教案吧 > 小学教案 > 五年级教案 >

五年级数学表格教案

时间: 新华 五年级教案

教案可以帮助教师有计划地安排教学内容和方法,确保课堂上教学活动的有序进行,避免出现混乱和无效性。这里提供优秀的五年级数学表格教案,方便大家写五年级数学表格教案参考。

五年级数学表格教案篇1

教学内容:

人教版小学数学第十册第131-132页。

教学目标:

1、通过学生自主探究,掌握异分母分数加减法的计算方法和算理。

2、能正确计算异分母分数的加减法。

3、初步渗透转化、建模等数学思想,提高学生解决问题的能力。

教学过程:

一、创设情境,导入新课

1、谈话导入。

同学们,同分母分数加减法为什么能直接相加减?(分母相同,即分数单位相同)怎样计算异分母分数加减法呢?请你们拿出两张同样大的长方形纸分别折出1/2和1/4,再用两张同样大的正方形纸分别折出1/3和1/9,折好后涂色表示这几个分数。

2、小组活动:学生交流各自的&39;表示方法。

3、教师设问:这里的1/2和1/4、1/3和1/9能直接相加吗?为什么?(分母不同,即分数单位不同,不能直接相加)揭示课题:异分母分数加减法。

二、合作学习。探究新知

1、分组讨论1/2+1/4,并用实验说明计算方法。

(引导学生用前面折纸并涂色的长方形纸来验证计算方法,分组派代表汇报计算情况)

2、同理分析:1/3+1/9=3/9+1/9=4/9。结合板书讨论:

(1)从等式的左边到等式的右边,实际是做了什么?(通分)

(2)谁来说说这种方法的道理?(可结合学具图理解)把1/2化成2/4,这样平均分的份数相同,也就是说分数单位相同。因此,2个1/4与1个1/4合起来就是3个1/4,即3/4;第二题是3个1/9与1个1/9合起来是4个1/9,即4/9。

3.验算1/2+1/4=3/4。

(1)交换加数位置。

1/4+1/2=1/4+2/4=3/4

(2)用减法验算。(你会算吗?有困难的小组帮忙)

3/4-1/2=3/4-2/4=1/4

3/4-1/4=2/4=1/2

4、你现在知道异分母分数加减法怎样计算吗?

完成板书:异分母分数加减法

↓通分

同分母分数加减法

[评析:承用前面的折纸,引导学生直观地看出计算结果。通过相互述说算理和检验计算过程,使学生不仅掌握了异分母分数加减法的计算法则,知道怎么算,而且懂得了为什么这样算的道理。]

三、巩固练习。形成技能

1、基础练习。

1/3+1/4

5/6+3/8

11/12-5/6

3/4-2/5

1-1/6

(先让学生独立完成,然后指名板演各题的计算过程,注意对计算中的错误和不规范的书写进行纠正。并引导学生总结各类题型的计算方法及技巧)

2、深化练习。

出示异分母分数加减法算式让学生进行计算,并让学困生说说异分母分数的计算法则。(要求能说出先通分化成同分母分数,再相加减)

五年级数学表格教案篇2

教学目标:

1、通过具体情境和实际操作,培养学生综合运用图形面积、乘除法、方程等知识解决实际问题,进一步了解数学在生活中的应用。

2、培养学生观察、思考以及与同伴交流的良好习惯。

教学重点:

会用小块方砖铺满某个平面。

教学难点:

计算铺满某个平面需要多少块方砖,多少钱。

教学过程:

一、创设情境

同学们,小明家买了一套新房。近期,家里要装修了。妈妈让小明设计自己的卧室怎样铺地砖。今天就请同学们来帮小明出出主意,和小明一起来研究一下铺地砖中的数学问题。(板书课题)

二、自主探究,合作交流。

(一)算卧室面积

1、买地砖之前要了解哪些相关知识?

2、小明卧室地面的长和宽分别是4m和3m,你们能帮他算算他的卧室有多大吗?

(二)分小组讨论,并填写表格

所需地砖的数量,所需钱数

40厘米×40厘米

30厘米×30厘米

(三)汇报交流方法

1、学生汇报交流

2、得出结论

3、算一算

小明爸爸、妈妈的房间面积约为18平方米,用边长为40厘米的正方形地砖铺地面,至少需要多少块这样的地砖?需要多少钱?你能帮小明算算吗?

学生独立完成,指名学生上黑板板演。

三、巩固新知,练习反馈。

四、全课总结

五年级数学表格教案篇3

教学目标:

1、通过欣赏与设计图案,使同学进一步熟悉已学过的对称、平移、旋转等现象。

2、欣赏美丽的对称图形,并能自身设计图案。

3、同学感受图形的美,进而培养同学的空间想象能力和审美意识。

重点难点:

1、能利用对称、平移、旋转等方法绘制精美的图案。

2、感受图形的内在美,培养同学的审美情趣。

教学准备:幻灯片、课件。

教学过程:

一、情境导入

利用课件显示课本第7页四幅美丽的图案,配音乐,让同学欣赏。

二、学习新课

(一)图案欣赏:

1、伴着动听的音乐,我们欣赏了这四幅美丽的图案,你有什么感受?

2、让同学尽情发表自身的感受。

(二)说一说:

1、上面每幅图的图案是由哪个图形平移或旋转得到的?

2、上面哪幅图是对称的?先让同学边观察讨论,再进行交流。

三、巩固练习

(一)反馈练习:

完成第8页3题。

1、这个图案我们应该怎样画?

2、仔细观察这几个图案是由哪个图形经过什么变换得到的?

(二)拓展练习:

1、分别利用对称、平移和旋转创作一个图案。

2、交流并欣赏。说一说好在哪里?

