教案吧 > 小学教案 > 五年级教案 >

五年级数学上册简易教案

时间: 新华 五年级教案

教案是教师根据教学所要达成的目标,将师生活动和教学资源事先加以计划,以便实施教学的具体方案。五年级数学上册简易教案要怎么写?接下来给大家带来五年级数学上册简易教案,方便大家学习。

五年级数学上册简易教案篇1

教学目标

1、让学生通过找次品的操作活动和分析、归纳的理性思考,发现解决这类问题的最佳策略-把待测物品平均分3组。

2、以“找次品”活动为载体,让学生通过观察、猜测、试验、推理等方式感受解决问题策略的多样性及运用优化的方法解决问题的有效性。

3、让学生体会用缩小范围逐步逼近的方法来解决问题的数学思想,培养学生思考问题的严密性和口头语言表达的逻辑性。

学情分析

解决问题的策略研究学生已经不是第一次接触,此前学习过的“沏茶”、“田忌赛马”、“打电话”等都属于这一范畴,在这几节课的学习中,对简单的优化思想方法、通过画图的方式发现事物隐含的规律等都有所渗透,学生已经具有一定的逻辑推理能力和综合运用所学知识解决问题的能力。本节课学生的探究活动中要用到天平,在以往学习等式的性质时,学生对天平的结构、用法以及平衡与不平衡所反映的信息都已经有了很好的掌握。新课程实施以来,小组合作交流、自主探究的学习方式已为广大学生所接受,成为学生比较喜爱的主要学习方式,学生已具备一定的合作能力,在小组学习中学生能够较好地分工、合作、交流,较好地完成探究任务。

重点难点

教学重点:

发现解决这类问题的最佳策略。

教学难点:

理解并认可最佳策略的有效性。

教学过程

活动1【导入】创设情境、激发兴趣

1、看视频,谈感受。

播放美国“挑战者”号航天飞机失事的视频。看后你从中了解到什么信息?你有什么感受?

2、发现次品。

生活中经常会有一些产品与合格产品不一样。有的是外观瑕疵,有的是成分不过关,还有的是产品的质量与正常的不同……我们把这些不合格的产品称为“次品”。(板书:次品。)你身边有哪些次品?和同学交流。

今天我们要找的次品的就是外观一样,质量不同,或轻一些、重一些的次品。(板书:找)

活动2【讲授】初步感知、寻找方法

1、出示例题。

有81瓶木糖醇,其中有一瓶少了10片,可以用什么办法把它找出来呢?

数一数,掂一掂,摇一摇等方法,选择最优化的方法,用天平。

2、天平的原理。

如果两端重量相等,天平就平衡;如果不相等,重的一端下沉,轻的一端上扬。

3、华罗庚的数学思想。

让学生自由猜测称的次数。

师:同学们猜的结果不一样,可能是数量太大了。数学中有种方法叫做“化繁为简”,这正和华罗庚思想不谋而合,让我们从数量较小的来研究吧!

活动3【活动】自主探究、方法多样

1.研究2瓶

师:如果利用天平来测量,至少需要几次可以找出次品呢?板书做好记录:2次(1,1)

2.讨论3瓶的问题

如果利用天平来测量,至少要称多少次才能保证找出来呢?生叙述称球的过程。板书记录:3(1,1,1)

注重天平一共有3个空间可以利用,这样节省次数。生将探究结果填入导学案中。

3.研究4-8瓶的问题

如果利用天平来测量,至少要称2次才能保证找到次品的可以是几瓶?

学生以小组为单位,运用手中的小圆片动手操作,并记录在导学案中。

课件出示小组活动要求。

(1)把待测物品分成了几份?每份几个?

(2)如果天平平衡,次品在哪里?如果天平不平衡,次品又在哪里?

4.重点汇报8瓶的设计方案。

(1)师引导学生:比较3、4种分法,并展开讨论:想想为什么方法3的次数是最少的?你觉得它会和什么有关系呢?

(2)师小结:所以我们在找物品的次品时,把待测的物品平均分成3份是最好的。板书:把待测物品分3份。

(3)师:比较1、2、3种分法,讨论为什么同样分3份,为什么第3种方法只用了2次哪?

(4)师小结:所以我们在找物品中的次品时,只要把物品平均分成3份,如果不能平均分成3份,就尽量平均分成3份。每份之间的差尽可能少。板书:每份之间的差尽可能少。

5.研究9瓶

学生根据总结的方法直接说出次数,小组验证。

活动4【练习】拓展提高,优化方案

1.运用掌握的方法找方法:12瓶、15瓶、24瓶需要几次能找到次品?

2.举一反三:从26瓶木糖醇中,找到一个次品,至少称几次一定能找出次品?在导学案上完成。

3.发散思维:有2187瓶矿泉水,其中2186瓶质量相同,另有1瓶是盐水,比其他的水略重一些。至少称几次能保证找出这瓶盐水?

五年级数学上册简易教案篇2

一、本期教学目标和总要求:

1、让学生经历探索数的有关特征的活动,认识自然数,认识倍数和因数,会找一个数的倍数和因数。知道质数、合数。知道

2、让学生经历探索平行四边形、三角形、梯形面积计算方法的过程,能运用计算的方法解决生活中一些简单的问题。认识组合图形、并会运用不同的方法计算组合图形的面积;;能估计不规则图形的面积大小,并能用不同方法计算面积。

3、5的倍数的特征。知道奇数和偶数。能根据解决问题的需要,收集有用的信息,进行归纳、类比与猜测,发展初步合情推理的能力。

4、学生将进一步理解分数的意义。认识真分数、假分数与带分数,理解分数与除法的关系,会进行分数的大小比较。知道公倍数和公因数,能找出两个自然数的最小公倍数和最大公因数,会正确进行约分和通分。学生能理解异分母分数加减法的算理,并能正确计算。能理解分数加减法混合的顺序,并能正确计算。能把分数化成有限小数,也能把有限小数化成分数。

5、让学生知道分数表示可能性的形式,并能根据所给定的条件,用分数表示可能性大小的程度;能按指定可能性大小的条件,设计相关的方案。

二、教材概况:

本册教材从四个方面编排:

一、数与代数:包括第一单元“倍数与因数”、第三单元“分数”第四单元“分数加减法”。

二、空间与图形:包括第二单元“图形的面积

(一)”、第五单元“图形的面积

(二)”。

三、统计与概率:包括第六单元“可能性的大小”。

四、综合应用的内容整合数与代数、空间与图形和统计与概率三个领域内容分散编排。

三、学生知识现状简析:

五年级男同学自控能力较差,比较好动,欠仔细认真,但他们思维活跃。不足的是两极分化较严重,尤其是计算基础较差,熟练程度不够。很多同学缺少自觉性,基础很差,成绩很不理想。

因此,备课时应注意优等生与差生的具体的情况,做到有的放矢。另外更要注意面向全体,让学生学得扎实,既要掌握基础知识,也要学会学习方法,更要养成各种优良的习惯。特别要注意思维能力、创新意识、实践能力的培养。

四、完成教学任务提高教学质量的方法措施:

