教案吧 > 小学教案 > 五年级教案 >

五年级上册数学教案设计

时间: 新华 五年级教案

编写教案可以帮助教师规范教学流程,提高课堂教学的效率,避免随意性和盲目性。这里提供优秀的五年级上册数学教案设计,方便大家写五年级上册数学教案设计参考。

五年级上册数学教案设计篇1

教学内容:

课本79页到81页的内容

教学目标:

1、知识与能力目标:使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积.

2、过程与方法:通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.

3、情感态度价值观:通过解决问题,使学生体会所学知识在生活中的应用,增强学生学好数学的兴趣和意识。

教学重点:

理解公式并正确计算平行四边形的面积.

教学难点:

通过转化,理解平行四边形面积公式的推导过程.

教具:

多媒体课件

学具:

每个学生准备一个平行四边形纸片、剪刀。

教学过程:

一、复习铺垫。

同学们这节课我们来学习第五单元的内容《多边形面积的计算》,这节课我们先来研究平行四边形的面积。

现在大家来看这幅图,你在图中可以找到什么我们以前认识的图形呢?

指名回答。

同学们长方形正方形的面积我们都会计算了,这节课开始我们来学习关于平行四边形的面积计算。

二、探索新知。

1、在学校门口有两个花坛,一个是长方形的一个是平行四边形的,同学们这两个花坛哪个的面积大一些呢?

我们可以用数方格的方法。

同学们可以以小组为单位进行,在数的过程中要注意如果不满一格的我们就当半格数,数完后还要把图下面的表格填好。

把你们小组数出来的结果和大家一起共同分享一下。

根据刚才填的内容,观察表中的数据,你发现了什么呢?

(平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,而且它们的面积也相等)

设计意图:通过让学生动手数方格以及观察表中的结果来初步了解长方形面积与平行四边形面积以及它们的长宽与底高之间的关系。

三、小组合作,探究方法。

非常好!刚才我们通过数方格知道长方形的面积与平行四边形的面积的关系。下面我们通过小组合作的方式来找一找平行四边形和长方形的关系是怎样的。

同学们能不能利用手上的平行四边形把它转化成我们学过的图形呢?(可以,可转化成长方形或正方形)

下面大家分小组来进行操作,看你们组能不能用多种方法来进行转化。在做的过程中大家要注意平行四边形的大小不能有变化的。

学生根据小组合作的结果在平台上进行展示。(可能会有不同的方法展示出来的)

同学们,从刚才大家的展示可以看出,一个平行四边形可以转化成长方形或正方形,那它们是什么关系呢?(演示)

由刚才的演示我们可以得出,长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高,长方形的面积等开平行四边形的面积。(板书)

由些我们可以得出:

平行四的面积=底×高

用字母表示是:

S=ah

小结:同学们由些我们可以知道,要求一个平行四边形的面积,我们必须要知道它的底和高。

四、实际运用

同学们我们现在可以有办法知道学校门口的两个花坛的面积哪个大了吧?

我们不仅可以用数方格的方式,也可以用计算的方法来知道它们的面积,以后我们主要是通过计算来得到平行四边形的面积的。

五、巩固练习。

1、82页第1题。

2、如右图

设计意图:通过练习,找出存在问题,加以纠正并解决问题。让学生进一步掌握平行四边形面积的计算,并能利用学习到的知识解决实际的问题。

六、总结:

这一节课我们学习了什么?你学会了什么?

板书设计:

平行四边形的面积计算

长方形的面积=长×宽

平行四边形的面积=底×高

S=ah

五年级上册数学教案设计篇2

教学目标:

1.通过阅读与分析,了解近似数和精确数的意义,感受近似数和精确数在现实生活中的应用。

2.借助数线,较直观地感知“四舍五入”法求近似数的道理,知道近似数的书写格式,培养学生的推理能力。

3.经历探索求近似数的过程,会用“四舍五入”法求一个数的近似数,培养数感。

教学重点:

经历探索求近似数的过程,会用“四舍五入”法求一个数的近似数。

教学难点:

经历探索求近似数的过程。

教学方法:

合作学习法分析归纳法

教学策略:

小组合作情境创设

教学过程:

一、情境创设,分类感受精确数和近似数。

1.观看一段国庆60周年阅兵视频,说一说有什么感受?

