教案吧 > 小学教案 > 五年级教案 >

五年级数学免费教案

时间: 新华 五年级教案

教案的编写有助于增强学生的专注度,激发他们的学习热情,从而提升教学效果。写好五年级数学免费教案是有技巧的,接下来给大家分享五年级数学免费教案,方便大家学习。

五年级数学免费教案篇1

教学目标:

1、使学生知道24时计时法的意义,会用24时计时法表示时刻。

2、能正确地进行普通计时法和24时计时法之间的互换。

3、能计算经过的时间。

4、教育学生珍惜时间。

教学重点:

24时计法和普通计时法的区别,并能正确的进行互换。

教学难点:

计算经过的时间。

教学教具:

多媒体、学具钟、小黑板。

教学过程:

一、创设情境,导入新课。

(出示一个9时的钟面)

师:这是几时?这个时刻老师可能在做什么?

生1:我猜老师可能在上课。

生2:我猜老师可能在批改作业。

……

师:大家都猜得不错,那为什么有些小同学会猜得不一样呢?

生:有的说的是上午的9时,有的说的是晚上9时了!

师:一天中有几个9时?

怎样表示才能把两个9时分清楚,不造成误会呢?

教师板书:上午9时 晚上9时

师:在9时前面加上:上午或晚上这些表示时段的词,表示得就清楚明白了,那么有没有比这更方便的吗?

师:为了把一天的时间记录得清楚明白,广播、电视、邮电、交通等部门采用了另外一种记录一天时间的方法,就是24时计时法。

板书课题:24时计时法

二、质疑探究、学习24时计时法

师:看着课题你想知道什么?

生1:什么是24时计时法?

生2:24时计时法有什么用?

生3:24时计时法是怎样计时的?

师:我们一起来探究这些问题。

1、体会一天有24小时

师:一天从什么时候开始到什么时候结束?(学生各持己见)

师:你们喜欢看春节联欢晚会吗?0点的钟声是什么时候敲响的?

师:对,晚上12时,既是旧的一天的结束,也是新的一天的开始。

从晚上12时到晚上12时是一天。

教师拨钟面演示,学生边观察边数:晚上12时……

师:现在几时?

生:中午12时。

师:时针走了几圈?

12小时

根据学生回答,教师板书:

第一圈:晚上12时 中午12时   12小时

接着演示板书:

第二圈:中午12时 晚上12时

师:一日有几个小时?

1日(天)=24小时

师:一天有24小时,从0时到24时的计时法就是24时计时法。

2、体会24时计时法是怎样计时的。

师:24时计时法是怎样的记录一天的时间呢?

多媒体出示钟面:晚上12时记为0时……下午1时记为13时,……晚上12时记为24时。

3、小练(用小黑板出示):

把下面的时间进行分类

凌晨2:00 2:00 上午 7:00 7:00 中午12:10 12:10 下午1:00 13:00 晚上9:00 21:00

(1)你是根据什么进行分类的。

(2)比较两种记时法的相同点和不同点。教师根据学生的回答板书:

相同点:凌晨、上午、中午时数相同。

不同点:下午、晚上的时数不相同。

互换方法:下午、晚上的时数加12就是对应的24时计时法的时数。

24时的时数减12就是对应的普通计时法的时数。

4、应用。

(1)把下面的时刻用24时计时法表示。

凌晨3:40( )  中午12:00( )

下午1:00( )   晚上7:30( )

(2)把下面的时刻用普通计时法表示。

1:20 ( )  12:00 ( )

14:00 ( )   16:30 ( )

三、求经过时间

出示例题:从上午8时到11时,经过了( )小时(课多媒体演示)

四、口答(多媒体演示)

1、选择填空

小赵去看一场电影,电影从15时放到( )

(1) 9时 (2)17时

(3) 9小时 (4)17小时

2、从6时到12时经过( )小时

3、一个展览馆每天8:00开馆, 17:00闭馆,每天开放( )小时

4、许老师今天上午7时进学校,到下午4时离校,许老师今天在学校多少时间?(课多媒体演示)(比较解法)

五、聪明题

1、小华每天7:00分到校,11:30分回家, 13:00到校,16:00离校,他一天在校的时间是多少?

2、爸爸21:00上夜班,工作8小时,第二天几时下班?

六、总结交流。

1、同学们,今天我们认识了什么?你还有疑问吗?

2、同学们,时间日复一日,年复一年,过去了的时间是永远不会回来的,一分一秒的时间都是很宝贵的,所以,我们从小要珍惜时间,努力学习,长大了做一个对社会有用的人才。同学们!就让我们从今天开始做时间的小主人,合理地安排好每一天的时间好吗?

板书设计:

24时计时法

普通计时法:   上午9时  晚上9时

24时计时法:   9时   21时

五年级数学免费教案篇2

教学目标:

1.掌握小数加减法的计算方法,并能用于解决生活中的一些实际问题。

2.通过自主探究、合作交流,经历探索小数加减法计算方法的全过程,理解算理,体会小数加减法与整数加减法的联系,发展运算、分析、推理能力,积累解决问题的经验。

3.加强数学知识与日常生活的联系,激发学习兴趣,培养与他人合作的意识,逐步养成独立思考、细心计算的良好习惯。

教学重点:

掌握小数加减法的计算方法。

教学难点:

理解相同数位上的数才能直接相加减的算理。

本节课关键性问题:

1、如何引导学生发现只有相同数位上的数才能直接相加的原因。

2、如何引导学生将小数加减法与整数加减法进行联系沟通。

教学准备:

课件、学习单、实物投影

过程设计教学过程:

一.错题引入

师:同学们,知道我们今天学什么?(出示课题)

师:之前我们已经学习了简单的小数加减法,所以昨天我做了一次课前调查,这是同学们列的两道竖式:

师:你认为哪道是对的?

师追问:为什么这个2不与5相加,而要与6相加呢?

设计意图:从学生的错例引入,激发孩子的求知欲,为自主探究作好铺垫。

二.小组合作,自主探究只有相同数位上的数才能直接相加的原因。

【关键问题1】如何引导学生发现只有相同数位上的数才能直接相加的原因。

出示学习单

小组合作要求:

(1)组长合理分工,在最短时间内让组员将讨论结果内记录在学习单上。

(2)小组汇报时按顺序依次发言。

(3)其他组员可以进行补充和评价。

(预设生):百分位与百分位加,十分位与十分位加,个位与个位加。

(预设生):用计数器来表示算法的。

(预设生):2个一加3个一,6个0.1加2个0.1,5个0.01加0个0.01。

(预设生):用格子图来解释。

师:现在你知道为什么这个2不与这个5相加,而要与6相加了吗?