1、注重因材施教,进一步做好提优补差工作。让学优生和学困生结对,达到手拉手同进步的目的。

2、注意加强数学与实际生活联系,让学生在活动中解决数学问题,感受、体验理解数学。

3、加强教研活动,以教学改革促进教学质量的提高,同时注重与邻近学校同年级数学教师的交流,做到取长补短。

五年级数学上册简易教案篇3

1、学习目标

1.经历探索3的倍数的过程,理解3的倍数的特征。

2.能判断一个数是不是3的倍数。

3.在探究过程中发展概括和归纳能力。

2、学情分析

学生已经学习了2、5的倍数的特征,但3的倍数的特征与2、5的倍数的特征有很大的区别,学生不能仅从一个数的个位加以观察、归纳来得出结论,因此对于孩子们来讲如何探索得出这个特征就较有难度,而对于一些学习能力较弱的孩子,能够正确掌握3的倍数的特征并加以正确运用都会有一定的难度。因此针对学生的这一认知难点,我在设计教学时更加突出学生的自主探索,是学生在找数——观察——讨论——验证——归纳的过程中,概括出3的倍数的特征。

3、重点难点

学习重点:经历探索并掌握3的倍数特征的过程。

学习难点:发现概括出3的倍数特征。

4、教学过程

4.1.2教学活动

活动1【导入】(一)游戏复习、激发兴趣

游戏复习、设疑导入

(一)游戏复习、激发兴趣

同学们,请举起你们的学号给老师看一看,每个人的学号里都隐藏着数学奥秘!(课件)孔子有句话“温故而知新”,根据老师的指令请中奖学号起立,高高举起你的学号,看谁反应快。小组同学判断,准备好了吗?

(课件2的倍数)第一次中奖学号:是2的倍数起立。采访一下:2的倍数的特征是什么?(课件2的倍数特征:个位是0、2、4、6、8的数)(课件5的倍数)第二次学号中奖:是5的倍数起立。再采访一下:5的倍数的特征是什么?(课件5的倍数特征:个位是0或5的数)

小结:看来,快速判断一个数是不是2或5的倍数的秘诀是,只要看这个数的个位就行了。(课件圈出个位)

【设计意图:学生在中奖学号游戏中复习旧知,为新知做好准备。】

第三次学号中奖:是3的倍数起立。你是怎么知道的?大家来看看这个数是不是3的倍数?如何快速地判断出是不是3的倍数?3的倍数有什么特征呢?今天我们就来探究3的倍数的特征。(板书课题:3的倍数的特征)

活动2【活动】二、自主探究,感悟规律

1、请同学们拿出准备好的学具百数表,请在表中找出3的倍数,并圈起来。

2、学生活动后,教师组织学生进行交流,投影学生圈的百数表,并不断完善。

3、观察3的倍数,猜想一(横着看):判断一个数是不是3的倍数,只看个位行吗?

4、仔细观察这个百数表。猜想二(斜着看):判断一个数是不是3的倍数,看这个数各位上数的和行吗?

把你的发现与同桌交流一下。

活动3【讲授】学生摸索,教师讲解归纳

(三)举例验证规律

师:咱们发现的这个规律只适合100以内的数吗?能推广到更大的数吗?

小组合作学习二:验证、归纳3的倍数的特征

举例

各位上的数的和

是不是3的倍数

验证摆出的数

是不是3的倍数

两位数:

48

4+8=12

48÷3=16

37

3+7=10

×

37÷3有余数

×

三位数:

四位数:

2、小组再次讨论总结。

3的倍数特征:

(四)、总结规律

下面小组的验证是否正确?

看来,通过我们的发现,进一步验证,归纳出3的倍数的特征是(板书:一个数各位上的数的和是3的倍数,这个数就是3的倍数。)

【注意】:与2、5的倍数的特征不同,3的倍数的个位上可以是任何数字。

【设计意图:汇报验证结果形成共识,得出结论。让孩子们验证此规律在100以外的数是否适用,体会“特殊—一般”的研究方法,培养孩子们研究数学的科学性和思维的严谨性。体会发现—验证—归纳的数学思想和方法。】

活动4【练习】三、闯关比赛:

闯关比赛:

3的倍数的特征相信你们已经掌握,闯关开始了,准备好了吗?

第一关:下面的数哪些是3的倍数,手势判断。

926547203

711642073

老师质疑:7203为什么是3的倍数?如果打乱一下顺序,这个四位数还是3的倍数?你们有什么发现?(3的倍数与数字的顺序无关。)

【设计意图:换位探索——引导发现3的倍数与数字的顺序无关。】

第二关:在横线上填上合适的一个数,组成三位数并且是3的倍数。想想共有几种填法?

老师质疑:一共几种填法?有什么规律?(只要相差3就可以了)

【设计意图:通过小组合作学习了解到多角度思考问题,答案不唯一,纠正自己的认识,学生学以致用,有助于培养孩子们的发散思维的能力。】

活动5【测试】师生闯关

第三关:师生闯关:

同学们,老师也想和你们合作一下。请学号1-9的同学上讲台,赵老师没有学号,用0代替。和你们一起组成10位数,看看这么大的数是3的倍数吗?为什么?

请看,老师取走一个数,(9)这个9位数还是3的倍数吗?

再看,老师再取走一个数,(6)这个8位数还是3的倍数吗?

猜猜看,这次取走哪数,(3)这个七位数还是3的倍数?

你们有什么发现?(划去单个数字是3的倍数,剩下的数还是3的倍数)

你能快速发现下面这个数是不是3的倍数?想好就起立。

【设计意图:发散练习:学生体会划去的数字是3的倍数,剩下的数还是3的倍数。】

第四关:猜猜中奖学号

到目前为止,我们已经学习了2、3、5的数的倍数特征,看见今天最后一次中奖学号是谁呢?同时是2、3、5的倍数的学号。(30)老师期待下一个中奖学号就是你。

【设计意图:综合运用所学2、3、5的倍数的特征的知识,让学生深刻体会自己的学号里藏着的数学奥秘】

活动6【作业】延伸和总结

四、全课小结:

1、今天你学会了什么?通过小组合作学习你有什么收获?

2、我们是通过什么方法得出3的倍数的特征?