四、全课总结

对称、平移和旋转知识广泛地应用于平面、立体的建筑艺术和几何图像上,而且还涉和到其它领域,希望同学们平时注意观察,都成为杰出的设计师。

五、安排作业:

教材第9页第5题。

板书设计:

欣赏和设计

图案1图案2

图案3图案4

对称、平移和旋转知识有广泛的应用。

五年级数学表格教案篇4

教学目标:

1.使学生进一步熟悉梯形面积的计算公式,熟练地计算不同梯形的面积。

2.通过练习,巩固同学们学习的知识。

3.培养学生运用数学知识解决生活中问题的能力。

教学重点:

使学生进一步熟悉梯形面积的计算公式,熟练地计算不同梯形的面积。

教学难点:

培养学生运用数学知识解决生活中问题的能力。

教学过程:

一、复习梯形面积的计算公式。

二、基本练习:

1.求下面梯形的面积:

上底2米下底3米高5米

上底4分米下底5分米高2分米

2.填空:

两个完全一样的梯形可以拼成一个()形,这个拼成的图形的底等于梯形的()与()的和,高等于梯形的(),每个梯形的面积等于拼成的平行四边形面积的()。

3.梯形的上底是a,下底是b,高是c,则它的面积=()

4.一个梯形上底与下底的和是15米,高是4米,面积是()平方米。

5.一个梯形的面积是8平方厘米,如果它的上底、下底和高各扩大2倍,它的面积是()平方厘米。

6.判断:

1)梯形的面积等于平行四边形的面积的一半。()

2)两个完全相同的直角梯形,可以拼成一个长方形。()

3)一个上底是5厘米,下底是8厘米,高是3厘米的梯形,它的面积是12平方厘米。()

三、提高练习:

两个完全一样的梯形拼成一个平行四边形,已知每个梯形的面积是24平方分米,拼成的平行四边形的面积是多少平方分米?

四、小结:

本节课我们主要学习了哪些内容?

五年级数学表格教案篇5

教学目标:

1.通过欣赏与设计图案,使同学进一步熟悉已学过的对称、平移、旋转等现象。

2.欣赏美丽的对称图形,并能自身设计图案。

3.同学感受图形的美,进而培养同学的空间想象能力和审美意识。

重点难点:

1.能利用对称、平移、旋转等方法绘制精美的图案。

2.感受图形的内在美,培养同学的审美情趣。

教学准备:幻灯片、课件。

教学过程

一、情境导入

利用课件显示课本第7页四幅美丽的图案,配音乐,让同学欣赏。

二、学习新课

(一)图案欣赏:

1、伴着动听的音乐,我们欣赏了这四幅美丽的图案,你有什么感受?

2、让同学尽情发表自身的感受。

(二)说一说:

1、上面每幅图的图案是由哪个图形平移或旋转得到的?

2.上面哪幅图是对称的?先让同学边观察讨论,再进行交流。

三、巩固练习

(一)反馈练习:

完成第8页3题。

1、这个图案我们应该怎样画?

2、仔细观察这几个图案是由哪个图形经过什么变换得到的?

(二)拓展练习:

1、分别利用对称、平移和旋转创作一个图案。

2、 交流并欣赏。说一说好在哪里?

四、全课总结

对称、平移和旋转知识广泛地应用于平面、立体的建筑艺术和几何图像上,而且还涉和到其它领域,希望同学们平时注意观察,都成为杰出的设计师。

五、安排作业:

教材第9页第5题。

板书设计:

欣赏和设计

图案1 图案2

图案3 图案4

对称、平移和旋转知识有广泛的应用。

五年级数学表格教案篇6

教学目标:

1、通过生活中的情境,进一步体会小数除法在实际生活中的应用。

2、利用已有知识,自主探究除数是整数商是小数的小数除法的计算方法。

3、正确掌握已学过的小数除法的计算方法,并能运用小数除法解决日常生活中的简单问题。

教学重点:

除数是整数,商是小数的小数除法的计算方法。

教学难点:

除得的结果有余数,补“0”继续除。

教学过程:

一、复习导入

课件出示情境主题图

开学了,班级购置了打扫卫生用具,买6把笤帚共花了18.6元,买4个簸箕共花了24元。你能提出哪些问题?怎样计算?

引导学生列出算式并独立计算:18.6÷624÷4

计算后说一说整数除法与小数除法的异同。

二、对比中探索,交流中生成

师:复习题中的两道问题同学们解决得非常好,如果老师把它们稍作改动,你还会不会计算呢?

教师把情境题中的18.6改成18.9,把24改成26.

1、初步尝试,发现问题。

请你尝试计算这两题,你发现了什么?

2、独立思考,尝试解决。

师:有余数还能不能继续除下去?该怎么继续除?试算18.9÷6

3、讨论交流,异中求同。

(1)在小组内汇报自己的计算方法。

(2)展示汇报。(可能出现第4页中几种不同的方法)

(3)对比这几种方法:有什么相同的地方?

引导学生发现,无论是转化成整数,拆分整数与小数分别除,还是竖式的方法,都有一个共同的地方,就是小数的末尾可以添“0”继续除,在具体的情境中可以解释为,18元里有6个3元,9?里有6个1角,剩余的3角可以换算成30分,30分里有6个5分,合在一起就是3.15元。

4、应用方法,归纳总结。

竖式计算26÷4

(1)引导学生发现,整数除以整数有余数时,可以在被除数个位后点小数点,添“0”继续除,商的小数点一定要与被除数的小数点对齐。

(2)尝试总结除数是整数的小数除法的计算方法。

三、巩固练习。

1、买16个玩具恐龙花了12元,平均每个玩具恐龙多少元?

2、错题诊所。

209÷5=41810÷25=41.26÷18=0.7

3、先估算下面各题的商哪些大于1,哪些小于1,再竖式计算。

32÷812÷252.45÷3

4、一只蜜蜂的飞行速度是蝴蝶的2倍,如果蜜蜂每小时飞行11千米,蝴蝶每小时能飞行多少千米?

四、课堂总结

本节课你有哪些收获?

五年级数学表格教案篇7

课标要求:探索给定情境中隐含的规律。

课标解读:

行为动词是“探索”,指的是独立或他人合作参与特定的数学活动,理解或提出问题,寻求解决问题的思路,发现对象的特征及其与相关对象的区别和联系,获得一定的理性认识。核心词是“规律”,本节课指的是有序思考的方法。

由此看来课标对这部分知识的要求是让学生在解决实际问题的过程中,学会排列方法,即有序排列,而不是杂乱无章的去解决问题。

教材分析:教材是通过三个人排列照相有多少种不同的排法,四个人小合唱固定一个人的位置又有多少中不同的排法,这样两个问题引导学生认识和了解简单的排列,通过列举等直观方法帮学生发现规律掌握解决问题的策略和方法。同时让学生初步的观察、分析、推理及有序全面思考问题的意识与能力。其中重点是培养学生的思维方法,发展学生的思维能力。

教学目标:

1、探索、发现现实生活中简单的排列规律,培养观察能力及初步推理能力。

2、通过观察、研读、交流、验证等活动,经历探索简单事物排列的过程,体验有序、全面地思考问题的方法。

3、在解决实际问题中体验成功的喜悦,感受数学与生活的紧密联系和数学学习的乐趣,激发学生对身边事物进行数学思考的意识,培养学生初步的数学意识。

教学重、难点:在探究的过程中,发现简单事物的排列规律。

教学策略:

(1)情境教学法:通过创设现实情境,引起学生的学习兴趣及本节课所要研究的主要问题。

(2)“探究——研讨”法:学生在自主探究、合作交流的过程中,分析问题、解决问题、发现问题,从而提高思维能力。

教学环节:

第三个环节是运用规律解决问题。在这个环节,我提出了

“如果于老师带领我们班A、B、C三个同学到文登学公园游玩,最后我们四个人要排成一行合影留念,而且要把老师安排在左起第二个位置上,其他的3个同学任意排。想一想,有多少种不同的排法?这个问题,引发学生的思考,引导学生发现,三个人排队和四个人排队且确定一个人的位置的排法总数是相等的,让学生意识到排法总数是不受确定的那个人的位置影响的。让学生在探究中体会有序思维方法,发展学生思维能力,在交流中进行思维的碰撞,统一认识。

五年级数学表格教案篇8

一、教学内容

1.因数和倍数

2.2、5、3的倍数的特征

3.质数和合数

二、教学目标

1.使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。

2.使学生通过自主探索,掌握2、5、3的倍数的特征。

3.逐步培养学生的数学抽象能力。

三、编排特点

1.精简概念,减轻学生记忆负担。

三方面的调整:

A.不再出现“整除”概念,直接从乘法算式引出因数和倍数的概念。

B.不再正式教学“分解质因数”,只作为阅读性材料进行介绍。

C.公因数、公因数、公倍数、最小公倍数移至“分数的意义和性质”单元,作为约分和通分的知识基础,更突出其应用性。

2.注意体现数学的抽象性。

数论知识本身具有抽象性。学生到了高年级也应注意培养其抽象思维。

四、具体编排

1.因数和倍数

因数和倍数的概念

过去:用÷=表示能被整除,÷=表示能被整除。

现在:用=直接引出因数和倍数的概念。

(1)用2×6=12给出因数和倍数的概念。

(2)用3×4=12进一步巩固上述概念。

(3)让学生利用因数和倍数的概念自主发现12的其他因数。

(4)可引导学生利用一般的乘法算式×=归纳出因数和倍数的概念。

(5)说明本单元的研究范围。

注意以下几点:

(1)虽然不出现“整除”一词,但本质上仍是以整除为基础,因此,乘法算式中的乘数和积都必须是整数。

(2)因数和倍数是一对相互依存的概念,不能单独存在。

(3)注意区分乘法各部分名称中的“因数”和本单元中的“因数”的联系和区别。

(4)注意区分“倍数”与前面学过的“倍”的联系与区别。

例1(一个数的因数的求法)

(1)可用不同的方法求出18的因数(列出积是18的乘法算式或列出被除数是18的除法算式),但应引导学生有序思考。

(2)用集合圈表示因数,为后面求两个数的公因数作铺垫。

一个数的因数的特点

(1)因数是其自身,最小因数是1。

(2)因数个数有限。

(3)此结论通过例1和“做一做”中的特例通过不完全归纳法得出,体现了从具体到一般的思路。

例2(一个数的倍数的求法)

(1)求法:用该数乘任一非0自然数所得的积都是该数的倍数。

(2)用集合圈表示倍数,为后面求两个数的公倍数作铺垫。

做一做

与例1结合起来,提供了2、3、5的倍数,为后面探讨2、3、5倍数的特征作准备。

一个数的倍数的特点

(1)最小倍数是其自身,没有的倍数。

(2)因数个数无限。

(3)此结论通过例1和“做一做”中的特例通过不完全归纳法得出,体现了从具体到一般的思路。

2.2、5、3的倍数的特征

因为2、5的倍数的特征在个位数上就体现出来了,而3的倍数涉及到各数位上的数字之和,较为复杂,因此后安排3的倍数的特征。本部分内容对于熟练掌握约分、通分、分数的四则运算有很重要的作用。

2的倍数的特征

(1)从生活情境“双号”引入。

(2)观察2的倍数的个位数,总结出2的倍数的特征。

(3)介绍奇数和偶数的概念。

(4)可让学生随意找一些数进行验证,但不要求严格的证明。

5的倍数的特征

(1)编排方式与2的倍数的特征类似。

(2)可进一步总结既是2的倍数又是5的倍数的特征,即10的倍数的特征。

3的倍数的特征

(1)强调自主探索,让学生经历观察――猜想――__猜想――再观察――再猜想――验证的过程。

(2)可任意选择一个数,用正面、反面的例子对结论进一步验证。

(3)也可对任一3的倍数的各位数调换位置,更深刻地理解3的倍数的特征。

3.质数和合数

质数和合数的概念

(1)根据20以内各数的因数个数把数分成三类:1、质数、合数。

(2)可任出一个数,让学生根据概念判断其为质数还是合数。

例1(找100以内的质数)

(1)方法多样。可以根据质数的概念逐个判断,也可用筛法。

(2)把握教学要求:知道100以内的质数,熟悉20以内的质数。

五、教学建议

1.加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。

从因数和倍数的含义去理解其他的相关概念。

2.要注意培养学生的抽象思维能力。

五年级数学表格教案篇9

教学目标:

探索2、5倍数的特征,初步理解奇数、偶数的概念。

教学重点:

发现2、5倍数的特征并灵活运用

教学过程:

一、导入新课

师:奥运带给我们的除了那种奋勇拼搏的体育精神,还有一点那就是要提高人们的健身意识。过一段时间我们学校要举行团体操表演,有哪些表演形式呢?我们来看一看吧

(学生认真看表演情况。)

二、探究新知

1、活动一:师:从图中你们知道了哪些信息?还能提出什么问题?

学生观察情境图,说出自己通过观察发现的信息,提出问题,全班交流。

2、活动二:师:我们首先解决“各项表演分别可以选派几人参加”这个问题。请你们想一想,每个方队得人数有没有规律?到问题时要仔细分析、验证,不能轻易下结论。

学生独立思考,然后交流。学生的思考可能停留在图中呈现的人数上,3个5、6个2、5个3。教师可适时引导:各队的人数与2、3、5有没有关系?