(预设生):2表示2个0.1,5表示5个0.01.(同时板书)他们的计数单位不同,不能直接相加。

师追问:现在你们知道为什么这个2不与5相加,而要与6相加吗?

小结:是的,只有相同数位的数才能相加,也就是计算小数加法的时候我们要做到相同数位对齐。(板书)

练习:判断一下下面哪道竖式是正确的?

师:你怎么这么快就判断出来啊!

(预设生):看看小数点对齐了没有。

小结:在计算小数加法时要把相同数位对齐只要把小数点对齐就可以了。

师:那么以后再算小数加法时我们要做到什么?

(预设生):计算小数加法时,小数点对齐,相同数位对齐,从低位算起。

设计意图:通过小组合作,生生交流,自主发现相同数位上的数才能直接相加,体验自主探究学习的快乐。

与整数加法进行比较

1.【关键问题2】如何引导学生将小数加减法与整数加减法进行联系沟通。

师:相同数位对齐你有没有觉得很熟悉?在哪里听过。

出示课件

小结:在做整数加减法的时候就是要把相同数位对齐才能相加减。原来小数加减法与整数的计算方法是一样的。

2.回到课前调查引出小数减法

师:看来同学们,小数加法的问题已经解决了,请再来看看课前调查中的那一道算式:

师:现在你知道哪道是正确的吗?为什么?

师:百分位上没有数怎么减?

师:计算小数减法时有什么好窍门?

小结:所以以后在计算小数加减法时相同数位对齐了,就与整数加减法的运算规则是一样的。

设计意图:通过对比整数加法的计算方法,把旧的知识经验迁移到小数加减法上,让学生独立解决小数减法的计算问题。

练习巩固

1.校对时借助课件用计数器演示退位过程。

设计意图:借助开小卡车,调节学习氛围,同时让学生巩固小数点对齐的重要性,通过演示计数器让学生形象地感知退位过程。

2.你觉得生活中有没有用到小数加减的地方?

师:这是小马虎的妈妈去超市购物的清单,可是清单的右下角被油渍弄脏了看不清了,你们能帮忙算一算吗?先估一估大约是几元?

设计意图:通过解决生活中的小数加减法问题,能让学生体会到学习计算的必要性,体会加减计算与生活的密切联系。

3.在方框上填上运算符号,然后添上小数点,使竖式成立。

设计意图:进一步让学生感知小数点对齐的本质就是让相同数位上的数相加减。

三、课堂总结

谈谈你的收获?

五年级数学免费教案篇3

教学目标:

1、使学生通过观察、操作等活动认识正方体和正方体的面、棱、顶点以及棱长的含义;

2、掌握正方体的基本特征,体会正方体和长方体的联系与区别;

3、培养学生的观察、概括能力。教学

教学重点:

掌握正方体的特征。

教学难点:

正方体与长方体的比较。

课前准备:

教法学法实践法、讨论法

教学过程:

一、复习导入

1、昨天,我们学习了长方体。请大家回顾一下:长方体有哪些特征?

2、口答:说出每个图形的长、宽、高各是多少。

3、设疑:第4个图形的长、宽、高相等,说明:这样的物体叫作正方体。大家想不想研究它?这节课我们要研究它的有关知识。

(揭示课题:正方体的认识)

二、概括特征

1、以小组为单位发学具。

2、以小组为单位研究手中的正方体。建议:用看一看、摸一摸、数一数、量一量、比一比的方法来研究。

3、自主探究。让学生结合手中的实物进行探究,再让他们小组交流自己的发现。

4、汇报交流

(1)让生结合实物说说面有什么特点?你是怎样验证的?从中明确:正方体的6个面是完全相同的正方形。

(2)让学生说说棱有什么特点?你是怎样验证的?从中明确:正方体的12条棱长度都相等。

(3)让生说说有几个顶点?你是怎么验证的?

5、提问:谁能完整地说一说正方体有什么样的特征?

多指名几个同学说特征。

6、结合直观图小结:正方体6个面是完全相同的正方形,它有12

条棱,每条棱的长度都相等。它还有8个顶点。

7、提问:依据我们今天所学的知识想一想,生活中哪些物体的形状是正方体?

8、请同学们小组合作,运用手中的学具验证一下我们今天学习的正方体的特征。然后找代表说一说。完成表格。

三、观察比较,体会异同

1、提问:长方体和正方体有哪些相同点,有哪些不同点?

2、让学生结合长方体和正方体实物进行观察、归纳,再同桌交流观察的结果。

3、汇报交流。相同点是:都有6个面、12条棱、8个顶点。

4、根据比较结果,想一想正方体和长方体有什么关系?

不同点:长方体每个面都是长方形,特殊情况有两个相对的面是正方形,相对的面完全相同,正方体6个面都是完全相同的正方形;长方体相对的棱长度相等,正方体每条棱的长度都相等。

练习完成P20做一做

总结今天这堂课我们认识了正方体,你有哪些收获?还有什么疑问?

作业布置

板书设计:

正方体的认识

6个面(完全相同,都是正方形)

立体图形正方体12条棱(长度相等)

8个顶点

五年级数学免费教案篇4

一、教学内容:

北师大版教科书五年级上册第四单元《多边形的面积》。

二、教学目标:

1.进一步理解并掌握平行四边形、三角形和梯形的面积计算公式,能应用公式计算图形的面积,并解决一些简单的实际问题。

2.回顾梳理本单元知识,能用思维导图清晰的整理单元知识网络,并熟练运用本单元知识解决实际问题。

3.经历单元复习过程,熟练掌握单元知识的同时,再次感受合作学习的重要性以及转化思想在数学学习中的重要性,培养良好的数学学习兴趣。

三、教学重点、难点:

重点:理解本单元所学的面积公式,理解计算公式之间的联系,形成知识网络。

难点:灵活运用平行四边形、三角形、梯形的面积公式解决问题。

四、配套资源:

《多边形的面积》ppt课件

《多边形的面积》单元小测、《多边形的面积》专项突破

五、学习设计

(一)课前设计

课前,教师发给学生如下复习资料,学生独立完成:

(二)课堂设计

1.谈话引入,揭示课题

师:我们在这个单元学习了哪些内容?