【设计意图:在课结束前适时总结,重在使同学们进一步体会到一些研究的方法,使孩子们掌握一些“学法”。】

五、作业(课后延伸)

课后可以运用今天所学的方法去探索研究9的倍数的特征。

【设计意图:让同学们把这种探究活动延伸到课外,进一步培养了同学们学习数学的兴趣。】

五年级数学上册简易教案篇4

教学目标:

用“直接尝试法”探究“已知圆的周长求圆的直径”的方法,培养学生解决问题的&39;能力。

教学过程:

一、探究解决问题的方法。

⑴出示情境图。

⑵介绍解决方法。

1:251.2÷3.14=80(米),因为c=πd,所以只要用周长除以3.14,就可以算出直径了。

2:解:设花坛的直径是x米。X×3.14=251.2,然后解方程。

⑶沟通两种方法间的联系。

师生一起解方程:x=251.2÷3.14,x=80。

观察解方程的第二步“x=251.2÷3.14”和算式“251.2÷3.14”比较,感悟算术方法解答和列方程解答相通的地方。

⑷联想。

想:算出圆的直径有什么价值。

可以算出半径,80÷2=40米;还可以算圆的面积;根据圆的直径找出圆心;画出圆。

二、多种练习,内化知识。

⑴独立完成试一试和练一练。

⑵解答练习十八第6题。

独立解答,班级交流。注重解答方法的思路交流和作业格式的指导。

⑶解答练习十八第8题。

学生解答中出现两种答案:一是21棵,二是22棵。引导学生画图验证,理解确认正确答案是22棵。

三、作业,练习十八第7题。

五年级数学上册简易教案篇5

教学目标:

1.知识与技能:使学生理解并掌握2和5的倍数的特征,能准确判断一个数是不是2或5的倍数以及理解并掌握奇数、偶数的含义,能准确判断一个数是奇数还是偶数。

2.过程与方法:让学生在理解2、5的倍数的特征的过程中,使学生的探索、推理、概括等能力得到培养和提高。

3.情感态度与价值观:在分析问题和解决问题的过程中,使学生得到成功的体验和快乐,并帮助学生建立独立获取数学知识和解决问题的信心。

教学重点:

掌握2和5的倍数的特征,理解奇数和偶数的意义。

教学难点掌握2和5的倍数的特征,会判断一个数是不是2或5的倍数。掌握奇数和偶数的含义,判断一个数是奇数还是偶数。会归纳总结其中的规律和方法。

教学工具:

课件、百数表、数字卡片

教学过程:

一、以旧引新,铺垫迁移

师:同学们,在学习新课之前呢,我们先来复习一下上节课我们学的知识。谁来说一说,我们上节课学了什么知识?

生:上节课我们学了因数和倍数。

师:是的,那什么是因数?什么是倍数?他们有什么关系?他们又有什么特点呢?哪位同学来说一说,让老师看一看谁上节课学的最棒。(鼓励学生举手发言,带动学生参与课堂的积极性)

①在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。

②因数与倍数是相互依存的。

③一个数的最小因数是1,它的因数是它本身。一个数的最小倍数是它本身,没有倍数。

④一个数的因数的个数是有限的,一个数的倍数的个数是无限的。

师:这位同学说的很对。那我们来做一做下面这道练习题。看一看同学们对这些知识的应用情况怎么样?

做一做

写出下面每个数的因数,然后再写出每个数的倍数(至少写4个)。

20 因数:   倍数:

25 因数:   倍数:

28 因数:   倍数:

20因数1、2、4、5、10、20 倍数20、40、60、80

25因数1、2、25 倍数25、50、75、100

28因数1、2、4、7、14、28 倍数28、56、84、112

师:同学们总结的很完整,说明同学们对上节课学的知识总结的都很好。下面同学们再按要求做一做下面两道题。

(1)从小到大写出10个2的倍数?

生:2的倍数有:2、4、6、8、10、12、14、16、18、20。

(2)从小到大写出10个5的倍数?

生:5的倍数有:5、10、15、20、25、30、35、40、45、50。

师:那同学们能看出来2和5的倍数有什么特征吗?

生:看不出来。

师:那同学们就和老师一起探索一下2和5的特征,看一看我们会发现什么有趣的事情?

2 举例交流,探索新知

二、5的倍数的特征

(1)引入百数表

师:在自然数中,5的倍数有多少个?

生:无数个

师:我们不能一个一个地研究,怎么办呢?

生:选择一部分数进行研究

师:那我们就先在1-100这一百个数中研究5的倍数的特征。

(2)出示百数表,在这些数中找出5的倍数,涂上红色。

(3)师:观察5的倍数,你有什么发现?

生:我们发现100以内5的倍数的个位都是0或者5的数。

(4)师:除了这些数以外,其它5的倍数也有这样的特征吗?我们来举例验证一下。

例1:判断105 225 160 380是不是5的倍数,并说出理由。

生:105个位是5,105÷5=21,105是5的倍数。

225个位是5,225÷5=45,125是5的倍数。

160个位是0,160÷5=32,160是5的倍数。

380个位是0,380÷5=76,180是5的倍数。

师:这进一步验证了3位数中个位是5或者0的数也是5的倍数。那我们来看一看个位不是0或者5的数是不是5的倍数呢?

例2: 202 136 343 564是不是5的倍数?

生:202÷5=40.4,202不是5的倍数。

136÷5=27.2,136不是5的倍数。

343÷5=68.6,343不是5的倍数。

564÷5=112.8,564不是5的倍数。

师:通过以上的两道例题,谁来概括一下5的倍数到底有什么特征?

生:个位上为0或5的数都是5的倍数。

师:是的,学习了5的特征有什么好处?

生:能更快的判断出一个数是不是5的倍数。

师:是的,那我们就来验证一下,同学们猜猜下面的数是不是5的倍数。

练一练

下面的数都是5的倍数吗?

75、280、1325、172、52460

生:75、280、1325、52460都是5的倍数,因为它们的个位都是0或者5;172不是5的倍数,172个位是2,而且172÷5=34.4,不是整数。

师:我们都知道了5的倍数的特征,那同学们知道2的倍数的特征吗?

生:不知道。

师:下面我们就来学习一下2的倍数的特征。请同学们再次拿出百数表。

(二)2的倍数的特征

师:根据研究5的特征的经验,同学们猜一猜2的倍数可能会有什么特征呢?

生:可能和数的个位有关系,个位是几的数是2的倍数特征。

师:同学们猜想的很有道理,但也只是猜想,到底是不是呢,我们来验证一下。

出示百数表,找出2的倍数,涂上绿色。

师:同学们观察一下2的倍数特征,你发现了什么?

生:100以内2的倍数的个位都是2、4、6、8、0的数。

师:是的,除了这些数以外,其它2的倍数也有这样的特征吗?请举例验证。

例3:判断124 282 360 458 396是不是2的倍数,并说明理由。

生:124÷2=62,124是2的倍数;

282÷2=141,282是2的倍数;

360÷2=180,360是2的倍数;

458÷2=229,458是2的倍数;

396÷2=198,396是2的倍数。

它们都是个位是0、2、4、6、8的数,而且都是2的倍数。

师:所以2的倍数有怎样的特征?

生:个位为0、2、4、6、8的数,都是2的倍数。

师:很好,那请同学们做一做下面一道题,判断一下哪个是2的倍数,哪个不是,把它们归归类。

例4:做一做

48、125、91、6、307、554、920、43

是 2的倍数:48、6、554、920;

不是2的倍数:125、91、307、43

师:通过以上的练习,相信大家都能确认2的倍数的特征了。学习完了2的倍数的特征,老师还要告诉你们一个有趣的规律。同学们想不想知道啊?(以此引入奇数和偶数的概念)

三、探究深入,总结概念

(一)奇数与偶数

师:我们已经掌握了2的倍数的特征。那这里呢,就出现了这样的一个概念:在整数中,是2的倍数的数叫做偶数(0也是偶数),其它不是2的倍数的数叫做奇数。例如,2是偶数,3是奇数。14是偶数,15是奇数。下面我们来做一做下面的练习题,进一步感受奇数和偶数的概念。

练习三

1、下列数中,那些是奇数?那些是偶数?

