教案吧 > 小学教案 > 五年级教案 >

五年级数学教案流程

时间: 新华 五年级教案

写教案时,需要注重教学反思,对教学过程中出现的问题及时总结和记录,以便不断完善和提高自己的教学水平。好的五年级数学教案流程应该怎么写?快来看看,小编给大家分享五年级数学教案流程的写作技巧和示例,供大家参考!

五年级数学教案流程篇1

教学目标

1、使学生能理解质数、合数的&39;意义,会正确判断一个数是质数还是合数。

2、知道100以内的质数,熟悉20以内的质数。

3、培养学生自主探索、独立思考、合作交流的能力。

4、让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。

重点难点

质数、合数的意义。

教学过程:

复习导入

1、什么叫因数?

2、自然数分几类?(奇数和偶数)

教师:自然数还有一种新的分类方法,就是按一个数的因数个数来分,今天这节课我们就来学习这种分类方法。

新课讲授

1、学习质数、合数的概念。

(1)写出1~20各数的因数。(学生动手完成)

点四位学生上黑板写,教师注意指导。

(2)根据写出的因数的个数进行分类。

(3)教学质数和合数概念。

针对表格提问:什么数只有两个因数,这两个因数一定是什么数?

教师:只有1和它本身两个因数,这样的数叫做质数(或素数)。

如果一个数,除了1和它本身还有别的因数,这样的数叫做合数。(板书)

2、教学质数和合数的判断。

判断下列各数中哪些是质数,哪些是合数。

17、22、29、35、37、87、93、96

教师引导学生应该怎样去判断一个数是质数还是合数(根据因数的个数来判断)

质数:1、7、29、37

合数:22、35、87、93、96

3、出示课本第14页例题1。

找出100以内的质数,做一个质数表。

(1)提问:如何很快地制作一张100以内的质数表?

(2)汇报:

①根据质数的概念逐个判断。

②用筛选法排除。

③注意1既不是质数,也不是合数。

五年级数学教案流程篇2

教学内容

《除法估算》选自苏教版九年制义务教育小学教科书数学第九册P51的内容。

教学思路

小学数学应该与现实生活相联系,使学生的学习更具有现实性、趣味性和挑战性。“估算”在实际生活中有着广泛的应用,与其他知识也密不可分。因而,在教学“除法估算”这一部分内容时,设计围绕从学生刚经历的秋游活动来展开,让学生独立思考以发现估算的题材、自主探索以感知估算的价值、小组合作来交流估算的策略、尝试解题来总结估算的方法、实践运用以提高估算的能力。

设计理念

1、数学教学活动要关注学生的个人知识和直接经验

新的《国家数学课程标准》(实验稿)中明确指出,数学课程“不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发……数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上”。因此,教学活动要以学生的发展为本,把学生的个人经验(除法计算)、直接经验(秋游的感受)和现实世界(生活中的数学)作为数学教学的重要资源。

2、注重学生自主性和个性化的学习

引导学生通过独立思考、自主探索、合作交流获得知识,激励学生自得自悟。并且注意在教学过程中要充分利用学生的已有经验,尊重他们不同的思维方式,让数学学习活动成为一个生动活泼的、主动的和富有个性的过程。

教学目标

1、经历除法估算方法的探索过程,理解并掌握估算的方法。

2、能灵活运用估算方法解决实际的问题。

3、在探索学习活动中,培养学生的实践意识,培养探索意识、合作意识、创新意识,并获得积极的、成功的情感体验。

教学过程

一、秋游场景引入,调动学生学习兴趣。

上课后,出示秋游时拍的照片,询问学生当时的心情,一下就让学生回想起秋游那天的情景,因那天是远足秋游,学生对步行印象极深。在导入新课前,就提供路程和时间,让学生进行除数是一位数的除法估算的复习,求出同学们步行每小时大约行多少米。接着让学生把计时的单位改小,继续求每分钟的步行速度,便于我们判断走得比较快还是慢。此时顺利进入了除数是两位数的除法估算的教学中。

二、创设问题情景,激励学生自行探究。

1、关于所需车辆的计算:

师:同学们走的速度很快呢,是玩的心情很迫切吧!怪不得有同学问老师:“为什么不坐车呢?大家想知道原因吗?”

(1)出示题目并讲述:老师联系车子的时候只有中型客车,每辆车子可以坐44人,而我们四年级参加秋游活动的学生一共有235人。现在只有5辆车子可以用,你们认为够吗?