学生自由回答,教师引导有序回忆概念。

师:今天这节课我们就对“多边形的面积”进行整理和复习。

设计意图:以一组简单并且特征明显的数为线索,让学生重现已有的概念,不仅能抓住要领,而且能提高复习的效率,为接下来建构知识网络做好准备。

2.知识梳理,整体回顾

(1)比较图形的面积。

师:下面哪些图形的面积与图①一样大?为什么?

师:同学们说的很清晰。我们利用这样的分割、移补后,图形的面积是没有改变的。这就是数学上的“出入相补”原理。

出示课件:

(2)认识底和高

师:屏幕上的这些图形都不陌生,你能按要求画出它们的高吗?

师:用三角尺画图形的高,需要先确定什么?(确定图形中的某个顶点或图形边上的某个点)

师:接着该怎样画呢?(接着,思考如何用三角尺画出底上的垂直线段,其中一条直角边过图形中确定好的某个点,另一条直角边和图形的底重合。最后画出图形的高)

注意:画高时要用虚线,关注底和高的对应关系。

出示课件:

(3)多边形的面积

师:我们在之前的学习中已经会计算平行四边形、三角形、梯形的面积。你还记得我们是如何推导出这些公式的嘛?它们之间存在着什么样的联系呢?

小组交流,教师概括学生的回答,学生交流会后用课件动态依次出示:

小结:把平行四边形转化成了长方形,推导出了平行四边形的面积计算公式;

把三角形和梯形转化成了平行四边形,推导出了它们的面积计算公式。

3.完善思维导图

(1)引导整理,汇报交流

师:现在请小组集体整理/调整思维导图(知识网络)。

师:哪一组愿意来介绍下整理/调整后的的情况?

请2~3个小组的同学上台展示汇报知识整理图,说明这样整理的理由,其他小组的同学进行质疑,提出改进意见。

师:通过刚才的交流,同学们对本单元的知识有了进一步的认识,下面请各小组的同学看看你们小组整理的知识图有没有需要改进的地方,请通过改进,使你们组的知识图也更加完善。

各小组对本组的知识图进行反思和修改。

师:现在哪个小组的同学愿意来展示一下经过修改之后的知识整理图?

学生二次交流,全班评价,在共同讨论的基础上逐步完善,大致形成下面知识思维导图。

设计意图:让学生在共同交流的基础上进行改进,能够起到自我反思、自我修正的作用,使学生对知识的理解进一步加深,认识进一步升华。

4.典型题目练习,综合应用知识

(1)计算下列图形的面积。

知识点平行四边形、梯形、三角形的面积计算。

答案平行四边形的面积:24×15=360(cm)

梯形的面积:(14+26)×22÷2=440(cm)

三角形的面积:42×7÷2=147(dm)

解析代入相应的面积公式,求出相应的面积。

(2)一面用纸做成的直角三角形小旗,两条直角边分别长12厘米和20厘米。做10面这样的小旗,至少需要用纸多少平方厘米?

知识点灵活运用三角形的面积公式解决问题。

答案12×20÷2×10=1200(cm)

答:至少需要用纸1200平方厘米。

解析三角形的面积公式=底×高÷2,题目中已说明是直角三角形,并说明两条直角边分别是12厘米、20厘米。则根据公式可求出1个直角三角形的面积,题目中要求要做10面这样的小旗。因此再用1个直角三角形的面积×10即可解决问题。

(3)做《多边形的面积》单元小测、《多边形的面积》专项突破。

5.全课小结

师:通过对本单元的整理与复习,你有哪些新的收获?

全班相互交流自己的收获与不足。

《多边形的面积》整理复习

1.想一想:本单元我们学过那些平面图形的面积?它们的公式分别是什么?是怎样推导出来的?这些平面图形的面积计算公式之间有什么联系?

2.请用表格或画图的方式将本单元的知识进行整理。

3.在学习多边形的面积时,哪些题目容易出错?收集整理一些容易错误的题目。

五年级数学免费教案篇5

第1题

先让学生找15的因数和倍数,交流找因数和倍数的方法。在此基础上,还可以引导学生观察15最大的因数是几,15最小的倍数是几。

第2题

可以让学生先列出9的倍数(54以内):9,18,27,36,45,54。再列出54的所有因数:1,2,3,6,9,18,27,54。然后,再回答问题。答案:这个数有四种可能:9、18、27、54,对不同的学生可以有不同的要求,不一定要所有学生把四种全部找出来。

第3题

主要要引导学生交流一下判断的方法。如果学生有困难,可以分层次进行,可以先填奇数和偶数,再填质数和合数。

第4题

本题是对本单元所学概念的理解巩固与综合运用。第1题结论是5,第2题结论是13和2,第3题的结论是36或92。在完成本题基础上,教师还可以引导学生运用本单元知识自己编一些这样的题,促进学生对概念的理解。

第5题

先让学生解决第一个问题,并交流是如何思考的,一般可以从每盒瓶数是不是90的因数考虑,也可以用除法来解决,6、5、3都是90的因数,能正好装完,8不是90的因数,不能正好装完。第二个问题是引导学生思考90还有哪些因数,同时还要注意联系生活实际,如每盒2瓶,9瓶,10瓶等都较合理,每盒90瓶就不太合理。

第6题

本题为思考题,主要是引导学生探索、研究“三个连续自然数组成的数一定是3的倍数”的规律。教学时,可以提出问题,引导学生根据3的倍数自主探索,交流研究结果,最后得出结论。

〖你知道吗〗

教师可以结合史料详细介绍哥德巴赫猜想和陈景润的研究成果,激发学生研究数学的兴趣和民族自豪感。帮助学生理解“猜想”时,可以让学生自己再举一些例子,例10=3+7,18=11+7,42=31+11等。

五年级数学免费教案篇6

【设计理念】

数学课程标准明确指出,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法。本节课抓住关键词,把握自然数(0除外)按因数个数分类的数学方法,让学生充分讨论质数和合数的特征,经历质数和合数这一知识的发生发展过程,通过观察、比较、分析、归纳,构建质数和合数概念,更好地掌握数学思想,提升学生学习数学的兴趣,培养良好的学习态度。