33 98 355 0 123 881

8089 1000 988 565 3678 677

生:奇数:33、355、123、881、8089、565、677

偶数:98、0、1000、988、3678

(二)2和5的倍数的特征

师:做一做下面的练习题,看看我们会发现什么?

做一做

下面哪些数是2的倍数?那些数是5的倍数?哪些数即是2的倍数,也是5的倍数?

24 35 67 90 99 15 106

60 75 130 521 280 6018 8100

生:2的倍数:24、90、106、60、130、280、6018、8100

5的倍数:35、90、15、60、75、130、280、8100

即是2的倍数,又是5的倍数:90、60、130、280、8100

师:做完这道题,你发现了什么?

生:即是2的倍数,又是5的倍数的数个位都是0。

师:是的,数学就是这么有意思,可以从不同的角度发现这么多有趣的规律。

4 及时练习,巩固提高

师:今天我们学了5的倍数的特征,2的倍数的特征。通过2的倍数的特征,我们又总结出了奇数和偶数的概念。还有即是2的倍数,又是5的倍数的特征。下面我们做一做下面的练习题,巩固一下今天所学内容。

练一练。

1、按要求用2、3、7、0四个数字组成三位数。(有几个写几个)

2的倍数有

5的倍数有

同时是2和5的倍数的数有

生:2的倍数有:372、732、230、320、302、720、270、702、370、730;

5的倍数有:230、270、370、320、730、720;

同时是2和5的倍数的数有:230、270、370、320、730、720。

2、一个三位数27(  ),

(1)当括号里填( )时,此数是2的倍数。

(2)当括号里填( )时,此数是5的倍数。

生:(1)0、 2、 4、 6、 8

(2)0、 5

四、课后小结

1.提问:这节课你都获得了哪些知识?

学生:学习了2的倍数的特征,5的倍数的特征。总结出了奇数和偶数的概念。

2.教师归纳整理。

师:5的倍数的特征:个位上是0或者5的数,都是5的倍数;

2的倍数的特征:个位上是0、2、4、6、8的数,都是2的倍数。

奇数:整数中,不是2的倍数的数叫做奇数;

偶数:整数中,是2的倍数的数叫做偶数;

即是2的倍数,又是5的倍数的特征:个位上是0的数,都即是2的倍数,又是5的倍数。

五年级数学上册简易教案篇6

一、创设情境,提出问题

谈话:我们来进行一个小小的拍球比赛,下面我们请甲队的__(3人),和乙队的__(4人)到前面来,每人拿一个球。注意:比赛的规则是在规定的时间里,哪个队拍球的总个数最多,哪个队就获胜,听懂了吗?(听懂了)

师控制时间(5秒),根据拍球的个数板书,如:

甲队:6+7+8=21(个)

乙队:10+4+3+6=24(个)

结束后要求学生把球轻轻的放在这里,慢慢的走回座位。

师:下面两个队以最快的速度把你们这个队拍球的总数求出来。根据学生回答老师将上面的板书补完整。

师:我们来看看,在规定的时间里,甲队拍了21个,乙队拍了24个,哪个队赢了?(或问我们能说明乙队赢了吗?)

生发现不行!

师:你为什么说不行?

生:我们是3个人拍的,他们是4个人拍的。(你什么意思啊?)就是这样不公平。

师:甲队的队员听了他这么一说也都觉得不公平了,是吗?在人数不等的情况下,比较总数就不公平了,可在我们生活中就会遇到这样的情况,比如:刚刚我们进行了期中考试,我们是怎么比较三个班的成绩的呢?(比较平均数),我们这里就可以比较平均每人拍了多少个?

二、解决问题,探求新知

1、初步感知平均数产生的需要

生1:分别用21÷3=

24÷4=

分别求出等于多少

师:比较平均每人拍了多少个?先来帮甲队算一算,为什么“÷3”?再来帮乙队算一算,为什么“÷4”?

师:我们以乙队为例,这“6个”是表示什么?(可能有学生正好拍了6个)问有没有不同意见?(平均每人拍了6个)

2、理解平均数的意义

师:1号你明明拍了10个怎么变成6个了,多的哪儿去了(多的补给拍的少的人了)那么拍的少的2号拍了4个怎么变成6个了(拍的多的给了我几个,就慢慢增多了,)

师:多的补给了少的,多的就慢慢(少了),少的就慢慢(多了),最后他们4个人就慢慢变得相等了。这个6就是4个人拍的平均数。(板书:平均数)

问:这个平均数是怎么算出来的?(先加再除)

师:我们再来看看,多的10个给了少的,少的就慢慢增多,多到什么程度了?

生:每个人的相等。

师:那么这个6就是同学说的它是10、4、3、6这一组数的平均数,这个平均数就很好的反映了南边这组的整体水平。甲队和乙队,甲队平均水平7个,乙队平均水平6个,哪一个队的整体水平高些呢?学生直接说甲队。

小结:提问,刚才我们比较总数的时候,我们好多同学都有意见觉得比较总数不公平,那么当人数不相等的时候我们比较什么才公平呢?(平均数)

3、沟通平均数与生活的联系

师:同学们,平均数当我们需要它的时候来了,在我们生活中学习中,有很多地方都用到平均数。(学生举例子)

三、估计平均数的策略

1、出示五一期间南通儿童乐园的游客统计图

谈话:同学们五一期间出去旅游了吗?去了哪儿?

(1)估一估

问:看到这张统计图,说说你读懂了什么信息?还没有发言的同学说说看。

生:1号1100人,2号来了1300人,3号1000人,4号900人,5号700人。

师:那么你还想了解点什么吗?(平均每天来了多少人?)出示问题:这五天平均每天来了多少人?

要求:不许计算,只能估一估。(生估计1000、1200、只要在700与1300之间就行)

如果有学生估计500、600、2000等,让学生讨论:可能是500、600、2000吗?为什么?

小结:最多的要给少的,多的就少了,平均数不可能比最多的还要多。少的会变多,平均数也不可能比最少的还要少。也就是平均数既要比谁少又要比谁多啊?

(2)算一算

师:好,每个同学再估计一个数把它藏在心里。要看估计的准不准就可以算一算,接下来就请同学们在自己的作业本上独自的认真的算一算,有不同方法的呆会儿来给我们介绍。

汇报:都是1000,问你是怎么算的?把你的方法介绍给我们。

简单的说:把这几天的总人数求出来,再除以5。也就是先……再……。还有没有不同的方法,一生用移多补少的方法介绍,也得到了1000,这叫移多补少。(板书移多补少)

(3)揭示估计方法

师:咦,刚才你第二次估计的数与1000接近的人举手。老师刚才也偷偷的估计了一下,老师估计的是2000,你们说可能吗?为什么呀?给我说说看!

生:平均数要比最多的少,比最少的要多。我们估计要有根有据。

师:从统计表上看,从2号开始来的人数越来越少,如果你是南通儿童乐园的管理人,你有什么招能吸引游客?(降低价格、提高环境)是个不错的招,下课后王老师会在网上把我们三3班同学的建议发给南通儿童乐园的管理人,好不好?

