五年级数学上册教案电子版
教案的编写有助于增强学生的专注度,激发他们的学习热情,从而提升教学效果。五年级数学上册教案电子版规范是怎样的?下面给大家整理了一些五年级数学上册教案电子版,供大家参考。
五年级数学上册教案电子版篇1
教学内容:
P60—63的内容。
教学目的:
让学生学会乘法估算方法,并会根据实际情况选择估算方法。
教学用具:投影仪。
教学过程:
一、新授
1、教学例5
(1)投影出示例5图,让学生说说题意,明确此题并不用求出准确数,只要估算就行了。教师板书:49×104≈
(2)学生讨论估算方法
(3)汇报:
生:49≈50104≈100
50×100=5000,应该准备5000元。生:49≈50104≈110
50×110=5500,应该准备5500元。
(4)比较:
师:谁的估算好一些?为什么?生:第二种估算方法好一些。
要求带多少钱,在估算时要把近似数取大些,才不会造成钱不够的`现象,所以这道题用第二种估算好一些。
2、P60的“做一做”
独立完成,订正时说估算方法。
二、巩固练习
1、P61、1学生的估计方法可能不一样,只要是正确的都给予肯定,不作统一要求。
2、P61、2—4独立完成,订正时说说估算方法。
3、P62、5先在小组内交流估计方法,后在全班交流。
4、P62、7,P63、9、10独立完成,集体订正。
5、P63、12,答案:203×16,203×26,203×36,203×46。
三、布置作业
P62、6,P63、8、11。
五年级数学上册教案电子版篇2
教学内容分析:
简易方程的教学,是在学生学习了用字母表示数以后教学的,在解方程式,学生可以根据等式的性质进行教学,也可以根据四种运算中各部分之间的关系进行教学。
【教学目标】
1、使学生进一步理解用字母表示数的优点。会用字母表示常见的数量关系,会根据字母所取的值,求含有字母式子的值。
2、进一步理解方程的意义,会解简易方程。
3、会列方程解应用题。
【教学重点
用字母表示常见的数量关系,根据字母所取的值,求含有字母式子难点】的值,解简易方程和列方程解应用题。
【教学过程】
一、揭示课题
今天我们复习的内容是有关简易方程的知识,通过复习要进一步理解用字母表示数的优点,会用字母表示常见的数量关系,进一步理解方程的意义,会解方程,会列方程解应用题。
二、复习用字母表示数量关系,公式,运算定律
1、出示表:用字母表示运算定律。
名称用字母表示
加法交换律a+b=b+a
加法结合律(a+b)+c=a+(b+c)
乘法交换律ab=ba
乘法结合律(a×b)×c=a×(b×c)
乘法分配律(a+b)×c=ac+bc
2、请学生说平面图形面积计算公式和长方形、正方形周长公式。
3、用字母还可以表示数量关系,a表示单价,b表示数量,c表示总价,说出分别求总价、单价及数量的字母公式。
4、练习:期末复习第16题。
5、求含有字母式子的值。做期末复习第17题。
(1)原来每月烧的煤用30c表示;现在每月烧的煤用30×(x-15)表示。
(2)学生计算现在每月烧煤的千克数。
三、复习方程的意义和解方程
1、什么是方程?什么是方程的解和解方程?方程和等式关系是怎样的?
2、练习:做期末复习第18题。
学生练习。讲解第(3)题,在方程3x=y中y=21,先把y=21代人原方程成为3x=21再解方程。
3、做期末复习第19题。
请学生说一说解方程的方法。
4、做期末复习第20题。
学生列方程并解方程。
四、复习列方程解应用题
1、(1)列方程解应用题的特征是什么?解题时关键是找什么?