【教学内容】

人教版五年级下册第23~24页“质数与合数”。

【学情与教材分析】

本课是在学生掌握“因数、倍数、奇数、偶数、2、3、5的倍数特征”的基础上进行的。本单元涉及的概念多,“质数与合数”是一节概念教学课,概念抽象易混淆,在生活中运用较少,与学生的生活有一定的距离,是本课的难点也是本单元内容教学的难点。

【教学目标】

1.让学生经历操作、观察、发现、概念归纳的数学化过程,构建质数和合数概念。

2.把握整数按因数个数的分类法,理解和掌握质数与合数的特征,能应用概念寻找或判断质数。

3.通过研究质数与合数特征的学习活动,体会学习数学的思想方法。

【教学准备】

课件;练习纸每生一张。

【教学过程】

活动一:构建质数和合数概念

1.引导学生按要求列出乘法算式:“因数用整数、不用1”。

教师板书“1=”……“20=”,教师不言语,用手势引导学生按要求说出乘法算式。

学情预设:学生中可能出现用1或小数的问题,师用手势提醒“不用1”“用整数”。

2.师:按“用整数、不用1”的要求无法列出乘法算式的数,我们叫它质数;可以列出乘法算式的数,我们叫它合数。

教师依次在这些质数的前面填上“质数”、“合数”,学生自然而然的在教师板书时说出“质数”和“合数”。

【设计意图】

“活动一”全过程教师基本不言语,只用手势或神情来组织教学,给学生一个神秘感,在创设静谧的氛围中静心体会质数与合数的区别。

活动二:讨论质数和合数的特征

1.师:“从这些乘法算式中,你发现了什么?

学情预设:学生有可能说出质数都是奇数;对策:教师指出2是质数、15是合数;

合数可以写出乘法算式;如果不用1,质数无法写出乘法算式。

2.教师擦除“不用1”,学生列出相应的乘法算式,再进一步用因数的个数来探讨质数和合数的概念。

师:观察因数的个数,你又发现了什么?

从乘法算式中,学生很快并能清晰地发现质数只有1和它本身两个因数,而合数则除了1和它本身两个因数外,还有别的因数(至少三个因数)。

3.根据学生回答板书。

4.讨论:“1”是质数还是合数?

学情预设:有的学生可能认为:1有两个因数,一个是1,一个是它本身,1应该是质数;有的学生可能认为:1的本身还是1,所以1应该只有一个因数;有的学生可能认为:1既不是质数也不是合数。

师把板书写完整。

5.小结:谁能用自己的语言说一说什么样的数叫质数?什么样的数叫合数?怎样判断一个数是质数还是合数?

【设计意图】

预留足够的时间让学生经历操作、观察、发现、概念归纳的数学化过程,构建质数和合数概念。并尝试根据因数的个数归纳出质数与合数的概念,学会运用质数和合数的特征进行判断,充分感受到知识之间既有区别,又有联系。

活动三:应用概念寻找或判断质数

1.继续寻找30以内的其它质数。

2.做一做:出示数字卡片:17、22、29、35、37、87、93、96、1,将数字卡片填入质数与合数相应的集合圈里。

3.下面的说法正确吗?说说你的理由。

⑴所有的奇数都是质数。()

⑵所有的偶数都是合数。()

⑶在1、2、3、4、5……中,除了质数以外都是合数。()

⑷两个质数的和是偶数。()

【设计意图】

通过不断的寻找、发现与判断质数的练习中,使学生意识可以用合理的方法来判断,巩固质数与合数特征的认识。

活动四:拓展延伸深化概念

1.你知道他们各是多少吗?(在小组内交流各自的想法后汇报)

⑴两个质数的和是10,积是21,他们各是多少?

⑵两个质数的和是20,积是91,他们各是多少?

⑶最小的质数是?最小的合数是?

2.在括号里填上质数:

8=()+()12=()+()28=()+()

3.数学小阅读:哥德巴赫猜想。

同学们你们知道吗,刚才你们正在尝试解决一道世界难题,做了一件很有价值的事,这个世界难题就是:是不是所有大于2的偶数,都可以写成两个质数的和呢?这个问题是德国数学家哥德巴赫最先提出的,所以被称为哥德巴赫猜想。世界各国的数学家都想攻克这一难题,但至今还未解决。我国数学家陈景润在这一领域已经取得了举世瞩目的成果。

请同学们进行数学小阅读:哥德巴赫猜想。课后,感兴趣的同学们也可以查找相关书籍或上网查阅相关资料。

【设计意图】

在适度拓展中,尝试解决“任何大于2的偶数,都可以写成两个质数的和”的哥德巴赫猜想。在数学小阅读中,让学生了解数学发展的历史,感受数学文化的魅力,同时留有空间,让学生课后探究。

活动五:总结

这节课你有哪些收获?

五年级数学免费教案篇7

教学目标:

1.通过欣赏与设计图案,使同学进一步熟悉已学过的对称、平移、旋转等现象。

2.欣赏美丽的对称图形,并能自身设计图案。

3.同学感受图形的美,进而培养同学的空间想象能力和审美意识。

重点难点:

1.能利用对称、平移、旋转等方法绘制精美的图案。

2.感受图形的内在美,培养同学的审美情趣。

教学准备:幻灯片、课件。

教学过程

一、情境导入

利用课件显示课本第7页四幅美丽的图案,配音乐,让同学欣赏。

二、学习新课

(一)图案欣赏:

1、伴着动听的音乐,我们欣赏了这四幅美丽的图案,你有什么感受?

2、让同学尽情发表自身的感受。

(二)说一说:

1、上面每幅图的图案是由哪个图形平移或旋转得到的?

2.上面哪幅图是对称的?先让同学边观察讨论,再进行交流。

三、巩固练习

(一)反馈练习:

完成第8页3题。

1、这个图案我们应该怎样画?

2、仔细观察这几个图案是由哪个图形经过什么变换得到的?

(二)拓展练习:

1、分别利用对称、平移和旋转创作一个图案。

2、 交流并欣赏。说一说好在哪里?