3、活动三;

师:在1—100的自然数中,2的倍数有那些?5的倍数有哪些呢?3的倍数有哪些呢?先独立思考,然后小组讨论。

学生自主思考后,可能采用无序排列、有序列举、在百数表中 圈出或涂色等解决问题的方法。

4、活动四

师:同学们了不起,用这么多办法找出了100以内2、5的倍数,那你们有没有发现2的倍数、5的倍数都是一些什么样的数?

师:像2、4、6、8、10、12……都是偶数,1、3、5、7、9、11……都是奇数。

师:你能再说出几个偶数、奇数的例子。

学生独立思考,从不同的角度思考2、5的倍数的特征。

学生认真听讲

学生举例,相互交流。

三、课堂练习

自主练习第1、2题。学生自主练习,教师巡视指导,全班交流。

第3题数学游戏:应用今天学到的知识,看数字卡片说一句话。如:20是偶数,是2的倍数,同时也是5的倍数等。同位两人轮流出卡片,参与游戏。

四、课后小结

师:请同学们说一说这节课你学到了些什么?还有什么问题?你对自己有什么评价?

五年级数学表格教案篇10

【教学内容】:教材P114第4题及练习二十五第1题。

【教学目标】:

知识与技能:使学生能够准确地、熟练地用数对表示位置。

过程与方法:经历用数对表示位置的过程,掌握将数对应用于生活中的方法。

情感、态度与价值观:激发学生的学习兴趣,感受数学在日常生活中的应用。

【教学重、难点】

重点:用数对确定位置。

难点:培养学生灵活运用知识的能力。

【教学方法】:组织练习,质疑引导。练习体验,小组交流。

【教学准备】:多媒体。

【教学过程】

一、练习导入

1.谈话:为了更有利于同学们的学习,老师想调整一下同学们的座位。下面是座位示意图:

已知(1,4)表示小亮的位置。

⑴小明、小丽和小红的位置用数对分别可以表示为(,),(,),(,)。

⑵老师想把小刚排在(5,3)这个位置上,请你在图中标出来。

⑶从小明的位置向左数2列,再向后数1行就是小强的位置,小强的位置是(,)。

2.下面是一幅街区平面图,请看图回答问题。

五爱城所在的位置可以用(2,7)表示,它在火车站以东200m,再往北700m处。

⑴像上面那样描述一下其他建筑物的位置。

⑵小刚家在火车站以东600m,再往北400m处小红家在火车站以东900m,再往北200m处。在图中标出这两名同学家的`位置。

⑶星期六,小刚的活动路线是(6,4)→(2,7)→(4,3)→(5,7)→(7,6)→(9,4)→(11,1)→(11,8)→(6,4)。与一说,他这一天先后去了哪些地方。

二、回顾整理

1.行和列的意义:竖排叫列,横排叫行。

2.数对可以表示物体的位置,也可以确定物体的位置。

3.数对表示位置的方法:先表示列,再表示行。先用括号把代表列和行的数字或字母括起来,再用逗号隔开。如:(7,9)表示第7列第9行。

4.两个数对,前一个数相同,说明它们所表示物体的位置在同一列上。如:(2,4)和(2,7)都在第2列上。

5.两个数对,后一个数相同,说明它们所表示物体的位置在同一行上。如:(3,6)和(1,6)都在第6行上。

6.物体向左、右平移,行数不变,列数减去或加上平移的格数。物体向上、下平移,列数不变,行数加上或减去平移的格数。

三、巩固拓展

1.运用平移的方法加深用数对确定物体的位置。

按要求完成题目。(答案:数对略)

(1)中点A的位置可用数对(1,1)表示,那么平行四边形其他各顶点的位置分别怎样表示?

(2)写出平行四边形向上和向右平移的的图形,写出平移后的各顶点的位置。

学生尝试解答。教师小结:一个图形向上或向下平移后,各顶点的位置的列数没变,行数发生变化;向左或向右平移后,各顶点的位置的行数没变,列数发生变化。

2.教材第114页第4题。教师:我们都下过五子棋,都知道五子棋的规则。请观察题中的情境图,你能用数对来准确地表示出图上的棋子的具体位置吗?

学生观察图片,独立思考,同桌交流,然后指名汇报。

四、课后小结

位置可以由数对来确定,要注意数对的规范写法,逗号前面表示列,逗号后面表示行。

五、作业:教材第115页练习二十五第1题。

【板书设计】

位置复习课

竖排叫列,横排叫行。先表示列,再表示行。

物体向左、右平移,行数不变,列数减去或加上平移的格数。

物体向上、下平移,列数不变,行数加上或减去平移的格数。

五年级数学表格教案篇11

【教材分析】

对于学生来说,经历从两位数乘一位数到两位数乘两位数的乘法过程是形成乘法计算技能的重要环节,也是后续学习两位数乘三位数的基础。为此教材以“住新房”的情境为载体,通过解决一栋楼的总住户的问题,帮助学生理解两位数乘两位数的乘法的算理。在具体解决“总住户”的计算问题时,教材呈现了三种算法,前两种是计算两位数乘整十数、两位数乘一位数,再将这两部分的积相加,这是乘法竖式计算的重要基础,本节课应注重口算方法与竖式方法的沟通。第三种是竖式计算,这是计算两位数乘两位数的一般方法。

【学生分析】

本节课的学习是在学生学习了“乘数是整十数的乘法”和两、三位数乘一位数的竖式计算的基础上的进一步学习。学生可以通过独立探索、小组交流,全班汇报交流等学习活动,利用已有知识的迁移理解和掌握“两位数乘两位数(不进位)”的计算方法,学生很有成就感。

由于学生只有一位数乘法的基础,让学生独立思考怎样算14×12时,大多数学生只能想出口算方法,只有个别学生能在预习或家长提前指导的情况下,正确书写竖式,这节课正需要这些孩子来激发全班思维,让同学们在看竖式的过程中,分析竖式计算算理、算法,通过观察,分析,学生能把竖式计算与口算算法进行沟通。

【学习目标】

1.结合“住新房”的问题情境,探索两位数乘两位数(不进位)的乘法,经历估算与交流算法多样化的过程。会进行两位数乘两位数的乘法竖式计算,理解竖式乘法每一步计算的含义,并能解决一些简单的实际问题。

2.依据新教材特点,在独立思考的基础上,写出算式并交流,理解竖式计算的算理、算法。

3、通过交流相互启发、相互影响,共同寻找、自主探究、体验,掌握数学的知识、思想与方法,充分感受到数学的魅力和乐趣。

【教学过程】

一、 创设情境(3分钟)

师:淘气今天可高兴了,因为他要搬新家了,他邀请了很多小朋友参加,也邀请了我们,想去吗?