3、出示本班期中考试4名同学的数学成绩

谈话:前天我们做了张试卷,这是4个同学的成绩。

问:的和最少的分别是多少分?他们的平均成绩肯定要比的怎么样?比最少的怎么样?

问:你想用什么方法算出他们的平均成绩?

分别介绍两种求平均数的方法。(90分)

4、分别出示三幅图片

谈话:水是生命之源,我国水资源相当丰富,但分布不均匀。

(1)我国严重的缺水地区

介绍:这是我国严重的缺水地区,他们一户人家平均每月用水量30千克,用它吃饭洗衣服洗菜。

(2)出示小芳家用水统计图

师:这是老师调查的小芳家用水统计图,第一季度用水16吨、第二季度用水24吨、第三季度35吨、第四季度21吨。你知道平均每月用水多少吨吗?

可能有学生会选1和2。安排选1的和选2的个一名代表到前面来。要求选2的向选1的同学提提问题?选2的问:题目要求的是什么?那么一年有几个月?那么你为什么还选1?问第三个问题时对方可能不回答了。

师:这个问题关键的地方要看求的平均每月用水多少吨?而1、3分别求的是什么?动笔算一算他家平均每月用水多少吨?(16+24+35+21)÷4=24(吨)

(3)小芳家平均每月用水约24吨

再同时出示(1)(3)两种画面,此时此刻你最想说的是什么?节约用水从我们自身做起。?

8.巩固练习

五年级数学上册简易教案篇7

教学内容:

P60—63的内容。

教学目的:

让学生学会乘法估算方法,并会根据实际情况选择估算方法。

教学用具:投影仪。

教学过程:

一、新授

1、教学例5

(1)投影出示例5图,让学生说说题意,明确此题并不用求出准确数,只要估算就行了。教师板书:49×104≈

(2)学生讨论估算方法

(3)汇报:

生:49≈50104≈100

50×100=5000,应该准备5000元。生:49≈50104≈110

50×110=5500,应该准备5500元。

(4)比较:

师:谁的估算好一些?为什么?生:第二种估算方法好一些。

要求带多少钱,在估算时要把近似数取大些,才不会造成钱不够的`现象,所以这道题用第二种估算好一些。

2、P60的“做一做”

独立完成,订正时说估算方法。

二、巩固练习

1、P61、1学生的估计方法可能不一样,只要是正确的都给予肯定,不作统一要求。

2、P61、2—4独立完成,订正时说说估算方法。

3、P62、5先在小组内交流估计方法,后在全班交流。

4、P62、7,P63、9、10独立完成,集体订正。

5、P63、12,答案:203×16,203×26,203×36,203×46。

三、布置作业

P62、6,P63、8、11。

五年级数学上册简易教案篇8

教学目标

1.使学生掌握求相遇时间应用题的结构特点,并能正确解答求相遇时间的应用题.

2.提高学生分析问题,解决问题的能力.

3.培养学生大胆尝试,勇于探索的精神.

教学重点

1.找到与求路程应用题的内在联系.

2.正确分析解答求相遇时间的应用题.

教学难点

掌握求相遇时间应用题的解题思路.

教学过程

一、复习引入

(一)出示复习题

小东和小英同时从两地出发,相对走来.小东每分走50米,小英每分走40米.经过3分钟两人相遇.两地相距多远?

1.画图,列式解答.

2.订正答案

3.小组讨论:试着改编一道求相遇时间应用题.

二、探究新知

例4.两地相距270米.小东和小英同时从两地出发,相对走来.小东每分走50米,小英每分走40米,经过几分两人相遇?

1.讨论:复习题的线段图该怎样改一改.并试着画一画.

2.联系复习题的解法,尝试解答

3.订正思路

想法一:两人相遇时,所走的路程是270米.几分走270米,就是几分相遇.

270(50+40).

想法二:根据复习题速度和相遇时间=路程,依据乘法的因积关系可得:

相遇时间=路程速度和.

三、反馈调节

两人同时从相距6400米的两地相向而行.一个人骑摩托车每分行600米,另一人骑自行车每分行200米,经过几分两人相遇?

1.学生独立分析解答.

2.订正答案.

3.质疑:对于求相遇时间应用题还有什么问题?

4.教师提问

(1)要求相遇时间题目中需告诉我们哪些条件?

(2)例4与复习题之间有什么联系?又有什么区别?

四、巩固练习

(一)从北京到沈阳的铁路长738千米.两列火车从两地同时相对开出,北京开出的火车,平均每小时行59千米;沈阳开出的火车,平均每小时行64千米.两车开出后几小时相遇?

(二)两艘军舰同时从相距948千米的两个港口对开.一艘军舰每小时行38千米.另一艘军舰每小时行41千米.经过几小时两艘军舰可以相遇?

教师提问:怎样验证结果是否正确?

(三)两个工程队合开一条670米的隧道,同时各从一端开凿.第一队每天开12.6米,

第二队每天开14.2米.这个隧道要用多少天才能打通?打通时两队各开凿多少米?

(四)长沙到广州的铁路长726千米.一列货车从长沙开往广州,每小时行69千米.这

列货车开出后开往广州,每小时行69千米.这列货车开出后1小时,一列客车从广州出发开往长沙,每小时行77千米.再过几小时两车相遇?

五、课后小结

我们今天所学的相遇问题与以前学习的行程问题有什么主要联系和区别?通过学习你有什么体会?

五年级数学上册简易教案篇9

教学内容分析:

简易方程的教学,是在学生学习了用字母表示数以后教学的,在解方程式,学生可以根据等式的性质进行教学,也可以根据四种运算中各部分之间的关系进行教学。

教学目标

1、使学生进一步理解用字母表示数的优点。会用字母表示常见的数量关系,会根据字母所取的值,求含有字母式子的值。

2、进一步理解方程的意义,会解简易方程。

3、会列方程解应用题。

教学重点

用字母表示常见的数量关系,根据字母所取的值,求含有字母式子的值,解简易方程和列方程解应用题。

教学过程

一、揭示课题

今天我们复习的内容是有关简易方程的知识,通过复习要进一步理解用字母表示数的优点,会用字母表示常见的数量关系,进一步理解方程的意义,会解方程,会列方程解应用题。

二、复习用字母表示数量关系,公式,运算定律

1、出示表:用字母表示运算定律。

名称用字母表示

加法交换律a+b=b+a

加法结合律(a+b)+c=a+(b+c)

乘法交换律ab=ba

乘法结合律(a×b)×c=a×(b×c)

乘法分配律(a+b)×c=ac+bc

2、请学生说平面图形面积计算公式和长方形、正方形周长公式。

3、用字母还可以表示数量关系,a表示单价,b表示数量,c表示总价,说出分别求总价、单价及数量的字母公式。

4、练习:期末复习第16题。

5、求含有字母式子的值。做期末复习第17题。

(1)原来每月烧的煤用30c表示;现在每月烧的煤用30×(x-15)表示。

(2)学生计算现在每月烧煤的千克数。

三、复习方程的意义和解方程

1、什么是方程?什么是方程的解和解方程?方程和等式关系是怎样的?