四、全课总结

对称、平移和旋转知识广泛地应用于平面、立体的建筑艺术和几何图像上,而且还涉和到其它领域,希望同学们平时注意观察,都成为杰出的设计师。

五、安排作业:

教材第9页第5题。

板书设计:

欣赏和设计

图案1 图案2

图案3 图案4

对称、平移和旋转知识有广泛的应用。

五年级数学免费教案篇8

教学目标:

1.结合具体情景,进一步理解分数乘法的意义,引导学生归纳、推理计算方法,并能正确计算(重、难点);

2.能解决简单的分数乘整数的实际问题,体会数学与生活的密切联系。

教学重难点:

1.分数和分数相乘的意义和计算法则。

2.求一个数的几分之几是多少的应用题。

教学过程:

一、创设情境激趣揭题

1.出示课本上的对话请境框。

2.整理、归纳问题,并出示完整的题目。

3.顺势导入新课,板书课题:分数乘法(二)。

二、扶放结合探究新知

1.巡视、指导小组讨论学习。

2.提问:怎样用算是表示6个1/2?

3.6×1/2这个乘法算式的意义是什么?

4.归纳小结分数乘法(二)的算式意义:求一个数的几分之几是多少?

5.6×1/3如何计算呢?

6.总结计算方法。

三、反馈矫正落实双基

1.出示教材第5题试一试第1、2题。

2.组织学生做第6页练一练1-3题。

四、小结评价布置预习

1.引导学生进行课堂小结。

2.布置课外预习:课本第7-9页分数乘法(三)

五年级数学免费教案篇9

教学内容:

人教版义务教育教科书五年级上册91页《三角形的面积》,92页例2及练习题。

教学目标:

1、理解并掌握三角形面积计算公式,能够应用公式解决一些简单的问题,培养应用已有知识解决新问题的能力。

2、经历探索三角形面积计算方法的过程,培养学生观察、操作、推理、概括的能力,体会转化的思想。

3、在解决实际问题的过程中体验数学与生活的联系,进一步培养学生学习数学的兴趣。

教学重点:

三角形面积公式的推导及应用公式进行计算。

教学难点:

理解三角形面积的推导过程,感受转化的数学思想和方法。

教学准备:

教师准备:多媒体课件、红领巾、实验记录单。

学生准备:各种完全相同的三角形。

教学过程:

(一)复习铺垫,创设情境。

1、复习旧知,做好铺垫。回忆平行四边形面积计算公式及推导过程。

【复习铺垫是小学数学重要的环节,对于引起学生对已有知识的回忆,帮助学生更有效地参与到新知的探究过程中有着重要的作用。】

2、猜谜语:一块布料三角样,颜色鲜红真漂亮。少先队员才能有,每天佩戴不要忘。学生猜谜。

3、创设情境:要想做这样的一条红领巾,需要多少布呢?也就是计算什么?

4、揭示课题。

【设计意图:在这个环节中利用学生熟悉的红领巾实物猜谜,以及做一条红领巾要用多少布这样的事例,激起了学生想知道怎样去求三角形面积的欲望,有效地调动学生的学习的兴奋点,学生的问题意识得到发展。】

(二)动手操作,探索交流。

活动一:小组合作拼一拼、摆一摆。要求:请你用手中两个完全一样的三角形拼一拼,看看能拼成我们以前学过的哪种图形,快来试一试吧!小组动手操作并展示交流。

活动二:观察讨论,完成下面的实验记录。实验记录两个完全一样的三角形可以拼成平行四边形。

通过观察我们发现:

1、三角形的底和拼成的平行四边形的底(),三角形的高和拼成的平行四边形的高()。

2、拼成的平行四边形的面积是三角形面积的(),三角形的面积是拼成的平行四边形面积的()。

3、因为,平行四边形的面积等于()X(),所以,三角形的面积=()学生根据要求进行小组活动,然后交流汇报。

【设计意图:本环节让学生充分经历了操作、观察、推理、概括等数学活动与数学思考,发现了三角形的面积计算公式。在合作探究过程中,把自主学习的权力还给了学生,培养了学生的动手能力和分析能力,顺利实现原有数学知识结构的扩充和新知结构的建立,使学生真正感受到数学方法的内在魅力。】

(三)运用公式,解决问题。

出示例2:学校计划做的红领巾的底是100㎝,高是33㎝,红领巾的面积是多少?

(1)学生尝试完成。

(2)交流做法和结果。

【设计意图:本环节的设计既解决了课前的问题,还让学生感知到数学学习能够方便生活,有效的提高学生学好数学的自信心。】

(四)巩固应用,举一反三。

第一关:辨一辨。

1、两个面积相等的三角形可以拼成一个平行四边形。

2、三角形的面积等于平行四边形面积的一半。

3、用两个完全一样的直角三角形可以拼成一个长方形,也可以拼成一个平行四边形。

第二关:指出下面三角形的底和高,并说出怎样计算它的面积。(单位:厘米)

第三关:制作两个这样的交通警示标志,需要多少铁皮?第四关:求出下图中三角形和平行四边形的面积。你发现了什么?

【设计意图:本环节我依据教学目标和学生在学习中存在的问题,采用智慧闯关的形式设计有针对性、层次分明的练习题组,激发了学生的学习兴趣,让学生在解决这些问题的过程中,进一步理解、巩固新知,训练思维的灵活性、敏捷性、创造性,使学生的创新精神和实践能力得到进一步提高。同时也强化了本节课的教学重点。】

(五)质疑总结,反思评价。

课件出示:今天你有什么收获?

(2)你要提醒大家注意什么?

(3)你感觉自己今天表现如何?

(4)我还想说……

【设计意图:让学生以同桌为单位,每位学生充分发言,交流学习所得。在评价方面,先让学生自我评价,接着让学生互相评价,增强学生学习数学知识的自信心和荣誉感,同时培养了学生敢于质疑、勇于创新的精神。】

五、板书设计。

五年级数学免费教案篇10

教学内容:

北师大版数学五年级上册6—7页的内容。

教学目的:

1、通过观察、探究、交流等活动,让学生经历发现3的倍数特征的过程。

2、在理解的基础上,掌握3的倍数的特征,并能利用特征进行判断。

3、通过探究3的倍数的特征的活动过程,让学生获得积极的情感体验,激发学习数学的兴趣

教学重点:

理解3的倍数的特征。

教学难点:

探索活动中,发现规律,并归纳出3的倍数的特征。

教具准备:

实物投影仪、数字卡片等。

学具准备:

每人几张数字卡片。

教学过程:

一、谈话导入,揭示课题。

我们能不能通过观察个位上的数来确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们共同来研究。

板书课题:3的倍数的特征。

二、探索交流、获取新知。

(一)活动一:复习巩固。

1、前面我们研究了2和5的倍数的特征,能用你的话说一说他们的特征呢?