生:想

师:那去看看吧!(课件出示)

师:真漂亮,这栋电梯公寓真大,大家都想进去了(智慧老人:请你根据你发现的数学信息提出一个数学问题?)

生:每层14户,有12层,这栋楼能住多少户?(板书并问)你能出算式吗?想想算式的意思?

师:你能列出算式吗?

生:14×12=(板书) 或 12×14=

师:很能干,一下就说到了乘法的意义。

师:今天的算式和我们过去学过的乘法有什么不同?

生:今天的两个乘数都是两位数,以前我们只学过两位数乘一位数,昨天我们学的两位数乘整十数。(板书:两位数乘两位数)

师:你的记忆真好,很会学习,这就是我们今天要学习的新知识,任意两位数乘两位数。

[设计意图]能结合教材与学生实际创设一个生动的情境,既为后面学习“两位数乘两位数”(竖式)的算理做了铺垫,又激发了学生学习新知识的兴趣。

二、探索新知

1、估算14×12(5分钟)

师: 这栋楼房大约能住多少人呢?我们用过去学过的方法估一估淘气他们住的楼房大约能住多少户人家?

生:140

师:你是怎样估计的?

生:140户左右,把12想成10 ,14×10=140(户)。

师:知道把12想成整十数,估得真快,了不起。还有不同的估算结果吗?

生:120户左右,把14想成10 ,12×10=120(户)。

生:100户左右,把10想成10 ,10×10=100(户)

师: 把它们都想成了整十数,很快地估出了结果,同学们想一想,这三种估算方法里面,哪种更接近正确结果呢?为什么?

生:我觉得得数是140更接近准确结果,因为这样估计的误差最小。……

2、思考怎样计算14×12,探索方法(10分钟):

师:这栋楼到底能住多少户人呢?可是,像这种两位数乘两位数的怎样算呢?你能想办法算出14×12的准确结果吗?试一试,把你计算的方法写在作业本上。(教师巡视,请学生将自己的算法写在黑板上,只展示与竖式有关的算法,看学 生竖式的书写情况,请学生上台板书有代表性的三种竖式方法。)

[设计意图]让孩子在估算的基础上,通过一些挑战性的问题——像“这种两位数乘两位数的怎样算呢?”,“你能想办法算出14×12的准确结果吗?”,激起学生主动探索欲望,也凸显了本节课的重点。

师:你能看懂这种方法吗?(口算)谁来说一说他是怎么算的?(提示:乘法意义,也就是算几个几)

生:14×10=140(先算14×10,也就是10个14,等于140)

14×2=28 (再算14×2,也就是2个14,等于28)

140+28=168(最后把它们的积加起来,得168)

师:你理解得太好了,非常能干。那这种方法呢?你能看懂吗?谁又来说一说?

生:12×10=120(先算每层楼有10户人,12层就有12个10,共120户)

12×4=48(但它每层还有4户人,12层就有12个4,共48户)

120+48=168(最后把它们的积加起来,得168)

师:还有其它方法吗?

生:我把12拆成了3×4,也就变成14×3×4=168(人)

师:它转化成了二位数乘一位数的知识,想得真好。大家都能灵活地运用我们学过地知识,来解决新问题,这不仅是我们聪明和能干,也是一种非常好的学习方法,在以后的学习数学过程中会经常用到。

[设计意图]让学生在独立思考的基础上,通过生生互动,在合作交流中,理解口算每一步的意思及方法,为学习竖式打下了坚实的基础。

3、探索竖式计算14×12的方法(10分钟)

师:大家请看,两位数乘两位数还能用竖式计算?从结果来看,对了吗?

生:对的,都是168。今天我们就重点讨论,如何用竖式计算两位数乘两位数?看一看,想想同学是怎样算的?(板书:怎样算)先独立思考,再将你的想法在四人小组里说一说。

师:谁来代表你们小组说一说这些竖式是怎么算的?

生:我们小组发现第1,2个竖式都是先算2×14等于28,再算10×14等于140,最后将结果加起来,等于168。只是一个写了0,一个没有写0,但都不影响计算结果,都是对的。

师:听懂了吗?谁再来说一说?

生:第一步还是先算2×14=28,第二步因为1在十位上,代表一个十,相当于10×14=140,所以应该在结果上写成140。再用28+140=168,第三种方法相当于把140后的0省略了,但1对齐百位,4对齐十位,还是表示的140,对最后的结果没有影响。

师:说得太精彩了,一下就看出了每一步是怎样算出来的,真有数学头脑。

大家明白了吗?还有补充吗?

生:先算2×14就是算的2层楼共住28户,就是2个14;再算的是10层楼住140户,也就是10个14。

师:你不仅知道它是怎样算的,还知道用乘法的意义来解释这样算的道理,太会思考了,值得大家学习。大家都听懂了吗?那你能看懂第三个算式吗?

生:它是先拿第一个乘数的个位上的数4分别乘2和 1,得到48,再用十位上的数1乘2和1,得到120,最后将48和120相加,得168。

师:这种算法和前两种不一样,但它也是正确的,只是我们通常先用第二个乘数个位上的数乘第一个乘数每一位上的数,再用第二个乘数十位上的数乘第一个乘数每一位上的数,以此类推。所以我们今天重点研究前2个竖式,对于它们,你还有什么疑惑?

生:为什么有0和没0都是对的呢?

师:问得好,谁能解释?

生:因为这题写0和不写0都不影响最后的结果,所以可以省略不写。

师:说得很好,就是这样的。

生:为什么4要写在十位上,1要写在百位上呢?

师:你真是问到点子上了,有谁能回答?

生:十位上的1代表1个十,所以得到的是14个十,也就是140,把末尾的0省略了,而不是14。

师:同意吗?(生:同意)这一点很重要,是我们竖式中很重要的一步,你明白了吗?

[设计意图]把 “用竖式怎样算”确定为本节课的探究点,很多学生并不会列竖式,通过观察同学列出的竖式,先独立思考,再小组合作研究它们每一步是怎么算的。不仅准确地突出了本节课的重点和难点,也为学生理解用竖式计算“两位数乘两位数的乘法”的算理,掌握其算法提供了广阔的自主探究空间,充分体现了学生的主体作用。

4、强化理解竖式(5分钟)

师:还有疑惑吗?那好,智慧老人他可有问题了,看你是不是真的懂了? 请注意!(课件演示每一步,并展示竖式计算的步骤)

师:28怎么得来的?()×(),也就是()个()

具体怎样算呢2×14呢?请你认真看屏幕。你明白了吗?谁来说一说?