(2)学生自己思考解答后交流。

师:请同学来说说你的结果。(交流情况)

生1:我觉得不够。因为235÷44≈6(辆),要6辆车子才可以。现在只有5辆,所以不够。

(240)(40)

生2:我认为够了。235÷44,235的近似数取200,235÷44≈5(辆)。

(200)(40)

生3:我认为是不够的,老师还没有算在里面呢。

生4:老师,我用小数做的行吗?

师:当然可以了。你课外知识真丰富!请你说说看。

生4:我用235÷44≈5.3,把结果求近似数就是约等于5,所以我觉得5辆车就够了。

生5:可是在现实生活中有时不能把后面的直接去掉,应该要向前面进一。

生6:我同意生5的观点,5辆是不够的。我是这样想的:一辆车可以坐44人,那么5辆车大约可以坐44×5≈200(人),而200人<235人,多出来的人就坐不下了,要用6辆车才够。

师:是啊,多出来的人怎么办呢?不去了吗?

师:我看,问题主要是在生1和生2的两种解法中235,也就是被除数的取近似数出现了分歧,那先来解决除数取近似数是怎样统一的?

生7:只要省略最高位后面的尾数,保留整十数。

师:其他同学有不同意见吗?(生都摇头表示没有)。问题是被除数到底该怎么考虑求近似数呢?在现实生活中来考虑这个问题,哪一种更符合实际呢?

生齐:生1说的那种。

生2:我现在想想应该是不够的,刚才没有仔细考虑。

师:那就是说,被除数取近似数时,要考虑尽量和原来的数接近。

生8:老师,那230也接近235的,为什么要取240呢?

师:谁能回答这个问题?

生9:因为240÷40是整数6,计算方便,算得快。

师:为什么会这么快?

生9:因为我想乘法口诀:四六二十四

师:这个方法真妙啊!把除数的近似数求出来后,用乘法口诀来想,找个最接近被除数的,把它取作被除数的近似数。你真会动脑筋!

师:(小结)我们用估计的方法求出了5辆车是不够的,所以决定远足秋游,还能观赏沿途风光呢,倒也是一举多得。

2.关于缆车票价的估算(出示缆车图)

(1)理解价格表

师:到了坐缆车的地方,同学们可兴奋了。不知道有没有同学注意到了这张价格表呢?你能看懂它吗?(指名学生发言)

生10:大人坐缆车上山要20元,上山、下山一起要30元。

生11:大人光上山不下山是20元。儿童的票价是大人的一半。

师:两人说得都很棒,生11补充得更好,那按价格表的说明,同学们每人应该付多少钱呢?

生12:(口答)30÷2=15(元)

师:老师要负责付同学们的费用了。请大家帮忙算一下:一个人的票价是15元,我们班级有58名同学参加秋游,那么该付多少钱呢?

(学生小组讨论后交流)

生13:我们小组认为老师要付15×58≈1200(元)

(20)(60)

生14:我们小组认为老师只要付15×58≈900(元)

(60)

师:怎么一下就相差了300元?该听谁的呢?

生15:我们小组是列竖式计算的,其实只要15×58=870(元)

师:同样是估算,相差300元,这里就要注意联系生活实际的情况,估算目的是计算快速,但也要注意准确。大家想知道事实上老师付了多少钱吗?

(学生纷纷猜测)

生16:老师,我想您付的钱应该比870元少。

师:为什么这么说?

生16:因为我想集体乘坐应该可以优惠的,很多地方集体购票都可以打折的。

师:你的生活经验真丰富!的确如你所料,老师实际上付了775元。

(生恍然,纷纷点头。)

师:58个同学乘坐缆车,总共用了775元,你能算算自己用了约多少钱吗?

列式:775÷58≈

生解答后交流:除数58的近似数是60,被除数考虑能被60整除,而又接近775,所以求近似数是780。师板书:775÷58≈13(元)

三、提供数据信息,鼓励学生自选解题。

在学生掌握了除法估算的方法以后,出示一组信息,让学生选择其中对于自己想了解的情况有用的数据,进行计算解答,并和小组里的同学交流。

反思:

这堂课上得生动活泼,同学们都投身于自己探究知识的活动之中。他们仔细观察,认真思考,合作交流,终于发现了知识、领悟了方法,品尝到了成功的喜悦。我在实践后的体会如下:

1、生活即教育

“生活即教育。”这句话是著名的教育家陶行知说的。也说明了学习应该是学生自己的实践活动。以往教科书上枯燥的例题让学生失去了学习数学的兴趣,而我们现在应该更加关注学生会关心什么、经历了什么、对什么感兴趣、在生活中想要发现些什么。因为生活本身就是一个巨大的数学课堂,将学习和学生们的生活充分融合起来,让他们在自己感兴趣的问题中去寻找、发现、探究、认识和掌握数学。只有这样,学生才会学得积极主动,才会学得兴趣盎然。

2、估算与生活

估算的内容在生活中随处可见,有着极其广泛的应用,在日常生活中,对量的描述,很多时候只要算出一个与精确数比较接近的近似数就可以了。这堂课的教学,让学生把自己的经历和数学知识在生活中的应用结合起来,因此培养了学生的素质和能力。

五年级数学教案流程篇3

教学目标:

1.结合具体活动情境,经历测量石块体积的实验过程,探索不规则物体体积的测量方法。

2.在实践与探究过程中,尝试用多种方法解决实际问题。

教学重难点:

探索不规则物体体积的方法,尝试用多种方法解决实际问题。

教学活动:

一、创设情况,引入新知

1.出示石块

问:如何测量石块的体积?什么是石块的体积?

极书课题。

2.以小组为单位,先讨论、制定测量方案。

问:能直接用公式吗?不能怎么办?

3.小组派代表介绍测量方案。

学生观察石块

想一想,如何测量石块的体积。

学生分组讨论,制定测量方案

学生的测量方案可能有:

方案一:取一个正方体容器,里面放一定的水,量出水面的高度后把石块沉入水中,再一次量出水面的高度。这时计算一下水面升高了几厘米,用“底面积×高”计算出升高的水的体积,也就是石块的体积了,也可以分别计算放入石块前的水的体积与放入石块后的总体积之差。

方案二:是将石块放入盛满水的容器中,并将溢出的水倒入有刻度的量杯中,然后直接读出溢出的水的体积,就是石块的体积。

方案三:可以用细沙代替水,方法类似于方法一、方法二。

设计意图:创设情景,激发学生学习新知的兴趣。引导学生小组合作,制定测量方案。

引导学生探索与体会测量不规则物体的体积的方法。

二、进行实验

让学生按各自小组制定的方案小组合作进行测算。

小组代表领取所需测量工具,学生小组合作动手测量,并且列式计算

设计意图:通过实验,使学生明白把不规则的石块体积转化成了测量计算水的体积的方法不只一种。

三、试一试

1.在一个正方体容器里,测量一个苹果的体积。

2.测量一粒黄豆的体积。

学生小组合作进行测算

3.小结。

师:通过实验,这节课你有什么收获?

请几名学生说说自己的收获

设计意图:让学生再一次运用在操索活动中得到的测量方法去测量其它不规则物体的体积。

四、数学万花筒

课件出示阿基米德的洗浴故事

学生听老师讲述阿基米德的洗浴故事

五年级数学教案流程篇4

教学目标:

1、使学生尝试运用“列表”、“画示意图”等方法发现规律,运用数的奇偶性解决生活中的一些简单问题。

2、让学生经历探索加法运算中数的奇偶性变化的过程,发现数的奇偶性的变化规律。

3、在活动中培养等毛生的观察、推理和归纳能力。

4、学生通过自主探索发现规律,感受数学内在的魅力,培养学生学习数学的兴趣。

教学重点:探索数的奇偶性变化规律。

教具学具准备:数字卡片,盒子,奖品。

教学过程:

复习引入新课。(通过引导学生回忆、提问或列举等形式,复习奇、偶数的意义。)

活动1:数的奇偶性在生活中的应用。

(一)激趣导入。

清早,笑笑第一个走进了教室,像往常一样把门打开后就去开灯,结果灯未亮,于是,他自言自语地说了声“停电了”就走到座位上坐下。不一会儿,同学们陆陆续续来到了教室,看到教室里光线有些暗,都下意识地伸手去按电灯开关,却都像笑笑一样无奈地走回自己的座位。你知道第11个同学按过开关后,“开关”是打开的还是关闭了?

(二)自主探究,发现规律。

1、学生独立思考后进行汇报交流。

方法:用文字列举出开、关的情况

开、关;开、关;开、关;开、关;开、关;开、关……

让学生数数,直观地发现第11个人按过开关后,开关是打开的。

2、增加人次,深入探究。

如果是第47个同学或第60个同学进去,用列举的方法判断“开关”的开、关情况还方便吗?你还能想出什么好方法?