(2)请学生说一说列方程解应用题的一般步骤。
2、做期末复习第21—23题。
第21题:
学生说数量关系式,列方程并解答,根据已列方程写出另外两个不同的方程。
第22题:
师画线段图表示题目的条件和问题,学生列方程解答。
第23题:
学生说数量关系式、列方程解答。
五、全课总结
这节课复习了什么内容。
六、布置作业
五年级数学上册教案电子版篇3
教学内容 P19例1、做一做、练习五第1—2题
教学
目标
知识与技能:让学生结合具体情境认识行与列,初步理解数对的含义;能在具体情境中用数对表示物体的。
过程与方法:使学生经历从已有经验到用数对确定物体位置的探索过程,体验用数对确定位置的必要性和简洁性。
情感、态度与价值观:渗透“数形结合”的思想,发展学生的空间观念。体会生活中处处有数学,产生对数学的亲切感。
教学重点 经历用数对确定物体位置的探索过程,知道用数对表示位置的方法。
教学难点 灵活运用数对知识解决实际问题。
教学方法 直观演示法与自主探索、小组合作的方法。
教学准备 多媒体课件
教学过程设计(含各环节中的教师活动和学生活动以及设计意图)
教学过程 一、创设情境,激趣导入
课件出示主题图,播放动画。
怎样才能既准确又简明地表示张亮同学的位置呢?这节课我们就一起来进一步学习 “确定位置”。(板书:确定位置)
二、探索新知
1、课件出示例1的内容。
(1)学生读题,了解已知信息。
教师引导学生可以根据自己在教室里的位置来思考这个问题。
(2)问:已知张亮同学是第二列、第三行的同学,你能指出谁是张亮同学吗?
学生联系实际的基础上根据图中张亮所在的列数的行数来确定张亮的位置,教师给予肯定。
2、认识数对,学会用数对确定具体情境中的位置。
(1)提出问题(看来用第几列、第几行描述一个人的位置真好,让我们有了一个统一的说法。)
大家觉得用这种方法表示一个人的位置,简炼吗?
师:能不能把这种方法再简化一下?
(2)创造、交流
同学们可了不起,在这么短的时间内,创造出了这么多种不同的表示方法。
这一种是哪个小组创造的?说说你们是怎么想的?
师;不错,既然每个小组都不约而同地保留下了这两个数,说明——?这两个数很重要!
真好!那这里的2和3各表示什么意思呢?
生:……
说得太棒了,数学规则需要统一,想不想知道数学上统一使用的方法,请看先写4,接着打上逗号,然后写3,最后打上括号,因为它们是一个整体。大家知道吗?像这样,用列数和行数组成的一对数,叫做——数对。
书:(2,3)
(4)如果用(2,3)表示张亮同学的位置,你能表示王艳和赵强同学的位置吗?看一看有什么不同?
启发学生思考,引导学生用数对表示位置。
3、游戏中概括提升
我发现咱们班同学学得特别快,下面咱们玩个游戏好吗?
(1)师出生对
我说数对,请符合要求的同学快速地站起来。看谁反应最快!
(3,1)(3,2)(3,3)(3,4)(3,5)
奇怪,怎么就正好站起来这么一排呢?
(2)生出生对
如果让你来出数对,你能让一排同学站起来吗?谁来试试?
生:……
师:也不错!有没有谁能说出点不一样的?
生:(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)
师:发现什么了?能说说为什么吗?
生:……
师:也就是说,数对中的第二个数相同,他们就都在同一行。
(3)师再出
不过,老师还有个本领:只说一个数对,就可能让一排同学都站起来,你们信不信?要不咱试试?
示(4,_)可能是哪些同学?
师:你的数对是?奇怪,我上面写(4,1)了吗?那你为什么站起来?
生:(第一个数是4,表示第4列,第二个数是求知数,所以第4列的每一个同学都有可能)能不能确定,到底是谁?如果_等于3呢,表示的一定是谁?其他同学坐下去,看来,要想确定某一个人的位置,只知道列数行不行?还得知道?(用数对表示位置一定要用到两个数)
师:(__)又可能是哪些同学?(全班同学都站起来了)。
师:全班同学都有可能吗?_、_表示两个相同的数,你的数对是(?,?),符合吗?不符合的同学请坐下。当_=1、2、3、4、5时,看来(__)能不能表示全班同学?只能表示什么?只能表示列数、行数相同同学的位置。
三、做一做,巩固确定位置的方法。
1、出示情景。组织学生观察情景,思考教师的提问。
2、引导学生利用在例题中学到的确定位置的方法来回答问题。
3、组织学生用一组数字来表示它们的位置。学生思考后可交流讨论,最后全班汇报。
四、反馈练习。
完成教材第19 页的做一做。
五、课堂小结。
通过今天的学习,你有哪些收获?