师:这么大的场面中一定蕴涵着许多数学问题,今天我们就一起研究这些数学问题。

2.课件出示整理的一段文字,让学生默读其中的数字两遍,初步感知数据。

3.仔细观察这些数,有没有什么共同特点,能不能把它们分一分类?

组织学生讨论,学生可能会按数据的大小来分,一些按单位分,如60,169,56,66都是以个为单位的,20万、2万是以万为单位的。或者学生将60、169、56分为一类,66、20万、2万分为一类。

师:为什么将60、169、56分为一类,66、20万、2万分为一类呢?它们有什么共同的特点呢?

学生用自己的语言说一说。可能会说是准确的数,估出来的数。

师:是的,在数学上,像60、169、56这样准确的数、不多不少正好的数,是精确数;而66、20万、2万是大概的,大约的,差不多的,与实际数接近的数,是近似数。

4.读一读以下的数据,哪些是精确数,哪些是近似数吗?

小明身高130,2cm,就说约130cm;小红从家里到学校走了395米,就说大约走了400米。

5.你能说说生活中哪些事物的数量一般用精确数来表示,哪些事物的数量一般用近似数来表示?了解近似数的作用。

师:有些情况下,我们没有必要用准确的数据来描述,只要知道一定的范围就足够了,这时用近似数来表示就比较方便。看来近似数在生活中的应用还是相当广泛的。

【设计意图:新课标指出,数学教学活动必须激发学生兴趣,调动学生积极性,引发学生思考。国庆60周年情境引入,出示一些感性材料,通过分类,帮助学生在比较和辨别中体会哪些是实际的、精确的,哪些数是模糊、大约的,从而认识精确数和近似数;又通过列举活动,深化理解,了解近似数在实际中生活中的广泛应用。】

二、合作学习,自主探究。

(一)借助数线,直观感受“四舍五入”法求近似数的道理。

1.师:巨幅国画《江山如此多娇》的实际面积是18000平方米,但报道中称“近2万平方米”,这里的“2万”是如何得到的?

同桌交流,指名说说想法,学生可能会说18000接近2万,所以用2万来表示。

2.结合直观的数线图,分析“18000平方米”称为“近2万平方米”的原因。

师:18000介于整万数1万和2万之间,由于18000千位上是“8”,所以可以把千位上8直接去掉变成0后向万位进1,就得到了近似数“2万”。

介绍18000约等于2万,用“≈”表示,写作:18000≈2万全班读一读。

3.在数线上标出11000,12000,13000,14000,15000,16000,17000,19000这几个数,请学生尝试分别说出它们的近似数及想法。

师:15000这个数约等于多少呢?

学生可能觉得1万可以,2万也可以,因外它刚好在中间。

师:15000离1万和离2万的距离是一样的,但为了方便记录,我们认为规定15000≈2万。

课件上将约等于1万和约等于2万的数进行对比,让学生观察,分析归纳。

师:请同学们对比两组数据,仔细观察,说说你有什么发现,能得到什么结论?请同桌互相讨论,教师巡视指导了解情况。

学生汇报交流,学生可能会发现以15000为分界线,11000,12000,13000,14000接近1万,16000,17000,18000,19000接近2万。

教师引导学生观察千万上的数,当千位上的数是1、2、3、4时,近似数是1万,当千位上的数是5、6、7、8、9时,近似数是2万。

教师借机在黑板上板书:0、1、2、3、4舍;5、6、7、8、9入,介绍“四舍五入”法。

【设计意图:结合数线图,分析“18000平方米”称为“近2万平方米”的原因。数与形结合,将四舍五入的本质清晰地展现出来,培养学生的数感。】

(二)合作学习,探究“四舍五入”法求一个数的近似数。

1.参加国庆阅兵的精确人数是233482人,在下图中找到这个数的大致位置,说一说“约20万人”,这个数是怎样得到的?