3、第二次汇报交流。

投影下表:

用列表的方法启发学生总结规律并作答:当人数是1、3、5、7……的时候,开关处于开启状态,而当人数是2、4、6、8……的时候,开关处于关闭状态。即,进来的是奇数个同学时,开关被打开;进来的是偶数个同学时,开关被关闭。因为47是奇数,开关被打开;108是偶数,开关被关闭。

(三)巩固应用。

1、看书学习并解决小船的靠岸问题。

2、解决杯子上下翻转,杯口的朝向问题。

3、举例说说数的奇偶性还能解决哪些生活问题?

(四)活动小结。

当一个事物只有两种(运动或变化)状态时,运动奇数次后,状态与初始状态相反,运动偶数次时,状态与初始状态相同。

活动2:探索奇、偶数相加的规律。

(一)有奖游戏。

1、出示分别装有奇数卡片和偶数卡片的两个盒子。宣布游戏规则:从自己喜欢的盒子里任意抽取两张卡片,如果卡片上两个数的和为奇数,你就可以领取一份奖品。

2、游戏开始。部分学生按规则抽取卡片,并将卡片上两个数相加的算式及得数写在黑板上。上来的同学无一人获奖。

3、引发思考。

师:是你们运气不好,还是其中隐藏着什么秘密?想一想:如果继续抽下去,你们有获奖的可能吗?

4、发现规律。

学生观察黑板上的算式,很快发现其中的“秘密”:两个奇数相加和是偶数;两个偶数相加和也是偶数。如此抽取卡片,永远无法获奖。

5、举例验证。

6、修改游戏规则。

(1)师:现在同学们已经发现了不能获奖的原因了,那么,你能不能修改游戏规则,保证你们能够获奖呢?

(新规则:在两个盒子里各抽出一张卡片,两张卡片上数的和是奇数可获奖。)

(2)请学生按修改后的规则试抽几次,并发奖以资鼓励。

(3)举例验证:奇数+偶数=奇数

(二)总结奇、偶数相加的规律。

奇数+奇数=偶数、偶数+偶数=偶数、奇数+偶数=奇数。

(三)应用规律解决问题。

1、不计算,判断下列算式的结果是奇数还是偶数。

10389+2004 11387+131 268+1024

2、把5颗糖(全部)分给两个小朋友,能否使每个小朋友都分到偶数颗糖?奇数颗呢?结果是什么?

全课小结:说说这节课有什么收获?

五年级数学教案流程篇5

教学反思:

第三课时、三角形面积的应用

教学内容:

冀教版小学数学五年级上册第60、61页三角形面积的应用。

教学提示:

学生已掌握了三角形面积的计算公式,在此基础上引导学生把计算结果同实际的需要联系起来,培养数学应用意识和解决实际问题的能力。

教学目标:

1、知识与技能:结合具体情境,经历综合应用知识解决实际问题的过程。

2、过程与方法:通过解决与三角形面积有关的简单问题,获得综合应用所学知识解决实际问题的经验和方法。

3、情感态度与价值观:愿意对数学问题进行讨论,感受数学运算的合理性与结果运用的现实性,培养数学应用意识。

重点、难点:

教学重难点:会应用三角形的面积计算公式解决一些简单的实际问题。

教学准备:

多媒体,图形。

教学过程:

一、复习导入

同学们,我们已经学习了哪几种平面图形的面积?

谁能说一说怎样求他们的面积?(学生自愿回答)

设计意图:让学生复习长方形、正方形、平行四边形、三角形的面积公式,为下面的学习打下伏笔。

二、探索新知

1、出示例题:有两块白布,用它们做医院包扎使用的三角巾(不可拼接),第一块白布:长135分米,宽9分米。第二块白布:长140分米,宽10分米。

9d

2、提出问题。

第一块白布可做多少块这样的三角巾呢?第二块白布可做多少块这样的三角巾呢?请同学试着用自己的方法算一算。

3、解决问题。

学生试算,教师巡视。了解学生计算的方法。

师:学生汇报计算的结果。

生:我先算第一块白布和一块三角巾的面积,再计算第一块白布可做多少块三角巾。

135×9=1215(平方分米)

9×9÷2=40.5(平方分米)

1215÷40.5=30(块)

生:我列成了一个综合算式

(135×9)÷(9×9÷2)