2、练习:做期末复习第18题。

学生练习。讲解第(3)题,在方程3x=y中y=21,先把y=21代人原方程成为3x=21再解方程。

3、做期末复习第19题。

请学生说一说解方程的方法。

4、做期末复习第20题。

学生列方程并解方程。

四、复习列方程解应用题

1、(1)列方程解应用题的特征是什么?解题时关键是找什么?

(2)请学生说一说列方程解应用题的一般步骤。

2、做期末复习第21—23题。

第21题:

学生说数量关系式,列方程并解答,根据已列方程写出另外两个不同的方程。

第22题:

师画线段图表示题目的条件和问题,学生列方程解答。

第23题:

学生说数量关系式、列方程解答。

五、全课总结

这节课复习了什么内容。

六、布置作业

五年级数学上册简易教案篇10

教学内容 P19例1、做一做、练习五第1—2题

教学

目标

知识与技能:让学生结合具体情境认识行与列,初步理解数对的含义;能在具体情境中用数对表示物体的。

过程与方法:使学生经历从已有经验到用数对确定物体位置的探索过程,体验用数对确定位置的必要性和简洁性。

情感、态度与价值观:渗透“数形结合”的思想,发展学生的空间观念。体会生活中处处有数学,产生对数学的亲切感。

教学重点 经历用数对确定物体位置的探索过程,知道用数对表示位置的方法。

教学难点 灵活运用数对知识解决实际问题。

教学方法 直观演示法与自主探索、小组合作的方法。

教学准备 多媒体课件

教学过程设计(含各环节中的教师活动和学生活动以及设计意图)

教学过程 一、创设情境,激趣导入

课件出示主题图,播放动画。

怎样才能既准确又简明地表示张亮同学的位置呢?这节课我们就一起来进一步学习 “确定位置”。(板书:确定位置)

二、探索新知

1、课件出示例1的内容。

(1)学生读题,了解已知信息。

教师引导学生可以根据自己在教室里的位置来思考这个问题。

(2)问:已知张亮同学是第二列、第三行的同学,你能指出谁是张亮同学吗?

学生联系实际的基础上根据图中张亮所在的列数的行数来确定张亮的位置,教师给予肯定。

2、认识数对,学会用数对确定具体情境中的位置。

(1)提出问题(看来用第几列、第几行描述一个人的位置真好,让我们有了一个统一的说法。)

大家觉得用这种方法表示一个人的位置,简炼吗?

师:能不能把这种方法再简化一下?

(2)创造、交流

同学们可了不起,在这么短的时间内,创造出了这么多种不同的表示方法。

这一种是哪个小组创造的?说说你们是怎么想的?

师;不错,既然每个小组都不约而同地保留下了这两个数,说明——?这两个数很重要!

真好!那这里的2和3各表示什么意思呢?

生:……

说得太棒了,数学规则需要统一,想不想知道数学上统一使用的方法,请看先写4,接着打上逗号,然后写3,最后打上括号,因为它们是一个整体。大家知道吗?像这样,用列数和行数组成的一对数,叫做——数对。

书:(2,3)

(4)如果用(2,3)表示张亮同学的位置,你能表示王艳和赵强同学的位置吗?看一看有什么不同?

启发学生思考,引导学生用数对表示位置。

3、游戏中概括提升

我发现咱们班同学学得特别快,下面咱们玩个游戏好吗?

(1)师出生对

我说数对,请符合要求的同学快速地站起来。看谁反应最快!

(3,1)(3,2)(3,3)(3,4)(3,5)

奇怪,怎么就正好站起来这么一排呢?

(2)生出生对

如果让你来出数对,你能让一排同学站起来吗?谁来试试?

生:……

师:也不错!有没有谁能说出点不一样的?

生:(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)

师:发现什么了?能说说为什么吗?

生:……

师:也就是说,数对中的第二个数相同,他们就都在同一行。

(3)师再出

不过,老师还有个本领:只说一个数对,就可能让一排同学都站起来,你们信不信?要不咱试试?

示(4,_)可能是哪些同学?

师:你的数对是?奇怪,我上面写(4,1)了吗?那你为什么站起来?

生:(第一个数是4,表示第4列,第二个数是求知数,所以第4列的每一个同学都有可能)能不能确定,到底是谁?如果_等于3呢,表示的一定是谁?其他同学坐下去,看来,要想确定某一个人的位置,只知道列数行不行?还得知道?(用数对表示位置一定要用到两个数)

师:(__)又可能是哪些同学?(全班同学都站起来了)。

师:全班同学都有可能吗?_、_表示两个相同的数,你的数对是(?,?),符合吗?不符合的同学请坐下。当_=1、2、3、4、5时,看来(__)能不能表示全班同学?只能表示什么?只能表示列数、行数相同同学的位置。

三、做一做,巩固确定位置的方法。

1、出示情景。组织学生观察情景,思考教师的提问。

2、引导学生利用在例题中学到的确定位置的方法来回答问题。

3、组织学生用一组数字来表示它们的位置。学生思考后可交流讨论,最后全班汇报。

四、反馈练习。

完成教材第19 页的做一做。

五、课堂小结。

通过今天的学习,你有哪些收获?

五年级数学上册简易教案篇11

教学内容:

教材P32例6及练习八第1、2、3、8题。

教学目标:

1.知识与技能:能理解商的近似数的意义。

2.过程与方法:掌握小数除法计算中用“四舍五入”法求商的近似数的一般方法。

3.情感、态度与价值观:培养学生在实际生活中灵活运用数学知识的能力,能根据实际情况进行求近似数。

教学重点:

掌握小数除法计算中用“四舍五入”法求商的近似数的一般方法。

教学难点:

根据题意正确求出商的近似数。

教学方法:

注重新旧知识的迁移,引导学生自主学习、总结。

教学准备:

多媒体。

教学过程:

一、复习导入

复习旧知:(出示如下题目)

1.用“四舍五入”法将下面的数改写成一位小数。

8.769  3.452  12.71  18.64

2.计算下面各题,得数保留两位小数。

2.43×4.67   12.15×3.41

订正答案,并通过问题:你是用什么方法求这些数的近似数?

(保留几位小数就看这位小数后面的数位,大于4就向前一位进一,小于五就舍去。师引导总结方法的名称:“四舍五入”法。)

引出课题:这节课我们要学习“商的近似数”。(板书课题:商的近似数)

二、互动新授

1.出示教材第32页例6情境图。

阅读情境图中的信息,并问:怎样解决爸爸提出的问题呢?

引导学生自主列算式,并试着计算:19.4÷12

学生在计算过程中,会发现除不尽。这时,师引导学生小组交流,遇到这种情况应该怎么办?