生:先用第二个乘数个位上的2,乘第一个乘数的每一位上的数。[设计意图]看得很仔细,你真会学习。)

师:第二步出现(14),它是怎么得来的?

师:有什么疑问?

生:4为什么可以写在个位?

师:问得真好谁来帮助他?

生:十位上的1代表1个十,所以得到的是14个十,也就是140,把末尾的0省略不写,所以4在十位上,1在百位上。

师:最后一步呢?指着( )+( )

生:28+140

师:同意吗?你们的脑筋转得真快,真聪明!现在你明白了两位数乘两位数竖式的运算顺序了吗?请再看老师演示,谁来讲一讲?

生:先用第二个乘数个位上的数乘第一个乘数每一位上的数,得到一个结果,再用第二个乘数十位上的数乘第一个乘数每一位上的数,得到第二个结果,最后将两个结果相加。

师:你很会学习,并且很会表达你的想法,是大家的好榜样!

师:现在赵老师可有问题了,对比口算和竖式,你有什么发现?

生:我发现竖式中每一步口算中也有,它们的算法是一样的,只是表现的形式不一样。比如说:竖式中第一步2×14=28,口算中有;第二步10×14=140,口算中还是有,最后28+140=168,口算中还是有。

师:你太会发现数学最本质的现象了,说得很经典,谁听明白了?

师:今天真有成就感,用口算和竖式这种新的方法都算出了准确结果,和哪个估算结果比较接近(生:140)对,请你将书上26页的方法,再算式和答语补充完整。

[设计意图]巧妙地通过“智慧老人提问”的情境,引导学生进一步深化理解竖式计算每一步的意义,梳理用竖式计算的方法和运算顺序,让不同层次的学生都学会竖式.

【习题设计】

1、竖式计算(5分钟)

师:同学们今天学习很投入,我们来小试一下伸手,看看你能用竖式准确地解答这题吗?

24×12 44×21

师:你想提醒同学做竖式计算应注意什么吗?哪容易错?

生:注意第二步一定要错位,别算错了。

2、密码门(3分钟)

师:淘气要邀请我们去他家了,可是他怎么了?遇到了什么问题?喔这是一个密码门,密码就是23×13的结果,等于92怎么不对呢?赶紧帮他算算密码是多少?

生:密码是第二步算错了,23应该错位写,因为它表示230,3写在十位上,2写在百位上得299。

……

师:你们眼力真好,一下帮淘气解决了问题,谢谢你们!赶紧进他家吧!

[设计意图]设计的练习,既让学生在巩固的基础上获得了提高,又克服了学生在新课后的疲倦感,课尽趣依浓。

3、总结(2分钟)

师:淘气的家真漂亮啊,今天真高兴,你有什么收获?

生1:我知道了两位数乘两位数的口算和竖式方法。

生2:我知道了用最简洁、方便的方法算两位数乘两位数(师:什么方法?)用竖式计算。

师:你们说得都很好,很高兴大家今天有这么多收获,下课!

(总结,让学生在交流收获的过程中,了解竖式计算的重要性。)

五年级数学表格教案篇12

教学目标:

1.使学生初步理解单位“1”和分数单位的含义,进一步理解分数的意义;探索并理解分数与除法的关系,会用分数表示计量单位换算的结果,会求一个数是另一个数的几分之几的实际问题‘认识真分数和假分数,知道带分数是整数和真分数合成的数,会把假分数化成整数或带分数,会进行分数与小数的互化。

2.使学生探索并理解分数的基本性质,知道最简分数的含义,掌握约分和通分的方法,能正确进行约分和通分,会进行分数的大小比较。

3.使学生经历分数意义的抽象、概括过程以及分数与除法的关系、假分数化成整数或带分数、分数与小数互化的探索过程,进一步发展数感,培养观察、比较、抽象、概括等能力。

4.使学生初步了解分数在日常生活中的应用,增强自主探索与合作交流的意识,树立学好数学的信心。

教学重点、难点:

1.教学分数的含义,重点是建立单位“1”的概念。

2.以分数单位为新知识的生长点,教学真分数和假分数。

3.用分数表示同类两个数量的关系,扩展对分数意义的理解。

4.通过操作活动感受分数与除法的关系。

5.先特殊后一般,通过改写假分数,教学带分数。

6.优化小数与分数相互改写的教学。

7.理解分数的性质并进行通分和约分。

第1课时分数的意义

教学内容:

教材第52页例1和“练一练”,第58页练习八的第1~4题。

教学目标:

1.使学生初步理解单位“1”和分数单位的含义,经历分数意义的概括过程,进一步理解分数的意义,能根据具体情境表示出相应的分数,联系实际情境解释或说明分数的具体意义;认识分数单位,能说明分数的组成。

2.使学生经历有具体到抽象的认识、理解分数意义的过程,感受分数的来源与形成,体会数的发展,培养观察、比较、分析、综合与抽象、概括的能力,感受分数与生活的联系,增强数学学习的信心。

教学重点:

认识和理解分数的意义。

教学难点:

认识和理解单位“1”。

教学方法:

探究合作法、讲解分析法、练习法等。

教学用具:ppt。

教学过程:

一、谈话导入,唤醒已知

在三年级,我们曾经分两次认识分数,今天这节课,我们要在以前学习的基础上,进一步认识分数。

二、合作探索,理解意义

1.教学例1

出示例1中的一组图

请大家根据每幅图的意思,用分数表示每个图中的涂色部分。写出分数后,再想一想:每个分数各表示什么?在小组内交流。

学生汇报所填写的分数,你认为这些图中分别是把什么平均分的?

一个饼可以称为一个物体,一个长方形是一个图形,“1米”是一个计量单位,而左起第四个图形是把6个圆看成一个整体。

左起第四个图形与前三个图形有什么不同?

一个物体,一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。

(1)在这几个图形中,分别把什么看成单位“1”的?

(2)分别把单位“1”平均分成了几份?用分数表示这样的几份?

(3)从这些例子看,怎样的数叫作分数?

拿12根小棒自已创造一个分数

说说你是怎么做的?

如果老师要表示6根小棒可以用什么分数表示?

2.完成“练一练”

第1题各图中的涂色部分怎样用分数表示?请大家在书上填空。说说是怎样想的。

每个分数的分数单位是多少?各有几个这样的分数单位?