合作要求:1.同桌2人一起学习,共同完成学习任务。2.学习时,每人都要说一说自己的想法,并将讨论的结果填在学习卡上。3.组织简单、清晰的语言准备全班汇报。

教师巡视,了解小组讨论的情况,并对有困难的小组给予指导。

2.全班交流。生可能想法:在数线图上标出,发现233482接近20万,;或者233482比25000小,所以近似于20万;直接用四舍五入法,看万位上的数是3,小于5,所以直接把十万后面的尾数“33482”舍去变成5个0,得到近似数20万。

请多组的学生表达自己的想法,只要说得有道理,给予鼓励。

3.教师小结:四舍五入到十万位,关键看万位。

4.如果将233482四舍五人到万位、千位、百位、十位,近似数分别是多少,怎样得到的?小组内讨论,再全班交流,帮助直观感知求近似数的方法。

5.引导学生初步概括方法,用自己的语言说说:怎样用四舍五入法求近似数?

【设计意图:新课标指出,学生应当有足够的时间与空间经历探索的过程,引导学生独立思考、主动探索、合作交流,使学生掌握求近似数的方法,培养学生的合作能力,发展学生的思维。】

三、巩固练习

1.读一读下面的数据,哪些是精确数,哪些是近似数?(教材第11页练一练第一题)

鼓励学生通过自主阅读与分析,找出精确数和近似数,加深认识,并感受到近似数在现实生活中的广泛应用。

2.华山是我国的五岳之一,海拔约2155米,在下图上标一标,四舍五入到百位大约是多少米?

学生独立完成,有些学生在数线上找点时会遇到困难,教师适时指导,帮助学生通过数线进一步感受四舍五入到百位,要看十位上的数。

3.按要求填表。

提醒学生认真看要求,仔细数数位。特别对29957四舍五入到百位、千位、万位重点指导。

【设计意图:巩固练习是帮助学生掌握新知、形成技能、发展智力培养能力的重要手段。通过三道练习题,加深对近似数的认识,感受近似数在现实生活中的广泛应用,并能用所学的四舍五入法求近似数。】

四、课堂总结

这节课你学到了什么?请学生说说这节课的收获。

师:这节课我们经历了探索求近似数的过程,会用“四舍五入”法求一个数的近似数,同时知道近似数的书写格式。希望同学们能留意生活,去感受近似数在生活中的广泛应用。

板书设计:

近似数

0、1、2、3、4舍18000≈20000

四舍五入法

5、6、7、8、9入233482≈200000

五年级上册数学教案设计篇3

教学目标

1:了解小数的产生、理解和掌握小数的性质。

2:初步理解整数、小数、分数之间的联系,掌握相邻两个计数单位间的进率。

过程和方法

经历小数的发现、认识过程和必要性,感知知识与生活以及知识之间的密切联系,体验探究发现和迁移推理的学习方法。

情感态度与价值观

了解数学知识的产生过程,感受生活中处处有数学并激发学生的学习兴趣,培养动手实践、合作探究的学习的习惯

重点:

在学生初步认识分数和小数的基础上,进一步理解小数的性质,并理解和掌握小数的计数单位及相邻两个单位间的进率。

难点:

理解小数的计数单位和他们之间的进率

课前准备:

课件、电子秤

教学过程:

一:创设情境,引出课题

1、游戏:测一测(师生测)

(1)在我们生活中还有那些地方看到过小数?

(2)我们一起来看看老师找的小数。(出示课件1、2)

2、揭示小数的产生:

师:像这些在进行测量和计算时,有时不能得到整数的结果,在生活中还有很多,这时我们通常用小数来表示。这节课我们就一起来学习:小数的性质。(板书)

师:在学习新知识之前我们先来复习下以前学过的东西。(课件展示第3张幻灯片)

二、探索新知

(一)教授新知:认识小数表示的性质

1、师出示三个正方体,现在老师想把它平均分成若干分。请看一看,想一想有多少等分?