通过交流,学生可能会想到:实际计算钱数时应该算到分,因为分是人民币的最小单位;也可以算到角,因为现在买东西时已经不用分了。

教师小结:根据我们的生活实际,当所买的商品数量少的时候,可以保留整数,或者保留一位小数,或者两位小数。当然如果数量很多的时候,通常会计算到分,这就要根据我们的实际需要进行取近似数了。看来取近似数一种是按照要求去取,一种是按照实际情况去取。(板书:按要求取,按需要取。)

然后再引导学生想一想:算到分和角时分别需要保留几位小数?

(算到分要保留两位小数,算到角就要保留一位小数。)

师引导学生思考并讨论:除的时候应该怎么算?

小组讨论后,学生汇报:保留两位小数,就要算出三位小数,再按“四舍五入”法省略百分位后面的尾数;保留一位小数,就要算出两位小数,再按“四舍五入”法省略十分位后面的尾数。

让学生自己用竖式计算:19.4÷12。教师根据学生汇报,板书

2.提问:说一说如何求商的近似数?

让学生独立思考后,在小组内交流、讨论。引导学生小结:求商的近似数时,只需要比需要保留的小数位数多除出一位,然后再用“四舍五入”法就可以取近似数了。或者除到要保留的小数位数后,不再继续除了,只把余数同除数作比较,若余数比除数的一半小,就说明求出下一位商要直接舍去,若余数等于或者大于除数的一半,就说明要在已除得的商的末一位加上1。同时,求商的近似数的时,不需要算出商的准确值之后再进行取舍。

3.引导学生比较求商的近似值和求积的近似值的异同点。

小组讨论后发言:相同点:都是用“四舍五入”法求近似数。

不同点:积的近似数要求出准确数之后再求近似数;商的近似数不需要求出准确数,只需比需要保留的小数位数多除出一位就可以求近似数。

师小结:求商的近似数非常重要,有时按照要求取近似数,有时按照实际取,在取商的近似数的时候,要明白应该除到哪位就可以不用再除了。

三、巩固拓展

1.完成教材第32页“做一做”。学生独立完成。订正时让学生说一说它们的近似值分别是怎么取的。有些题保留指定小数位数后,近似数的末尾有0,要让学生说说是如何处理的。如第2小题1.55÷3.9,保留两位小数是0.40。

四、课堂小结。同学们,这节课你学了什么知识?有哪些收获?

引导学生归纳

1.求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。

2.求商的近似数的时候不需要算出商的准确值之后再进行取舍。除到要保留的小数位数后,不再继续除了,只把余数同除数作比较,若余数比除数的一半小,就说明求出下一位商要直接舍去,若余数等于或者大于除数的一半,就说明要在已除得的商的末一位加上1。

作业:教材第36~37页练习八第1、2、3、8题。

板书设计:

商的近似数

求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。

五年级数学上册简易教案篇12

【教学内容】:教材P114第4题及练习二十五第1题。

【教学目标】:

知识与技能:使学生能够准确地、熟练地用数对表示位置。

过程与方法:经历用数对表示位置的过程,掌握将数对应用于生活中的方法。

情感、态度与价值观:激发学生的学习兴趣,感受数学在日常生活中的应用。

【教学重、难点】

重点:用数对确定位置。

难点:培养学生灵活运用知识的能力。

【教学方法】:组织练习,质疑引导。练习体验,小组交流。

【教学准备】:多媒体。

【教学过程】

一、练习导入

1.谈话:为了更有利于同学们的学习,老师想调整一下同学们的座位。下面是座位示意图:

已知(1,4)表示小亮的位置。

⑴小明、小丽和小红的位置用数对分别可以表示为(,),(,),(,)。

⑵老师想把小刚排在(5,3)这个位置上,请你在图中标出来。

⑶从小明的位置向左数2列,再向后数1行就是小强的位置,小强的位置是(,)。

2.下面是一幅街区平面图,请看图回答问题。

五爱城所在的位置可以用(2,7)表示,它在火车站以东200m,再往北700m处。

⑴像上面那样描述一下其他建筑物的位置。

⑵小刚家在火车站以东600m,再往北400m处小红家在火车站以东900m,再往北200m处。在图中标出这两名同学家的`位置。

⑶星期六,小刚的活动路线是(6,4)→(2,7)→(4,3)→(5,7)→(7,6)→(9,4)→(11,1)→(11,8)→(6,4)。与一说,他这一天先后去了哪些地方。

二、回顾整理

1.行和列的意义:竖排叫列,横排叫行。

2.数对可以表示物体的位置,也可以确定物体的位置。

3.数对表示位置的方法:先表示列,再表示行。先用括号把代表列和行的数字或字母括起来,再用逗号隔开。如:(7,9)表示第7列第9行。

4.两个数对,前一个数相同,说明它们所表示物体的位置在同一列上。如:(2,4)和(2,7)都在第2列上。

5.两个数对,后一个数相同,说明它们所表示物体的位置在同一行上。如:(3,6)和(1,6)都在第6行上。

6.物体向左、右平移,行数不变,列数减去或加上平移的格数。物体向上、下平移,列数不变,行数加上或减去平移的格数。

三、巩固拓展

1.运用平移的方法加深用数对确定物体的位置。

按要求完成题目。(答案:数对略)

(1)中点A的位置可用数对(1,1)表示,那么平行四边形其他各顶点的位置分别怎样表示?

(2)写出平行四边形向上和向右平移的的图形,写出平移后的各顶点的位置。

学生尝试解答。教师小结:一个图形向上或向下平移后,各顶点的位置的列数没变,行数发生变化;向左或向右平移后,各顶点的位置的行数没变,列数发生变化。

2.教材第114页第4题。教师:我们都下过五子棋,都知道五子棋的规则。请观察题中的情境图,你能用数对来准确地表示出图上的棋子的具体位置吗?

学生观察图片,独立思考,同桌交流,然后指名汇报。

四、课后小结

位置可以由数对来确定,要注意数对的规范写法,逗号前面表示列,逗号后面表示行。

五、作业:教材第115页练习二十五第1题。

【板书设计】

位置复习课

竖排叫列,横排叫行。先表示列,再表示行。

物体向左、右平移,行数不变,列数减去或加上平移的格数。

物体向上、下平移,列数不变,行数加上或减去平移的格数。

五年级数学上册简易教案篇13

教学内容:

最小公倍数

教学目标:

1.使学生理解最小公倍数的意义,初步学会求两个数的最小公倍数。

2.培养学生的观察能力、分析能力和归纳概括能力。

3.培养学生良好的学习习惯。

学习目标:

1、理解最小公倍数的意义

2、初步学会求两个数的最小公倍数。

学习任务:

任务一 理解最小公倍数的意义

任务二 求两个数的最小公倍数

教学过程:

一、激情导课

1、师:同学们,看今天我们要学习什么?(最小公倍数)

看到这个题目,你会想到我们以前学过的什么知识?(倍数)

2、师:(出示课件)谁会求这俩个数的倍数?有了这个知识做铺垫,相信我们这节课一定会学的很轻松。

3、(出示目标)理解最小公倍数的意义,初步学会求两个数的最小公倍数。请同学们默读一遍,并牢牢的记住它。

二、民主导学

任务一

一、任务呈现

师:过几天,我们五年级的同学将外出旅游,高兴吗?小兰也想和爸爸妈妈一起去游玩,可从7月1日起,小兰的妈妈每4天休息一天,爸爸每6天休息一天,他们打算等爸妈全部休息时,全家一块儿去。那么在这一个月里,他们可选那些日子去呢?你会帮他们把这些日子找出来吗?