第2题,观察直线上是把哪个部分看作“1”的?直线上表示是怎样想的?

引导:分数也可以在直线上表示。这里从0起到1是1个单位,同样地从1到2也是1个单位,这1个单位就是把单位1平均分成若干份,就可以用直线上的点表示分数。

让学生在()里填上合适的分数。

交流:你是怎样填的?为什么这样填?

三、巧妙联系,深化理解

1.做练习八的第1题

先让学生在每个图里涂色表示三分之二,再说说是怎样涂的、怎样想的。

同样是三分之二,为什么涂色桃子的个数不同?

2.做练习第2、3、4题。

第2题先读出每个分数,再说说每个分数的分数单位。

第3题让学生填,交流时说说是怎样填的。

第4题在研究分数时,把哪个数量平均分成若干份,这样的数量就是单位“1”

四、全可总结,延伸拓展

这节课学习了哪些内容?

五年级数学表格教案篇13

一、复习

1、3.6×0.47.25×0.8板演

2、把240缩小10、100、1000、10000是()

同步口答追问指出:移动小数点位数不够添0补足。

3、评议追问算法随即揭题

二、新课

1、例30.36×0.24

试算集体评议比一比一样对吗?追问:为什么积的十分位上是0?

你能用交换因数位置的方法验算吗?

结果怎样?说明什么?

2、例4小明体重35.5千克,爸爸体重是小明的1.8倍,爸爸体重多少千克?

集体读怎样列式?为什么用乘法?35.5×1.8表示什么意思?

估计积比35.5大还是小?为什么练习简评

3、香蕉买多少元?

每千克3.6元

师引出第一条规律,生说规律2、3。

一个大于0的`数乘,积这个数

应用规律比较大小

3.2×0.8○3.2

0.56×1○0.56

0.63×1.1○0.63

0.9×2.7○2.7

三、练习

练一练1

练一练2

四、收获

五、作业

五年级数学表格教案篇14

教学目标:

1、结合具体的情景,自主探索两位数乘两位数的乘法算法。

2. 学会进行两位数乘两位数的乘法计算,并能解决一些简单的实际问题。

教学重点:1、两位数乘两位数的估算。

2、探索并掌握两位数乘两位数(不进位)的乘法计算。

教学难点:掌握两位数乘两位数(不进位)的乘法并能熟练计算。

教学理念:组织学生讨论、交流,使学生体验学习中通过合作交流带来的方便和快乐。

教学准备:课件。

学生准备:预习课前知识。

教学过程:

一、实践调查

课前让学生在汇景新城作实地调查,调查本小区住户情况

二、课内交流

1、让同学们根据调查所得的数学信息编一道数学应用题。

2、根据所编的题目独立列式

3、探讨和交流如何解决问题。

(1)尝试通过估算结果解决问题。

A、分组讨论不同的计算过程

B、师:根据以上的结果你能判断“这栋楼能住150户吗?”

(2)讨论算法

三、习题巩固:

1、试一试

11×43 24×12 44×21

2、练一练:

第1、2题

3、第3题,学生独立思考,理解题意,再进行计算

四、综合应用:

陈老师班上有42名同学,她为同学们购置书包和文具,一个书包24元,一个文具11元,买书包和文具各花了多少钱?一共花了多少钱?

五、课堂总结:今天我们学习了什么知识?你学会了什么?

六、板书设计:

五年级数学表格教案篇15

学法指要

1.有一块三角形菜地,底为160米,它比高的2倍少20米。菜地面积是多少平方米?

思路分析:此题是求三角形面积的题目。求三角形的面积的关键是知道三角形的底和高。题目中底已经直接给出,而高没有直接给出。因此这题要想求出面积,必须先求出高。求高是求1倍量的,应先把160米补上20米后,正好对应2倍。因此高这样计算:(160+20)÷2=180÷2=90(米)。

再求三角形菜地的面积,直接应用公式计算就可以了。

解:(160+20)÷2

=180÷2

=90(米)

160×90÷2

=14400÷2

=7(平方米)

答:菜地的面积是7平方米。

2.有一块梯形田,上底6米,比下底的一半少0.4米,高比上底多2米,求梯形田的面积是多少平方米?

思路分析:这题的题目要求是求梯形的面积。求梯形的面积计算公式是S=(a+b)×h÷2,根据公式说明求梯形面积的关键是知道上底、下底和高的长度。

观察已知条件,我们发现这个梯形的下底和高都没有直接给出,因此应先求出下底和高,再求面积。

根据条件,求下底是求上底的一半少0.4的数是多少,列式是:

6÷2-0.4=3-0.4=2.6米。

根据条件,求高是求比上底多2的数是多少,列式是6+2=8(米)。

最后求出梯形面积,直接公式计算就可以了。

解:(1)6÷2-0.4=3-0.4=2.6(米)

(2)6+2=8(米)

(3)(6+2.6)×8÷2

=8.6×8÷2

=68.8÷2

=34.4(平方米)

答:梯形田的面积是34.4平方米。

3.如图:梯形的面积是24平方分米,求梯形的下底是多少厘米?

思路分析:这题已知梯形的面积和上底以及高,求下底的长度,是利用公式逆解的题。

我们可以看出,由于两个完全一样的梯形能够拼成一个平行四边形,要计算梯形的下底,必须先把梯形面积乘以2还原成拼得的平行四边形的面积,平行四边形的高等于梯形的高,平行四边形的底等于梯形的上底和下底之和。这样,我们用拼得的平行四边形面积除以高就得出了梯形上底和下底之和,再减去梯形的上底,就算出了下底的长度。

注意,这题中的高的单位名称、面积的单位名称与要求的下底单位不统一,应先统一单位,再计算。

解:24平方分米=2400平方厘米

4分米=40厘米

2400×2÷40-45

=4800÷40-45

=120-45

=75(厘米)

答:这个梯形的下底是75厘米。

4.一个三角形的底是6厘米,面积是12平方厘米,和它等高的平行四边形的底是三角形底的2.5倍,求平行四边形的面积。

思路分析:我们知道,求平行四边形的面积的关键是知道平行四边形的底和高,已知条件中指出,平行四边形的底是三角形底的2.5倍,而三角形的底题目中直接给出,用乘法就可直接求出平行四边形的底了。

题目中又告诉我们三角形和平行四边形等高,因此,只要求出三角形的高就可以了。而求三角形的高又是利用公式逆解的题,这与梯形给出面积利用公式逆解题思路一样,只要先还原成拼得的平行四边形的面积,再算高就可以了。