2、课件展示把正方体分别平均分成10份、100份和1000份。(课件上要展示出分的过程),边分边问:平均分成了多少份?(10份、100份、1000份)

3、现在老师再将每个正方体其中的某些部分涂上颜色。请讨论可以用哪三个小数表示这三幅图中的阴影部分,他们都表示什么意思?(指名回答)

4、刚才我们总结了一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几,那你认为什么是小数呢?

5、师总结小数的性质。

(二)认识计数单位

(三)整理数位顺序表:

整数部分最小的计数单位是(),小数部分最大的计数单位是(),这两个计数单位之间的进率是(),每相邻两个计数单位之间的进率是().

三、课堂活动(口答)

完成课堂活动第1、4

四、总结:

通过这节课的学习,你们有哪些收获?(学生谈本节课收获)

五、结束语:

最后老师想送给大家一句话,希望与大家共勉:

五年级上册数学教案设计篇4

教学目的:

1.使学生理解质数和合数的概念,能正确地判断一个数是质数还是合数。

2.培养学生观察、比较、抽象、慨括的能力。

3.培养学生自主探究的精神和独立思考的能力。教学重点:质数和合效的概念。

教学难点:

质数、台数、济数、偶数的区别

教学过程:

课前谈话:

给教室里的人分类。体会:同样的事物,依据不问的分类标准,可以有多种小-的分类方法。明确:分类的际准很重要。

一、复习旧知

说一说,在我们学习的空间,你可以得到那些数?(要求与同学说的尽也不重复)

给这些自然数分类。根据自然数能不能被2整除,可以分成新数和偶数两类。

板书对应的集合图。

自然数

(能不能被2整除)

把学生列举的数填写在对应的集合圈里。

问:看了集合图,你想说什么么?(学生看图说自己的想法,复习奇数和偶数的有关知识)

说明:这是一种有价值的分类方法,在以后的学习中很有用。

问:想不想学一种新的分类方法?关于新的分类方法,你想知道些什么?

二、进行新课

今天我们就用找约数的方法来给自然数分类。

复习:什么叫约数?怎样找一个数所有的约数?

同桌合作.找出列举的各数的所有的约数。(同时板演)

引导学生观察:观察以上各数所含的数的个数,你能把它们分成几种情况‘!

根据学生的`回答板书。

自然数

(约数的个数)

(只有两个约数)(有3个或3个以上的约数)

引导学生思考:只含有两个约数的,这两个约数有什么特点?引出约数的概念。

明确合数的概念.提问:合数至少有几个约数?想一想:1的约数有哪几个?它是质数吗?它是合数吗?

明确:这是一种新的分类方法。看厂集合圈,你想说什么?(学生看图说自己的想法,巩固寺数阳台数的知识)

猜一猜:奇数有多少个?合数呢?

明确:因为自然数的个数是无限的,所以,新数阳偶数的个数也是无限的。运用新知,解决问题。

出示例1下面各数,哪些是质数?哪些是合数?

15、28、31、53、77、89

学生独立完成。

问:你是怎么判断的?

明确:可以找出每个数所有的约数,再根据质数和合数的意义来判断;一个数,只有找到1和它本身以外的第三个约束,就能判断这个数是合数还是质数。不必找出所有的约数来,这样可以提高判断的效率。

说明:判断一个数是不是质数还可以查表。100以内的质数比较常用,看书本上的100以内的质数表。用质数表检查对例子1的判断是否正确。

完成练一练。

三、练习巩固

1、坚持下面各数的约数的个数,指出哪些是质数哪些是合数,再用质数表检查。

22、29、35、49、5179、83

2、出示2到50的数。先划掉2的倍数,再依次划掉3、5、7的倍数(但2、3、5、7本身不划掉。)

学生操作后,提问:剩下的都是什么数?

告诉学生:古代的数学家就是用这样的方法来找质数的。

四、全课总结

学到这里,一种新的分类方法,你掌握了吗?学生回答:相机揭示课题,质数和合数

讨论:质数、合数、奇数、偶数之间是这样的关系呢?