要求:先独立思考,不会的小组商量。

提示:每4天休息一天就是工作3天休息一天,每6天休息一天就是工作5天休息一天

二、自主学习

教师巡视学习情况

三、展示交流

1、师:他们可选那几日外出?(12、24)

你是怎样选出来的?根据回答板书;

妈妈的休息日:4 8 12 16 20 24 28 ---- 4的倍数

爸爸的休息日:6 12 18 24 30 -----6的倍数。

共同的休息日:12 24 -----4和6的公倍数

最近的一天:12------4和6的最小公倍数

还可以用集合图来表示,

2、仔细观察两组数据有什么特征?

3、再次强调 4 的公倍数就是妈妈的休息日

6 的公倍数就是爸爸的休息日

4 和6的公倍数就是爸爸和妈妈的共同休息日

4、最近是哪一天? 12

12也是这公倍数中最小的一个,叫做最小公倍数。

5、集合图还可以这样表示 出示课件

问:和前面的图有什么不同?中间的部分表示什么?(重合的、公共的)

你会填吗?把刚才的数据填在这个表里,中间填?两旁呢?

这样我们可以一眼看出4 和6的公倍数是12、24.

6、谁能用一句话说说什么是公倍数?什么是最小公倍数?

7、89页做一做

二、那如何求最小公倍数呢?

任务二

求两个数的最小公倍数

一、任务呈现

1、求6和8的最小公倍数

2、想一想

1.你还能想出几种求法?

2.公倍数有多少个?你能找出的公倍数吗?

3.两个数的公倍数和最小公倍数之间有什么关系?

二、自主学习

三、展示交流

1、把不同求法板书

2、交流以上三个问题

(三)检测导结

1、目标检测

求下列每组数的最小公倍数(要求5分钟)

2和7   4和8

3和5   6和15

2、结果反馈

一次正确5分,自己改正4分,帮助改正3分,

3、反思总结 谈谈收获和不足

五年级数学上册简易教案篇14

教学内容分析:

简易方程的教学,是在学生学习了用字母表示数以后教学的,在解方程式,学生可以根据等式的性质进行教学,也可以根据四种运算中各部分之间的关系进行教学。

【教学目标】

1、使学生进一步理解用字母表示数的优点。会用字母表示常见的数量关系,会根据字母所取的值,求含有字母式子的值。

2、进一步理解方程的意义,会解简易方程。

3、会列方程解应用题。

【教学重点

用字母表示常见的数量关系,根据字母所取的值,求含有字母式子难点】的值,解简易方程和列方程解应用题。

【教学过程】

一、揭示课题

今天我们复习的内容是有关简易方程的知识,通过复习要进一步理解用字母表示数的优点,会用字母表示常见的数量关系,进一步理解方程的意义,会解方程,会列方程解应用题。

二、复习用字母表示数量关系,公式,运算定律

1、出示表:用字母表示运算定律。

名称用字母表示

加法交换律a+b=b+a

加法结合律(a+b)+c=a+(b+c)

乘法交换律ab=ba

乘法结合律(a×b)×c=a×(b×c)

乘法分配律(a+b)×c=ac+bc

2、请学生说平面图形面积计算公式和长方形、正方形周长公式。

3、用字母还可以表示数量关系,a表示单价,b表示数量,c表示总价,说出分别求总价、单价及数量的字母公式。

4、练习:期末复习第16题。

5、求含有字母式子的值。做期末复习第17题。

(1)原来每月烧的煤用30c表示;现在每月烧的煤用30×(x-15)表示。

(2)学生计算现在每月烧煤的千克数。

三、复习方程的意义和解方程

1、什么是方程?什么是方程的解和解方程?方程和等式关系是怎样的?

2、练习:做期末复习第18题。

学生练习。讲解第(3)题,在方程3x=y中y=21,先把y=21代人原方程成为3x=21再解方程。

3、做期末复习第19题。

请学生说一说解方程的方法。

4、做期末复习第20题。

学生列方程并解方程。

四、复习列方程解应用题

1、(1)列方程解应用题的特征是什么?解题时关键是找什么?

(2)请学生说一说列方程解应用题的一般步骤。

2、做期末复习第21—23题。

第21题:

学生说数量关系式,列方程并解答,根据已列方程写出另外两个不同的方程。

第22题:

师画线段图表示题目的条件和问题,学生列方程解答。

第23题:

学生说数量关系式、列方程解答。

五、全课总结

这节课复习了什么内容。

六、布置作业

五年级数学上册简易教案篇15

教学目标

1、知识目标:通过教学,使学生初步理解同分母分数加减的算理,掌握同分母分数加减法的计算法则并能正确熟练地计算。

2、能力目标:在具体情景中对整数加减法的意义进行迁移,进一步理解分数加减法的意义,提高学生归纳、概括问题的能力。

3、情感目标:通过学生的自主探索和合作交流,培养合作意识,让学生体验成功。

4、重点能正确进行同分母分数加、法计算。

5、难点能熟练掌握并养成最后计算结果能约分的要约分的习惯。

教学过程

创境激疑一、复习铺垫,引出新知:

1、师:同学们,前面我们刚刚学过有关分数的知识,你能举了分数的例子吗?(学生举例。)

师板书两个分数:看着这两个分数,你能想到哪些有关的分数知识?(学生回答。)

2、师:同学们复习的很全面,咱们再具体做个练习好吗?

合作探究二、新课讲授,总结规律:

1、学习例题1:

师:刚才的复习告诉我,大家对分数知识掌握的很好。还记得在三年级的时候,我们对分数的计算已经有了初步的了解,今天我们继续学习“同分母的分数加减法”。教师板书课题。

A、创设情境,出示题目:

B、出示例题1

师:请说出图上有什么信息?

(1)学生分析读题,列式,师:为什么用加法计算?小数加法和整数加法的含义

(2)你能大胆的猜测一下计算结果吗?学生说出得数。

请用自己喜欢的方法来证明得数是正确的。同桌或小组内的同学交流自己的方法。

(3)方法展示:

图示法、线段法、数分数单位法。

2、学习例题2

师:刚刚学习了同分母的加法,接下来我们继续研究同分母的减法。

A、教师板书两个分数、

(1)师:你能用这两个分数编一道减法应用题吗?学生思考并回答。

(2)师:老师也用这两个分数编了一道减法应用题,想看吗?

B、出示例题2:为什么用减法呢?小数减法的含义和整数减法的含义。

请仿照例题1的计算方法计算得数。

出示例3、电视台少儿频道各类节目播出时间分配情况如下:

节目类型动画类游戏类教育类科普类其它。

时间分配

(1)前三类节目共占每天节目播出时间的几分之几?

(2)其它节目占每天播出时间的几分之几?

学生自己独立解答。

拓展应用做一做1题

总结这节课我们主要学习了什么内容?你能用一句话来概括他的计算法则吗?

24249