五年级数学上册教案电子版篇4
教学内容:2,5倍数的特征
教学目标:
1、使学生经历探索2,5的倍数特征的过程,理解其特征,能判断一个数是不是2或5的倍数。知道奇数、偶数的含义,能判断一个数是奇数还是偶数。
2、能根据解决问题的需要,收集有用的信息,进行归纳、类比与猜测,发展初步的合情推理能力。在观察、猜测和讨论过程中,提高探究问题的能力。
3、有克服困难和解决问题的体验,对自己得到的结果正确与否有一定的把握和信心。经历观察、归纳、类比等学习数学的活动,使学生感受数学思考过程的合理性。
教学重点:理解2,5的倍数的特征
教学难点:对有关信息如何进行收集、分析、归纳发现数的特征
一、提示课题
这节课,老师要带领全体同学进行探索活动,探索的知识是“2,5的倍数的特征”。(板书课题)
二、探索活动
1、2,5的倍数的特征
⑴、给出几个式子,找找谁是谁的倍数,观察发现是2或者5的倍数,引出今天的课题2,5的倍数的特征。
8÷4=2
6÷3=2
10÷5=2
15÷3=5
20÷4=5
8,6,10都是2的倍数。10,15,20都是5的倍数
那我们今天来学习2,5的倍数的特征
⑵、游戏
班上20位同学,老师按照每组5位同学,按顺序排列了序号为1-20号。
1.请序号为2的倍数的同学站起来
2.请序号为5的倍数的同学举起手
3.请序号既是2又是5的倍数的同学举起你们的双手
1.2,4,6,8,10,12,14,16,18,20
2.5,10,15,20
3.10,20
学生总结归纳出2,5的倍数的特征
学生完成后,展示结果:
2的倍数的特征:个位上是0、2、4、6、8的数是2的倍数。
在学生理解2的倍数的特征的基础上,师说明偶数和奇数的含义,并板书:是2的倍数的数叫偶数,不是2的倍数的数叫奇数。
5的倍数的特征:个位上的数字是0或5的数,都是5的倍数。
⑵、实践检验
①出示1~100的数字表格
②在表中找出2的倍数,并做上记号。
③在表格中找出5的倍数,师做记号。
④既是2的倍数又是5的倍数,做记号。
⑶尝试判断
出示数字:70、90、85、105、120、92、88、104、106
①判断哪些是2的倍数,哪些是5的倍数,哪些既是2的倍数又是5的倍数。
②学生运用乘法或除法计算,来验证判断结果。
(4)归纳总结,并板书。
三、巩固练习
1、找出2、5的倍数。
12130353924012156018728590
(1)找出2的倍数、5的倍数。
(2)哪些数既是2的倍数又是5的倍数?
2、火眼金睛辨对错:
(1)偶数都是2的倍数。()
(2)210既是2的倍数又是5的倍数。()
(3)两个奇数的和不一定是偶数。()
3、猜数。
从左边起:
第一个数字最大的一位偶数
第二个数字5的倍数
第三个数字最小的奇数
第四个数字不告诉你
不过这个四位数既是2的倍数又是5的倍数
4、任选两个数字组成符合要求的数:6、0、9、5
(1)奇数
(2)2的倍数
(3)5的倍数
(4)既是2的倍数又是5的倍数
5、□里能填几?
(1)2的倍数:8□
(2)5的倍数:7□□□
四、课堂小结:
2和5的倍数的特征是我们已经研究过了,3的倍数会有什么特征呢,我们下节课研究。
五、板书设计:
2,5的倍数的特征
5的倍数的特征:个位上的数字是0或5的数
2的倍数特征:个位上是0、2、4、6、8的数
是2的倍数的数叫偶数,不是2的倍数的数叫奇数。
五年级数学上册教案电子版篇5
教学内容:教材P2~3例1、例2及练习一第1、2、3题。
教学目标:
知识与技能:使学生理解并掌握小数乘以整数的计算方法及算理。
过程与方法:经历将小数乘整数转化为整数乘整数的过程,使学生认识到转化的方法是学习新知识的工具。
情感、态度与价值观:感受小数乘法在生活中的广泛应用。
教学重点:理解并掌握小数乘整数的算理,学会转化。
教学难点:能够运用算理进行小数乘整数的计算。
教学方法:迁移类推,引导发现,自主探索,合作交流。
教学准备:多媒体。
教学过程
一、情境导入
1.谈话:同学们都喜欢哪些运动呢?