2、请你举例说明。(请学生说,教师把学生的举例板书在黑板上。)

3、说说能同时被2和5整除的数有什么特征?(观察特征。用自己的话说一说。)

(二)活动二:探索研究3的倍数的特征。

1、在书上第6页的表中,找出3的倍数,并做上记号。

(先独立完成,看谁找的快?)

2、观察3的倍数,你发现了什么?

教师参与到讨论学习中。

先独立思考,想出自己的想法。

然后与四人小组的同学说说你的发现。

生1:3的倍数个位上的数有0、1、2、3、4、5、6、7、8、9没什么规律。

生2:十位上的数也没有什么规律。

生3:将每个数的各个数字加起来试试看

3、你发现的规律对三位数成立吗?找几个数来检验一下。

(1) 自己先找几个数试一试。

(2)然后在小组内说说你验证的结论。

(三)活动三:试一试

在下面数中圈出3的倍数。

28   45   53   87   36   65

(先自己圈,然后说说你是怎样判断的?)

(四)活动四:练一练

1、请将编号是3的倍数的气球涂上颜色。

36   17   54   71   45   48

(自己独立完成,在小组内说说自己的想法。)

2、选出两个数字组成一个两位数,分别满足下面的条件。

3   0   4   5

(1)是3的倍数。

(2)同时是2和3的倍数。

(3)同时是3和5 的倍数。

(4)同时是2,3和5的倍数。

(独立完成,说说你的窍门和方法。)

(五)活动五:实践活动

在下表中找出9的倍数,并涂上颜色。

(可以在自主实践以后再交流。)

三、总结。

通过这节课的学习,你有什么收获?

板书设计:

课题:探索活动(二)3的倍数的特征

1、在下面数中圈出3的倍数。

28   45   53   87   36   65

2、选出两个数字组成一个两位数,分别满足下面的条件。

3   0   4   5

(1)是3的倍数。

(2)同时是2和3的倍数。

(3)同时是3和5 的倍数。

(4)同时是2,3和5的倍数。

五年级数学免费教案篇11

一、教学目标

1、在具体的情境中,进一步认识分数,发展数感,体会数学与生活的密切联系。

2、结合具体情境,进一步体会整数与部分的关系。

二、重点难点

重点:理解整体1,体会一个分数对应的整体不同,所表示的具体数量也不相同。

难点:充分体会整数与部分的关系。

三、教学过程

(一)复习旧知,导入新课

1、我们在三年级已经对分数有了初步的认识,你能举出一些分数吗?说说它们分别表示什么意义?

2、今天我们一起来学习《分数的再认识》。

(二)创设情境,学习新知

活动一:分笔游戏,体会单位一

1、分笔活动,找4名同学拿着自己的笔来到讲台。(笔数是2的倍数:4、4、6、8)

2、请你们4名同学拿出自己笔的1/2,看谁拿的又快又准。

3、另找4名同学检查。

4、同学们自己说说是怎么分的。(把全部铅笔平均分成两份,拿出其中的一份。)

5、师提问:他们都是拿出全部笔的1/2,可是拿出来的笔却有的一样多,有的不一样多,这是为什么呢?(每位同学的总数不一样)

6、师总结:最初每位同学笔的整体不同,也就是单位1不同造成的,所以,他们的1/2也不同。原来分数还有这样一个特点,你对它是不是又有了新的认识?

活动二:教材P34说一说。

1、带着新的认识,我们来判断两个小朋友看的书一样多吗?

2、小刚和小明都看了各自书的1/3,他们看得页数一样多吗?为什么?学生独立思考一会,同桌交流,再全班反馈。

3、师总结:因为书的薄厚不同,也就是总页数不同,所以两人看的页数也不同。(整体不同,相同分数表示的数量也不同。)

4、在什么情况下,他们读的一样多呢?(整体相同,相同分数表示的数量也相同。)

5、请同学们再帮老师解决一个问题:王兴国吃了一个苹果的3/4,李晓阳也吃了一个苹果的3/4。王兴国说:我俩吃的一样多。李晓阳说:我吃得比你多。他们谁说得对呢?

(三)巩固练习

1、教材P34画一画。

2、教材P35练一练第一题、第二题。(在练习中,针对错误比较多的,进行集体讲解,少的则个别讲解)

四、板书设计

分数的再认识

整体不同,相同分数表示的数量也不同。

整体相同,相同分数表示的数量也相同。

五、教学反思

本节课的教学,我采取以小游戏为开篇来引导学生进一步认识分数,理解分数的意义。在教学和练习中我重点强调了平均分和体会整数与部分的关系。学生在练习时,也能体会到整体不同,相同分数表示的数量也不同,如印度洋海啸捐款一题。但在练一练第一题写分数时出现错误很多,其主要原因在于书中没有平均分,而是要画一条辅助线和旋转图形。

五年级数学免费教案篇12

教学目标:

1.使学生认识和掌握3的倍数的特点,能判断或写出3的倍数,并能说明判断理由。

2.使学生经历探索和发现3的倍数的特征的过程,培养观察、比较和分析、概括等思维能力,积累数学活动的经验,提高归纳推理的能力,进一步发展数感。

3.使学生主动参与探索、发现规律的活动,获得探索数学结论的成功感受;体验数学充满规律,体会数学的奇妙,增强学习数学的积极情感。

教学重点:

认识3的倍数的特征。

教学难点:

研究并发现3的倍数的特征。

教学准备:

准备计数器教具和学具。

教学过程:

一、激活经验

1.复习回顾。

提问:2和5的倍数有哪些特征?

