
一、 预习目标
1、 说出力的分解的概念
2、 知道力的分解要根据实际情况确定
3、 知道矢量、标量的概念
二、预习内容
1、力的分解:几个力________________跟原来____________的效果相同,这几个力就叫做原来那个力的分力.___________________叫做力的分解.
2、同一个力可以分解为无数对____、___________的分力。一个已知力究竟应该怎样分解,要根据______________。
3、既有____,又有_____,相加时遵从_______________________________的物理量叫做矢量.只有大小,没有方向,求和时按照_____________________的物理量叫做标量.
三、提出疑惑
__________________________________________________________________________________________________________________________________________________________________________________
课内探究学案
一、学习目标
(一)知识与技能
1、知道什么是分力及力的分解的含义。
2、理解力的分解的方法,会用三角形知识求分力。
(二)过程与方法
1、培养运用数学工具解决物理问题的能力。
2、培养用物理语言分析问题的能力。
(三)情感、态度与价值观
通过分析日常现象,养成探究周围事物的习惯。
二、重点难点 力的分解
三、学习过程
自主学习
1、什么叫做力的分解?
2、如何得到一个力的分力?试求一水平向右、大小为10N的力的分力。(作图)
3、力的合成与力的分解是什么关系?
合作探究
农田耕作时,拖拉机斜向上拉耙(课本图)。
拖拉机拉着耙,对耙的拉力是斜向上的,这个力产生了两个效果;一方面使耙克服泥土的阻力前进;另一方面同时把耙往上提,使它不会插得太深。也就是一个力产生了两个效果(画出物体的受力示意图,如下)。
如果这两个效果是由某两个力分别产生的,使耙克服泥土的阻力前进的效果是由一个水平向前的力F1产生;把耙往上提,使它不会插得太深的效果是由一个竖直向上的力F2产生的。那F1、F2与拉力F是怎样的一种关系?
一种等效关系,也就是说是分力与合力的关系。
通常按力的实际作用效果来进行力的分解.
精讲点拨
思考分析:将一木块放到光滑的斜面上,试分析重力的作用效果并将重力进行分解。
实例探究
1、一个力,如果它的两个分力的作用线已经给定,分解结果可能有 种(注意:两分力作用线与该力作用线不重合)
解析:作出力分解时的平行四边形,可知分解结果只能有1种。
2、一个力,若它的一个分力作用线已经给定(与该力不共线),另外一个分力的大小任意给定,分解结果可能有 种
答案:3种
3、有一个力大小为100N,将它分解为两个力,已知它的一个分力方向与该力方向的夹角为30°。那么,它的另一个分力的最小值是 N,与该力的夹角为
答案:50N,60°
矢量相加的法则
既有大小,又有方向,并遵循平行四边形定则的物理量叫做矢量.只有大小而没有方向,遵循代数求和法则的物理量叫做标量.
力、速度是矢量;长度、质量、时间、温度、能量、电流强度等物理量是标量.
矢量和标量的根本区别就在于它们分别遵循两种不同的求和运算法则.
当堂检测
1、下列说法正确的是( )
A. 已知一个力的大小和方向及它两个分力的方向,则这两个分力有解。
B. 已知一个力的大小和方向及它一个分力的大小和方向,则另一个分力有无数解。
C. 已知一个力的大小和方向及它一个分力的方向,则它另一个分力有无数解,但有最小值。
D. 已知一个力的大小和方向及它一个分力的方向和另一个分力的大小,则两个分力有解。
2、下列有关说法正确的是 ( )
A.一个2N的力能分解为7N和4N的两个分力
B.一个2N的力能分解为7N和9N的两个分力
C.一个6N的力能分解为3N和4N的两个分力
D.一个8N的力能分解为4N和3N的两个分力
3、在光滑的斜面上自由下滑的物体所受的力为( )
A.重力和斜面的支持力 B.重力、下滑力和斜面的支持力
C.重力和物体对斜面的压力 D.重力、下滑力、斜面的支持力和紧压斜面的力
4、将80N的力分解,其中一个分力F1与它的夹角为30 度,
1、当另一个分力F2最小时求F1的大小。2、当F2=50N时求F1的大小。
5、一个半径为r,重为G的圆球被长为r的细线AC悬挂在墙上,
求球对细线的拉力F1和球对墙的压力F2.