(生回答自己喜欢的运动……)
2.导入:是啊,多参加户外运动,有利于身体健康。老师也经常参加户外运动,放风筝就是我的最爱。下课咱们一起去放风筝好吗?
3.提问:但放风筝之前要先去买风筝,所以咱们就先去买几只风筝吧!(展示教材第2页例l情境图)从图中你知道了哪些信息?
引导学生观察并思考:图中小明他们想买3个元的风筝需要多少钱?你会列式吗?
指学生回答:×3,教师板书:×3。
4.探索:观察这一道算式,它与我们以前学过的乘法算式有什么不同?
生观察后回答:这道算式的因数有小数。
5.揭题:以前我们学习的乘法都是整数乘整数,今天的算式中却出现了小数,这就是今天我们要研究的小数乘整数。(板书课题:小数乘整数)
二、互动新授
1.初步探究竖式计算的方法。
(1)引导学生准确算出一共需要多少钱?学生独立计算,并在小组内交流自己的想法。(师走到学生中,了解学生参与讨论的情况。)
(2)让学生说说自己的想法。
指名汇报,教师根据学生叙述板书,学生可能想出下面几种不同的方法:
方法1:连加。展示:++=(元)
师:你是怎么想的?
生:×3就表示3个相加,所以可以用乘法计算。(师板书意义)
方法2:化成元、角、分计算,先算整元,再算整角,最后相加。3元×3=9元,5角×3=1元5角,9元+1元5角=10元5角,即×3=(元)。
方法3:把元看作35角,则35角×3=105角=元。
(3)追问:刚才同学们开动脑筋想出了这么多方法,真了不起。如果要用竖式计算,你会算吗?请同学们想一想,并与同桌讨论:如何列竖式计算×37
引导:出示(边说边演示):
强调:我们可以把元转化成35角,用35角乘3得105角,再把105角转化成元。注意在列竖式时因数的末尾要对齐。
2.自主探究,进一步理解算理,掌握计算方法。
(1)教师出示算式:×5。
师:同学们看不是钱数了,没有元、角、分这样的单位了,还能不能计算出结果呢?请同学们独立思考,然后在小组内交流计算方法。
(2)学生汇报演示。
可能有两种方法:加法和乘法。根据学生的汇报,展示这两种方法。
(3)比较:(见板书设计)
引导:请同学们比较一下这两种方法,你喜欢哪一种呢,为什么?
生:用乘法比较简便。
(4)追问:仔细观察乘法算式,谁给大家解释一下,你是怎样把乘数转化成整数的?
生:先把小数点向右移动2位转化成72×5=360,得出结果后再把积的小数点向左移动两位就是。
质疑:既然把所得积的小数点向左移动两位,那这个积就应该是一个两位小数,为什么现在只有一位呢?
生:小数的末尾添上或去掉0,小数的大小不变,所以积末尾的0可以直接去掉。
(5)注意:同学们在计算小数乘整数时,想到了用转化的方法把小数乘法转化成整数乘法计算。那么,谁能和大家说说小数乘整数应该怎样计算,计算时应注意什么呢?
指导学生归纳出:计算小数乘整数的乘法,要先把小数看作整数来乘,乘完以后,看因数扩大了多少倍,再把乘出的积缩小相同的倍数。当积的末尾有“O”时,应先点上小数点,再把“0”去掉。
师:(出示教材第2页情境图)我们通过解决买风筝的问题,认识并学会了小数乘整数的计算方法。我们看图中还有几种不同的风筝,如果买3个其他形状的,需要多少钱呢?能不能很快地算出来?
学生独立计算,汇报交流。
师:同学们顺利地买完了风筝,那就让我们就一起把风筝放飞吧!
三、巩固拓展
1.教材第3页做一做第1题
想一想:小数乘整数与整数乘整数有什么不同?