生:边长是9分米的正方形白布可以做2块三角巾,那么第一块白布可做多少块三角巾,就用

135÷9×2=30(块)

设计意图:通过让学生自己尝试解决问题,经历成功与失败,培养学生克服困难的精神和勇气。

师:同学们的做法很好,希望大家在做题的时候用不同的方法解决问题,提高自己的思维能力。

师:哪个组再汇报一下第二个问题的解决方法。

生:我们组用“总面积÷每块三角巾的面积”来做。

白布面积:140×10=1400(平方分米)

三角巾的面积:9×9÷2=40.5(平方分米)

可以做多少块三角巾:1400÷40.5≈34(块)

师:能做出34块吗?大家画图试一试。

学生画图,发现问题,小组讨论

师:同学们通过画图,发现了什么问题?

生:第二块白布的长、宽虽然比第一块长5分米、宽1分米,题中要求“不可拼接”,所以不能做出34块,只能用第2种方法,做30块。

生:先算白布长可以做多少个边长9分米的正方形。

140÷9=15(个)……5(分米)余数5分米是多余的布料,不能做一个三角巾。

再算白布宽可以做多少个边长9分米的正方形。

10÷9=1(个)……1(分米)余数1分米是多余的布料,不能做一个三角巾。

最后算可以做多少块三角巾。

15×2=30(块)

师总结:当长方形的长和宽不是三角形的底和高的整数倍时,一般不能应用“总面积÷每块三角巾的面积”来解决问题。

设计意图:在具体情境中,发展学生的空间观念,考察学生能否创造性运用已有知识。结合画图,引导学生把计算的结果同实际的需要联系起来,培养数学的应用意识和解决问题的能力。因此否定第一种算法、

三、巩固新知

1、判断题

(1)两个面积相等的三角形可以拼成平行四边形行()

(2)等底等高的三角形面积相等()

(3)三角形的面积等于平行四边形面积的一半()

(4)三角形面积的大小与它的底和高有关,与它的形状和位置无关。()

2、一块广告牌是三角形,底是12.5米,高6.4米。如果要给广告牌刷漆(只刷一面),每平方米用油漆0.4千克,刷这个广告牌需要油漆多少千克?

3、教材第61页练一练1题。

答案:1、×、√、×、√2、16千克、3、0.48平方米,72元

设计意图:练习分层次设计,主要是巩固、熟练公式,解决实际问题是让学生感知生活化的数学。

四、达标反馈

1、大白菜地的形状是三角形,底80米,高60米,如果每棵大白菜占0.2平方米,这地可种大白菜多少棵?

2、明明的房间是一个长4米、宽3米的长方形。用直角边分别是4分米和3分米这样的直角三角形地砖铺地,至少需要多少块?

3、教材第61页2—3题。

答案:1、80×60÷2=2400(平方米)2400÷0.2=12000(棵)

2、4米=40分米,3米=30分米,

40×30=1200(平方分米),4×3=12(平方分米),1200÷12=100(块)

3、教材2、5×4.2÷2=10.5(平方米),39×11=429(千克)

教材3、421≈400,58≈60,400×60÷2=12000(平方米)

五、课堂小结

师:通过今天的学习,你学会了那些知识?

生:我知道:在实际问题中,三角形的底和高确定后,三角形的面积也就确定了。

生:在解决问题时,根据实际情况确定方法。如例题的第二个问题就要考虑实际问题选择方法。当长方形的长和宽不是三角形的底和高的整数倍时,一般不能应用“总面积÷每块三角巾的面积”来解决问题。

六、布置作业

1、教材第61页4——6题。

2、如图一个交通标志牌的面积是36平方分米,它的高是多少分米?

五年级数学教案流程篇6

【设计理念】

数学课程标准明确指出,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法。本节课抓住关键词,把握自然数(0除外)按因数个数分类的数学方法,让学生充分讨论质数和合数的特征,经历质数和合数这一知识的发生发展过程,通过观察、比较、分析、归纳,构建质数和合数概念,更好地掌握数学思想,提升学生学习数学的兴趣,培养良好的学习态度。

【教学内容】

人教版五年级下册第23~24页“质数与合数”。

【学情与教材分析】

本课是在学生掌握“因数、倍数、奇数、偶数、2、3、5的倍数特征”的基础上进行的。本单元涉及的概念多,“质数与合数”是一节概念教学课,概念抽象易混淆,在生活中运用较少,与学生的生活有一定的距离,是本课的难点也是本单元内容教学的难点。