回顾一下,我们是怎样发现2和5的倍数的特征的?(板书:找出倍数——观察比较——发现特征)

2.引入课题。

谈话:我们上节课通过找2和5的倍数,对找出的倍数进行观察、比较,分别发现了2和5的倍数的特征。今天,我们就按照这样的过程,探索、寻找3的倍数的特征。(板书课题)

二、学习新知

1.提出猜想,引导质疑。

引导:我们知道2的倍数,个位上是0.2.4.6.8;5的倍数,个位上是5或O.那你能猜想一下3的倍数会有什么特征吗?为什么这样想?说说你的想法。(按思维惯性,可能许多学生会猜测个位上是3的倍数)

许多同学认为,3的倍数可能是个位上是3.6.9的数。(板书:3的倍数,个位上是3、6、9)

质疑:利用以前的经验学习新内容,是不错的学习方法。今天大家联系2和5的倍数的特征这样猜想,想法是很好的,数学学习经常可以这样类推。那这一次的猜想还对不对呢?大家来看几个数:13是3的倍数吗?26和49呢?(根据回答擦去板书内容后半部分)

2.利用经验,组织探究。

(1)找3的倍数。

(2)探索特征。

3.学生归纳,强化认识。

追问:现在你能告诉大家,经过找出倍数、观察比较,我们发现3的倍数有什么特征吗?

让学生读一读板书的结论。

强调:同学们通过自己的思考、探索,发现了一个数各个数位上数字的和是3的倍数,这个数就是3的倍数;反之,一个数各个数位上数字的和不是3的倍数,这个数就一定不是3的倍数。

4.阅读“你知道吗”。

启发:当你发现3的倍数的特征时,你对数学有什么感觉?

谈话:是的,数学很神奇、神秘,3的倍数居然和它各个数位上数字的和有这样密切的关系!数学有许多神奇、有趣的规律,只要我们具有一定基础,认真探究,这一条条神奇的秘密和规律就会被发现和应用。下面请大家阅读课本第34页的“你知道吗”,看看会有什么神奇的规律告诉你。

交流:你知道了什么?什么样的数叫完全数?举例说一说。(结合举例6和28,先板书因数,再板书表示完全数的等式) 现在发现的完全数都有什么特征?

三、练习巩固

1.做“练一练”第1题。

2.做“练一练”第2题。

3.做练习五第8题。

4.做练习五第9题。

5.做练习五第10题。

四、课堂总结

提问:今天的学习你又有什么收获和体会?

判断3的倍数的方法,和判断2、5的倍数不同在哪里?

五年级数学免费教案篇13

教学目标:

1.能在观察活动中,发现点阵中隐含的规律,体会到图形与数的联系;

2.发展归纳与概括的能力;

3.了解数学发展的历史,感受数学文化的魅力。

教学重点:

引导学生发现和概括点阵中的规律

教学难点:

寻求多种解决问题的方法,体会图形与数的联系

教学过程:

一、创设情境,生成问题

1.观察图形中的规律

上课前,同学们凭借灵敏的听力找到了规律(板书:规律),现在,老师来考考你们的眼力。请看屏幕,仔细观察,你能从这一组图形中发现规律吗?

(出示幻灯片3)3:生观察说规律,可提示,师总结)

2.观察一组数的规律。

看来,从不同的角度观察就会有不同的发现,同学们的眼力真不错!让我们继续,(出示幻灯4)你能从这一组数中发现规律吗?(1、4、9、16、25…)

如果有困难不能出色完成,那我们今天就来一起研究,从而导入

3.出示点子图

同学们,这一组数中其实还隐藏着其他的规律,只是仅凭观察这几个数不太容易发现。那我们该怎么办呢?(生想办法)

好主意!为了帮助同学们更直观、更深入地研究这一组数,老师把它们分别画成了一种最简单的图形——点(幻灯5出示课本97页主题图),如果我们能发现这几个点子图之间的变化规律,就可以发现这一组数中隐藏的规律了。让我们马上开始!

二、探索交流,解决问题

1.渗透不同的观察方法

(1)仔细观察,想一想,这几个点子图之间究竟有什么变化呢?把你的发现说给同桌听;老师并用幻灯片6展示。

(2)指名说怎么观察的?它们之间有什么变化?

(副板书:横竖看、斜着看、拐弯看)

(3)设问,那第5个点阵有多少个点?请画出此图形。

2.小组探究

同学们都很会思考,从不同的角度观察到了不同的变化,为了更清晰、更准确的感受这些变化,现在,我们把观察和动手结合起来,小组合作,选择一种观察顺序,用线条分一分这几个图中的点,然后根据划分的结果写出算式来表示这几个数。最后想一想,你们从中发现了什么规律。听明白了吗?好的,现在请小组负责,观看点子图,马上开始你们的合作研究;再次出示幻灯片6。

合作任务

1.选择一种观察顺序,用线条分一分这几个图中的点。

2.根据划分的结果写出算式来表示这几个数。

3.想一想,你们从中发现了什么规律?

1=()4=()9=()16=()

(1)学生分组探究,师巡视

(2)在展台上展示交流。(哪个小组先来汇报你们的合作成果?)

①生展示分法、算式和规律——其他组补充——总结规律

②学生说算式师板书

③拓展a×a

第5个点子图是什么样的,应该是哪个数?出示片7,用前面的观察方法,再讨论(副板书5×5)第10个呢?

后两种:下一个图形的算式是什么?(副板书下一个图形的算式)

算一算结果是25吗?

④(出示幻灯片8)原来问题还可以这样想:同一问题有不同的思路和解决方法!

3.小结

同学们真是太能干了,不仅发现了新的规律,还能用规律推测出后面的数。可见,你们不仅听力和眼力好,研究能力和表达能力更是非常的高。

4.揭示点阵

那么,同学们,在寻找这一组数的规律时,是什么帮助了我们?(点子图)是的,像今天我们用到的这种排列很有规律的点子图在数学上又叫点阵。(板书:点阵中的规律)

点阵中的规律可以帮助我们更直观、更方便的研究一个数或者一组数。早在两千多年前,希腊的数学家们就已经利用点阵来研究数了。还有一点一定要告诉你们,刚才我们研究的这组点阵正是当年的数学家们曾经研究过的,不知不觉中竟然当了一回数学家,感觉特好吧?这的确是一件值得我们自豪的事情。

三、巩固应用,内化提高

(一)试一试

怎么样?同学们?用点阵来研究数有趣吧?让我们继续这项有趣的研究。

1.观察下列点阵,你能根据规律画出下一个图形吗?