2.教材第3页做一做第2题
同桌之间相互谈谈是怎样点小数点的。
3.指名板演教材第3页做一做第3题
4.不用计算,你能直接说出下面算式的结果吗?
148×23=3404
×23=()×23=()×23=()()×()=
四、课堂小结。同学们,这节课你们都学会了哪些知识?(学生自由发表想法)
作业:教材第4页练习练习一第1、2、3题。
五年级数学上册教案电子版篇6
教学目标
1、 使学生在解决现实问题的过程中,认识到整数加法的运算定律对于小数加法同样适用,能正确运用加法运算定律进行一些小数加法的简便运算
2、使学生在探索与交流的活动中,体会解决问题策略的多样性,增强优化意识;逐步形成积极的自我评价和自我反思的意识,体验学习数学的成就感。
教学内容
1、 口算
用卡片出示练习九的第1题,指名口答。
2、出示例3中的四种文具。
如果让你任意购买其中的两种文具,你想买哪两种?你会计算出所需要的钱数吗?
1、出示例3
这四种文具,小华各买了一件,他一共用了多少元?解答这个问题可以怎样列式?
根据学生的回答,教师板书:
2、 引导学生探索算法
你会计算这道题吗?先算一算再把你的计算方法在小组内交流。
学生独立计算,注意选择学生采用的不同的方法,并指名板演。
3、 比较:刚才同学们用不同的方法算出了小华一共用的钱数,请同学们比较这些算法,你认为哪种算法更简便些?
进一步追问用简便算法的学生:你这样算的依据是什么?
4、 小结:整数加法的运算定律,对于小数加法也同样适用。应用加法运算定律可以使一些小数加法的运算简便。这就是我们今天研究的内容。
我们以前学习过哪些加法的运算定律?
根据学生的回答板书:
加法交换律:
加法结合律:
这里的字母 a、b、c可以表示怎样的数?
指出:因为整数加法运算定律对于小数加法同样适用,所以这些字母公式里字母所表示的数的范围既包括整数,也包括小数。
1、完成““练一练””的第1、2两题
先让学生独立完成,再让学生说说怎样算简便
4、 完成练习九的第2题
学生练习
比较每组算式的计算过程和结果,你有什么发现?
指出:整数减法的一些规律小数减法里同样适用,也能使一些计算简便。
5、 完成练习九的3~5题
先让学生独立完成,再交流第4、5题的思考过程,说出每一步计算结果的实际意义
教后记
在探索与交流的活动中,体会解决问题策略的多样性,增强优化意识;逐步形成积极的自我评价和自我反思的意识,体验学习数学的成就感。
五年级数学上册教案电子版篇7
教学目标
1、使学生能理解质数、合数的&39;意义,会正确判断一个数是质数还是合数。
2、知道100以内的质数,熟悉20以内的质数。
3、培养学生自主探索、独立思考、合作交流的能力。
4、让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。
重点难点
质数、合数的意义。
教学过程:
复习导入
1、什么叫因数?
2、自然数分几类?(奇数和偶数)
教师:自然数还有一种新的分类方法,就是按一个数的因数个数来分,今天这节课我们就来学习这种分类方法。
新课讲授
1、学习质数、合数的概念。
(1)写出1~20各数的因数。(学生动手完成)
点四位学生上黑板写,教师注意指导。
(2)根据写出的因数的个数进行分类。
(3)教学质数和合数概念。
针对表格提问:什么数只有两个因数,这两个因数一定是什么数?
教师:只有1和它本身两个因数,这样的数叫做质数(或素数)。
如果一个数,除了1和它本身还有别的因数,这样的数叫做合数。(板书)
2、教学质数和合数的判断。
判断下列各数中哪些是质数,哪些是合数。
17、22、29、35、37、87、93、96
教师引导学生应该怎样去判断一个数是质数还是合数(根据因数的个数来判断)
质数:1、7、29、37
合数:22、35、87、93、96
3、出示课本第14页例题1。
找出100以内的质数,做一个质数表。
(1)提问:如何很快地制作一张100以内的质数表?
(2)汇报:
①根据质数的概念逐个判断。
②用筛选法排除。
③注意1既不是质数,也不是合数。