【教学目标】

1.让学生经历操作、观察、发现、概念归纳的数学化过程,构建质数和合数概念。

2.把握整数按因数个数的分类法,理解和掌握质数与合数的特征,能应用概念寻找或判断质数。

3.通过研究质数与合数特征的学习活动,体会学习数学的思想方法。

【教学准备】

课件;练习纸每生一张。

【教学过程】

活动一:构建质数和合数概念

1.引导学生按要求列出乘法算式:“因数用整数、不用1”。

教师板书“1=”……“20=”,教师不言语,用手势引导学生按要求说出乘法算式。

学情预设:学生中可能出现用1或小数的问题,师用手势提醒“不用1”“用整数”。

2.师:按“用整数、不用1”的要求无法列出乘法算式的数,我们叫它质数;可以列出乘法算式的数,我们叫它合数。

教师依次在这些质数的前面填上“质数”、“合数”,学生自然而然的在教师板书时说出“质数”和“合数”。

【设计意图】

“活动一”全过程教师基本不言语,只用手势或神情来组织教学,给学生一个神秘感,在创设静谧的氛围中静心体会质数与合数的区别。

活动二:讨论质数和合数的特征

1.师:“从这些乘法算式中,你发现了什么?

学情预设:学生有可能说出质数都是奇数;对策:教师指出2是质数、15是合数;

合数可以写出乘法算式;如果不用1,质数无法写出乘法算式。

2.教师擦除“不用1”,学生列出相应的乘法算式,再进一步用因数的个数来探讨质数和合数的概念。

师:观察因数的个数,你又发现了什么?

从乘法算式中,学生很快并能清晰地发现质数只有1和它本身两个因数,而合数则除了1和它本身两个因数外,还有别的因数(至少三个因数)。

3.根据学生回答板书。

4.讨论:“1”是质数还是合数?

学情预设:有的学生可能认为:1有两个因数,一个是1,一个是它本身,1应该是质数;有的学生可能认为:1的本身还是1,所以1应该只有一个因数;有的学生可能认为:1既不是质数也不是合数。

师把板书写完整。

5.小结:谁能用自己的语言说一说什么样的数叫质数?什么样的数叫合数?怎样判断一个数是质数还是合数?

【设计意图】

预留足够的时间让学生经历操作、观察、发现、概念归纳的数学化过程,构建质数和合数概念。并尝试根据因数的个数归纳出质数与合数的概念,学会运用质数和合数的特征进行判断,充分感受到知识之间既有区别,又有联系。

活动三:应用概念寻找或判断质数

1.继续寻找30以内的其它质数。

2.做一做:出示数字卡片:17、22、29、35、37、87、93、96、1,将数字卡片填入质数与合数相应的集合圈里。

3.下面的说法正确吗?说说你的理由。

⑴所有的奇数都是质数。()

⑵所有的偶数都是合数。()

⑶在1、2、3、4、5……中,除了质数以外都是合数。()

⑷两个质数的和是偶数。()

【设计意图】

通过不断的寻找、发现与判断质数的练习中,使学生意识可以用合理的方法来判断,巩固质数与合数特征的认识。

活动四:拓展延伸深化概念

1.你知道他们各是多少吗?(在小组内交流各自的想法后汇报)

⑴两个质数的和是10,积是21,他们各是多少?

⑵两个质数的和是20,积是91,他们各是多少?

⑶最小的质数是?最小的合数是?

2.在括号里填上质数:

8=()+()12=()+()28=()+()

3.数学小阅读:哥德巴赫猜想。

同学们你们知道吗,刚才你们正在尝试解决一道世界难题,做了一件很有价值的事,这个世界难题就是:是不是所有大于2的偶数,都可以写成两个质数的和呢?这个问题是德国数学家哥德巴赫最先提出的,所以被称为哥德巴赫猜想。世界各国的数学家都想攻克这一难题,但至今还未解决。我国数学家陈景润在这一领域已经取得了举世瞩目的成果。

请同学们进行数学小阅读:哥德巴赫猜想。课后,感兴趣的同学们也可以查找相关书籍或上网查阅相关资料。

【设计意图】

在适度拓展中,尝试解决“任何大于2的偶数,都可以写成两个质数的和”的哥德巴赫猜想。在数学小阅读中,让学生了解数学发展的历史,感受数学文化的魅力,同时留有空间,让学生课后探究。

活动五:总结

这节课你有哪些收获?

22778