请看屏幕,这是一组什么形状的点阵?仔细观察这一组点阵,你能根据规律画出下一个图形吗?(请看试一试,同学们用水彩笔涂出下一个图形;可出示幻灯片9来检查学生是否画的正确)

生画——展示:说明为什么这样画?(有不同的想法吗)

2.下面的点阵分别代表了哪个数?请你用一组有规律的算式表示这几个数。

这是一组什么形状的点阵?下面的点阵分别代表了哪个数?你能用一组有规律的算式表示这几个数吗?(请看试一试,出示幻灯片10,我们比一比,哪位同学写的又对又快。)

生做——展示算式——拓展下一个,你能画出地5个图形,再来研究第4个图形。

(拓展)你还有什么发现?展示幻灯片11。

除了这种方法,你还有其它研究方法?(学生思考后,可以出示幻灯片12)

(二)拓展延伸

出示梯形和螺旋形点阵:除了正方形、三角形和长方形点阵之外,还有这样的点阵,什么形状的?

我们来看书本98页的练一练第1题,学生先做后,出示幻灯片13来检查。

对,同学们,在生活中你见过或感受过点阵吗?你见过哪些点阵?(指生说)其实生活中的点阵还有很多,同学们请看(出示幻灯片14)点阵以其独特的魅力被人们广泛的应用于生活,这些点阵中也隐藏着有趣的规律。只是课上的这40分钟太有限了,不过,有兴趣的同学课下可以继续研究。

四、回顾整理,反思提升

1.同学们,时间过的真快,马上要下课了,想一想,在这节课中,你有什么收获?(生谈收获)

2.你们总结的真好!同学们,在生活中,规律是普遍存在的,所以,老师希望每位同学都能从现在开始做个有心人,在以后的生活和学习中,多观察、多思考,继续去发现更多、更奇妙的规律。

板书设计:

点阵中的规律

1、正方形点阵

2、长方形点阵

3、三角形点阵

4、其它点阵

小结:在观察活动中,发现点阵中隐含的规律,体会到图形与数的联系,

感受数学文化的魅力,同一问题有不同的思路和解决方法。

五年级数学免费教案篇14

一、创设情境,游戏导入。

1、游戏导入。考考你的眼力,看看谁能找到形状、大小完全一样的三角形。(黑板预先出示如下题目和三角形图)(学生找到的完全一样的三角形重叠给学生看后贴在黑板的左边。)

(1)找一找:出示几组完全一样的三角形,打乱顺序后让学生找。

(2)拼一拼:这些完全一样的两个三角形能拼成你学过的什么图形?

(把贴在左边的完全一样的几对三角形让学生上台来拼成几种学过的图形,如:长方形、正方形、平行四边形和两个直角三角形合起来的大三角形,分别贴在黑板的左边。)

3、引入新课:这些拼成的图形的面积你会计算吗?

二、动手操作,探索交流。

1、引导学生寻找思路:刚才我们这些图形都是由完全相等的两个三角形拼成的,那么这些三角形与拼成的图形有什么联系呢?三角形的面积有没有计算公式呢?能否从这些拼成的图形中把三角形的面积计算出来呢?

2、小组合作探究。

3、展示学生的探索过程,汇报交流。

师:哪个小组愿意将你们探索的结果与大家交流分享?

汇报的每一小组两人代表带着实验报告表上台来汇报实验情况,并把拼出的图形贴在黑板上。

两个完全一样的锐角三角形拼成一个平行四边形,平行四边形的底相当于三角形的底,平行四边形的高相当于三角形的高;每个三角形的面积是拼成的平行四边形面积的一半。

还有不同的拼法吗?

4、归纳并用字母表示公式。

(1)引导学生归纳三角形面积的计算公式。

师:根据刚才的分享交流,现在我们一起来归纳三角形的面积计算公式。拼成的平行四边形的面积会计算吗?那三角形的面积怎样计算呢

拼成的平行四边形的面积=底×高

一半

三角形的面积=底×高÷2

(2)用字母表示公式。

师:如果用字母S表示三角形的面积,a表示三角形的底,h表示三角形的高,那么三角形的面积计算公式用字母怎样表示?(板书:S=ah÷2)

三、实践运用,拓展创新。

1、学习P85的例1

师:你们真棒!把三角形的面积计算公式推导出来了,下面我们应用公式来解决一些实际问题。少先队员的标志是红领巾,你们知道自己每天佩戴的红领巾面积有多大吗?

这条红领巾的底长就是1米,老师把高也量出来了33CM(课件出示P85的例1),现在你们会计算了吗?

学生列式计算。教师巡视找来学生不同答案的练习本,展示学生的完成情况,让学生点评。

S=ahS=ah÷2

=100×33=100×33÷2

=3300(平方厘米)=1650(平方里米)

(生1)做错了,他那样做是求平行四边形的面积,不是求三角形的面积。

那求三角形的面积该怎么样?

S=ah÷2,不要忘记除以2。(强调÷2。)

2、认识交通警示牌,通过计算渗透安全教育。(课本第86页)

师:少先队员要模范遵守交通规则,交通警示牌能让我们更好的遵守交通规则。那你们认识这些警示牌吗?(逐个让学生认识)

……

__部门为了大家的安全,准备制作两块这样的警示牌,需要多少铁皮,同学们能帮忙算算吗?(课件出示题目和图)

3、课本第86页第3题:选择一个你自己喜欢的三角形量出有关的数据计算面积。

4、动脑筋。比较下面两个三角形的大小(小组讨论)练习题第5题。

结论:等底等高的两个三角形面积相等。

四、评价体验,总结延伸。

能谈谈这节课你有什么收获吗?能评评各小组或其他同学吗?

五年级数学免费教案篇15

学习内容:

人教版小学数学五年级下册教材第12—13页。

学习目标:

1.我能理解因数与倍数的含义。

2.我会有序地思考,掌握了找一个数的因数的方法。

3.我知道一个数的因数的个数是有限的。

学习重点:

理解因数和倍数的含义,掌握求一个数的因数的方法。

学习难点:

能熟练地找一个数的因数。

教学过程:

一、导入新课

二、检查独学

1.互动分享收获。

2.质疑探讨。

三、合作探究

1.小组讨论:乘法算式中的因数和这里讲的因数一样吗?

(1)我的想法:________________________________

(2)小组代表交流、汇报。

(3)自读课本第12页下面的一段话。

2.自学课本第13页例1。思考:

(1)18的因数有________、________、________、________、________、________,共有________个。

(2)18的最小因数是________,因数是________。它的因数的个数是________的。

(3)也可以这样表示:18的因数

3.组内交流并讨论:怎样找最快,而且不容易遗漏?

我的想法:________________________________

4.小组代表汇报,总结。

5.试试身手(第13页“做一做”)。

22829