解:12×2÷6

=24÷6

=4(厘米)

6×2.5=15(厘米)

15×4=60(平方厘米)

答:平行四边形的面积是60平方厘米。

5.求组合图形的面积。

单位:厘米

思路分析:要求这个组合图形的面积,要先做一条辅助线(如图)。

这样就可以看出这个组合图形是一个梯形和一个长方形组合而成的。梯形的下底就是长方形的长,高就是45减35的差,只要利用梯形和长方形的面积公式就可以计算出这两个基本图形的面积,最后用加法就可求出组合图形的面积了。

解:(1)梯形面积:

(20+50)×(45-35)÷2

=70×10÷2

=350(平方厘米)

(2)长方形面积:

50×35=1750(平方厘米)

(3)组合图形面积:

350+1750=2100(平方厘米)

答:这个组合图形的面积是2100平方厘米。

6.小莉走一步的平均长度是55厘米。她从家走到新华书店的距离是1705米,要走多少步,才能走到?

思路分析:这题是知道平均步长和两地间的距离,求步数的题目。由于这题的单位名称不统一,只要先统一单位,就能直接用两地距离除以平均步长就可以了。

解法一:1750米=175000厘米

175000÷55=3100(步)

解法二:55厘米=0.55米

1750÷0.55=3100(步)

答:要走3100步才能走到。

思维体操

1.面积相等的两个三角形,第一个底长是40厘米,高是35厘米;第二个底长是70厘米,高是多少厘米?

思路分析:这道题是求三角形的高,是利用公式逆解的题。题目中给出了两个三角形的面积相等,又直接给出了第一个三角形的底和高,这样就求出了第一个三角形的面积,这也就等于知道了第二个三角形的面积,最后再利用三角形的面积公式逆解此题就可以了。

解:40×35÷2

=1400÷2

=700(平方厘米)

700×2÷70

=1400÷70

=20(厘米)

因为这两个三角形的面积相等,还原成平行四边形的面积也相等。所以还可以还可以这样列式计算:

40×35÷70

=1400÷70

=20(厘米)

答:第二个三角形的高是20厘米。

2.一个三角形和一个平行四边形的面积相等,底也相等,三角形的高是8厘米,平行四边形的高是多少厘米?

思路分析:题目中的三角形和平行四边形的面积相等,也就是,不仅面积相等,两个图形的底也相等,也就是a1=a2,要使面积相等,三角形的高必须是平行四边形的高的2倍,才能达到要求,所以三角形的高是这个平形四边形高的2倍。

解:8÷2=4(厘米)

答:平行四边形的高是4厘米。

3.一个三角形与一个长方形面积相等,已知长方形的周长是37厘米,长是16厘米。而三角形的底是长方形长的一半,高是多少?

思路分析:这道题的已知条件指出,三角形与长方形的面积相等,只要求出长方形的面积就等于知道了三角形的面积。

根据条件,已知长方形的周长和长,要先求出宽,才能求面积。我们用37÷2-16就可以算出宽了,再利用公式就求出面积了。

又根据条件,三角形的底是长方形长的一半,就有求出三角形的底,再利用公式逆解就能求出三角形的高了。

解:37÷2-16

=18.5-16

=2.5(厘米)

16×2.5=40(厘米)

40×2÷(16÷2)

=80÷8

=10(厘米)

答:这个三角形的高是10厘米。

评析:以上三题的解题思路相同,要抓住两个图形面积相等的这个已知条件去分析思考,因此这两题是“面积相等,图形状不同”的题目,求另一图形的底或高,都是利用公式逆解的题目。

要想很快找到解题方法,认真审题非常重要,求面积的公式也要相当熟练,要从题目的已知条件入手,利用公式,求出所求问题。这种思维方法,大家还应掌握。

4.一个正方形的边长增加5厘米,它的面积就会增加95平方厘米,原来的正方形的边长是多少厘米。

思路分析:这题要想求出所求问题,可以根据已知条件,画出一幅平面图,我们可以对照图来分析。

通过画图,我们可以看出,阴影部分的面积就是增加的95平方厘米的面积。而阴影部分是由两个由原正方形为长,5厘米为宽的长方形面积和以5厘米为边长的正方形面积组合而成的。我们只要从95平方厘米中减去5×5的积再除以2再除以5就算出原正方形的边长了。

解:5×5=25(平方厘米)

95-25=70(平方厘米)

70÷2=35(平方厘米)

35÷5=7(厘米)

答:原正方形的边长是7厘米。

注意,这题不能这样画图。

如果按照上图的画法,等于把正方形的每条边长增加了10厘米,题意理解错,肯定结果就错了。

5.一个平行四边形,若底增加2厘米,高不变,面积就增加4平方厘米。若高减少1厘米,底不变,面积就减少3平方厘米。求原平行四边形的面积。

思路分析:根据题意,我们也可画出这题的平面图。我们也可以对照图来分析。

通过观察图,明显看出,当底增加2厘米,高不变时,原来的平行四边形的面积增加了一个和原来的平行四边形相等的底是2厘米的平行四边形的面积,这样就求出了原来平行四边形的高。

我们还可以从图上看出,当高减少1厘米而底不变时,原来的平行四边形就减少了一个和原来的平行四边形等底、高是1厘米的平行四边形的面积,这样就可算出平行四边形的底了。最后根据条件,就可算出原平行四边形的面积了。

解:4÷2=2(厘米)

3÷1=3(厘米)

3×2=6(平方厘米)

答:这个平行四边形的面积是6平方厘米。

评析:以上两题是比较复杂的平面图形的有关计算题目。为了使条件和问题形象地展示出来,我们就可以通过图来解决。画图法也是解答数学难题的方法之一,它对于解答数量关系复杂的题目,有着很重要的作用。因此,大家不能忽视画图法的学习。

智能显示

心中有数

本单元学习的主要内容:

1.平行四边形面积计算公式的推导;平行四边形面积的计算公式;利用平行四边形面积的计算公式解决实际问题。

2.三角形面积计算公式的推导;三角形面积的计算公式;利用三角形面积的计算公式解决实际问题。

3.梯形面积计算公式的推导;梯形面积的计算公式;利用梯形的面积公式解决一些实际问题。

4.组合图形面积的计算方法以及计算。

5.用工具测地面的直线距离。

6.步测和目测的方法以及有关计算。

17490