五、布置作业(略)。

五年级上册数学教案设计篇5

公开课教学活动前,在全体数学教研成员的指导下设计了大班数学活动《神奇的魔法机器》,并确定了本次活动的目标:发现并对比事物的大小、数量、形状的变化。目标确立后,做好一系列的活动准备,我们利用孩子身边喜欢的动画角色“叮当猫”送的魔法机器导入活动。

在活动中,集体观察和讨论,在有趣的魔法咒语“叮当法术变变变,按我的指令变”,再加上PPT的形象化,孩子们很顺利地都能比变化前后的不同,请了好几个孩子都能回答正确。孩子们能够很快判断出魔法机器所具备的魔法,即能够变出大小、形状、数量不同的东西。如:小变大(大小变化),圆变方(形状变化)、少变多(数量变化)。以至于活动很顺利地达成目标,但对于大班的孩子来说,虽然活动具有趣味性,但还是需要具备一些挑战性。

所以最后一个操作环节时,我提供了难易不同的操作纸,请孩子根据难易不同自主选择任务并独立操作,孩子们居然都能够完成,还能一一说出指令和结果。

由此看来,孩子们的挑战难度有待提高,如:在讲解过程中不必将大小、形状、数量三个特征全部讲解清楚,应该留给孩子想象思考的空间;提供的操作纸应该分小组发放,让孩子可以走动式的选择;一颗星为简易操作,以大小或形状为一种指令,两颗星以大小、形状、数量并存为一种指令,三颗星即以两台魔法机器结合,提供两种或两种以上指令,由孩子正向或逆向思维思考操作。这样就给与了孩子想象和挑战的机会。活动也不会显得毫无挑战性。

五年级上册数学教案设计篇6

教学目标:

1.在自主探索的活动中,理解计算组合图形面积的多种方法。

2.能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

3.能运用所学的知识,解决生活中组合图形的实际问题。:教学重点:能根据条件求组合图形的面积。

教学难点:

理解分解图形时简单图形的差。

教具学具:

多媒体课件和长方体、正方体、平行四边形、梯形、三角形纸片。

教学方法:

先学后教,当堂训练

教学过程:

教师指导与教学过程学生学习活动过程设计意图

一、在拼图活动中认识组合图

1、同学们,我们已经认识了长方形、正方形、平等四边形以及三角形,下面请同学们拿出长方形、正方形,请你用这些图形拼一个复杂的图形,并说一说像什么。

2、请学生将拼出的各式各样的图形,介绍给大家:你拼的图形什么?二、在探索活动中寻找计算方法。

1、教师出示图形

学生拿出课前准备的图形,进行拼图操作活动。

学生拼出各种各样的图形,选出贴在黑板上。

指名回答:我拼的图形像我家楼梯的台阶,像一张方桌、客厅地面……

学生观察老师出示的图形,这幅图形象一张客厅的平面图。

学生讨论怎样算买多少平方米的地板?

通过这一操作活动,使学生从中体会到组合图形的组成特点。

让学生认识组合图形的形成以及特点。

让学生感受计算组合图形的必要性,并让探索的基础上,讨论得出计算组合图形

请大家看一看,老师也准备了一个图形。对,像一张客厅的平面图,现在要在上面铺地板。

2、提出问题

你们知道应该买多少平方米的地板吗?

只要求主面积,就知道买多少平方米的&39;地板了。那么能直接算出来吗?

3、请同学们想一想,为什么要将图形进行分割,图形割后,可以转化为我们学过的图形进行计算。

学生动手算一算,想一想,不能直接算怎么办,动手画图,怎样他割。

学生介绍自己探索中采用的分割方法。

学生分别按照黑板上的方法计算主客厅的地板的面积。

学生发独立观察图并且解决问题,然后,集体汇报、订正。

面积的基本方法。从中体会到组合图形的特点。

让学生认识组合图形的形成以及特点。

让学生感受计算组合图形的必要性。并让学生自主探索的基础上,讨论得出计算组合面积的基本方法。

从中体会到组合图形的特点。

板书设计:

五、图形的面积

组合图形面积

2.成长的脚印

25360