课后练习与提高:
1.力F分解为F1、F2两个分力,则下列说法正确的是
A.F1、F2的合力就是F
B.由F求F1或F2叫做力的分解
C.由F1、F2求F叫做力的合成[
D.力的合成和分解都遵循平行四边形定则
答案:ABCD
2.细绳MO与NO所能承受的拉力相同,长度MO>NO,则在不断增加重物G的重力过程中(绳OC不会断)
[来源: ]
图1—6—7
A.ON绳先被拉断
B.OM绳先被拉断
C.ON绳和OM绳同时被拉断
D.因无具体数据,故无法判断哪条绳先被拉断
答案:A
3.如图1—6—8所示,一个半径为r,重为G的光滑均匀球,用长度为r的细绳挂在竖直光滑的墙壁上,则绳子的拉力F和球对墙壁压力FN的大小分别是
[来源: .Com]
4.三个共点力,F1=5 N,F2=10 N,F3=15 N,θ=60°,它们的合力的x轴分量Fx为 N,y轴分量Fy为 N,合力的大小为 N,合力方向跟x轴的正方向夹角为 .
图1—6—9
答案:15 5 10 30°
5.三角形轻支架ABC的边长AB=20 cm,BC=15 cm.在A点通过细绳悬挂一个重30 N的物体,则AB杆受拉力大小为 N,AC杆受压力大小为 N.
答案:40 50
6.一表面光滑,所受重力可不计的尖劈(AC=BC,∠ACB=θ)插在缝间,并施以竖直向下的力F,则劈对左、右接触点的压力大小分别是__________,__________.
A.当F1>Fsinθ时,肯定有两组解
B.当F>F1>Fsinθ时,肯定有两组解
C.当F1
D.当F1
答案:BD
9.将质量为m的小球,用长为L的轻绳吊起来,并靠在光滑的半径为r的半球体上,绳的悬点A到球面的最小距离为d.(1)求小球对绳子的拉力和对半球体的压力.(2)若L变短,问小球对绳子的拉力和对半球体的压力如何变化?
解析:(1)将小球受到的重力按作用效果分解,做出平行四边形如图所示,由三角形ABO与三角形BF2G相似,对应边成比例得[来源: ]
又因为G=mg
导出 F2=
F1=
由上式可得小球对绳子的拉力为 ,小球对半球体的压力为 .
(2)当L变短时,F2= 减小,F1= 不变,所以,小球对绳子的拉力减小,小球对半球体的压力不变.
答案:(1)拉力: ;压力:
(2)若L变短,小球对绳子的拉力减小,小球对半球体的压力不变.
初二物理岳麓版教案【篇5】
一、教材内容分析
本节学习了一种新的处理问题的方法:即根据实验数据作出图像,图像反映物理规律,这是我们通过实验探求自然规律的一要重要的基本的途径。应在学生充分预习的基础上,真正让学生自己能画出图像,并练习分析图像所代表的过程或规律。
瞬时速度概念的建立,是学生在高中阶段第一次接触“极限”的思想,如何正确地理解此概念,一方面应从平均速度的概念延伸到瞬时速度;另一方面从物体运动的s—t图象上采用无限分割的思想帮助学生理解图像的斜率表示物体的瞬时速度。
二、教学目标(知识,技能,情感态度、价值观)
1、知识与技能
(1)理解匀速直线运动的s-t图像的意义
(2)知道瞬时速度是精确描述变速运动快慢和方向的物理量
(3)理解用比值法定义物理量的方法
(4)知道公式和图像都是描述物理量之间的关系的数学工具,它们各也所长,可以相互补充。
(5)培养学生用多种手段处理问题的能力
(6)培养自主学习的能力及思维想象能力
2、过程与方法:实验讨论、启发式
3、情感、态度与价值观
(1)培养学生严肃认真的学习态度
(2)从知识是相互关联、相互补充的思想中,培养学生建立事物是相互联系的唯物主义观点。
三、学习者特征分析
高一学生男女比例相当,由于是普通高中生,抽象思维能力比较差,而且基础差,但是学生比较刻苦,学习物理的兴趣还是很浓厚。
四、教学策略选择与设计
讲授法、实验演示法、启发式,随机通达式
五、教学环境及资源准备
多媒体教室、视频、、动画、投影仪
六、教学过程
教学过程教师活动学生活动设计意图及资源准备
一、引入新课播放:刘易斯百米赛跑视频前面作业中我们已经算过的刘易斯在百米赛跑过程中每个10m内的平均速度,只能大体反映刘易斯在百米赛跑中的快慢变化情况.为了对变速运动作精确的描述,还需要引入瞬时速度的概念。
学生讨论总结:平均速度只能粗略地描述运动的快慢,不能精确地描述
为真实情境进行设计:刘易斯百米赛跑视
二、新课教学
运动物体在某一瞬间或经过某一位置时的速度,叫做瞬时速度(instantaneous velocity)。平时说到的百米赛跑运动员冲线的速度,子弹飞出枪口的速度、飞船与运载火箭分离时的速度等,都是瞬时速度。
瞬时速度的方向跟物体经过某一位置时的运动方向相同。瞬时速度的大小,叫做瞬时速率(instantaneous speed,简称速率)。汽车行驶中速度计上指示的数值就是瞬时速率(如课本P32图1—21)。
实验探究——用光电门测量瞬时速度
实验装置如课本P33图1—22,使一辆小车从一端垫高的木板上滑下,木板旁装有光电门,其中A管发出光线,B管接收光线。当固定在车上的遮光板通过光电门时,光线被阻挡,记录仪上可以直接读出光线被阻挡的时间。这段时间就是遮光板通过光电门的时间。根据遮光板的宽度Δs和测出的时间Δt,就可以算出遮光板通过光电门的平均速度(v=Δs/Δt)。由于遮光板的宽度Δs很小,因此可以认为,这个平均速度就是小车通过光电门的瞬时速度。
学生理解瞬时速度是矢量,既有大小(叫速率),又有方向(物体的运动方向)。
播放实验视频
真是情境
播放实验视频
讨论与思考(课本P33)之后学习S-T图像讨论与思考(课本P33)物体的运动情况,除了用语言文字和数学公式描述外,还可以直观地用图像来描述,给出了一辆汽车在平直公路上作匀速直线运动时在不同时刻的位移。
时间
t/s04.910.015.119.9
位移
s/m010000400
提问:请同学以上面图表所给出的数据,以横轴为(t)轴,纵轴为位移(s)轴,用描点法作图,看是一个什么样的图像,s与t存在一个什么函数关系?
教师边看边指导,然后把同学所画的图像在投影仪(实物)上打出。
总结:可以看出几个点几乎都在过原点的一条直线上。s与t成正比。
提问:图像如何反映汽车运动的速度?
总结:图像的斜率反映物体运动的速度。
物理量之间的关系可以用公式来表示,也可以用图像来表示,利用图像可以比较方便地处理实验(或观测)结果,找出事物的变化规律。以后我们还会遇到更多的用图像来处理物理量之间的变化规律,所以,现在我们就要重视图像的学习。
学生模拟现场
投影仪
案例分析请把龟兔赛跑的过程粗略地用s—t图像表示出来。(提示:乌龟和兔子从同一地点出发,假定跑动过程都是匀速直线运动。)
分析与解答:
开始时,兔子的速度大,反映在图像上,是它的斜率比较大(比较陡),在同一时间内,兔子通过的位移大。接着,骄傲的兔子打瞌睡了,时间不停地流逝,兔子的位移没有变化。乌龟的速度虽然小,却一直不停地向前做匀速直线运动。等到兔子猛然醒来,发现乌龟已快接近终点了,于是,兔子以更大的速度向前奔(图像的斜率更大),可为时已晚,最后乌龟取得了胜利。(s—t图像如下图。)
学生进行讨论分析。得出结论播放龟兔赛跑的动画
教学流程图
七、教学评价设计
知识点教学目标评价方法备注
瞬时速度知道课堂检测
位移-时间图像理解课堂作业
八、帮助和总结
本节学习了一种新的处理问题的方法:即根据实验数据作出图像,图像反映物理规律,这是我们通过实验探求自然规律的一要重要的基本的途径。应在学生充分预习的基础上,真正让学生自己能画出图像,并练习分析图像所代表的过程或规律。
瞬时速度概念的建立,是学生在高中阶段第一次接触“极限”的思想,如何正确地理解此概念,一方面应从平均速度的概念延伸到瞬时速度;另一方面从物体运动的s—t图象上采用无限分割的思想帮助学生理解图像的斜率表示物体的瞬时速度。
本节教学主要采用自己动手、类比对照等方法,使图像中的物理意义便的很简单,很清楚,使学生从简单入手,激发学生的学生兴趣,多角度处理物理问题,为以后讲述图像打下较扎实的基础。