教案吧 > 小学教案 > 五年级教案 >

五年级教案数学模板

时间: 新华 五年级教案

教案可以帮助教师提高教学质量,从而更好地提高学生的学习成绩。下面给大家整理一些五年级教案数学模板,方便大家学习怎么写五年级教案数学模板。

五年级教案数学模板篇1

教学内容:

课本第76页。

教学目标:

1、掌握小数四则混合运算的顺序,能正确地进行计算。

2、经历计算、猜想、验证等数学活动过程,初步理解和掌握整数加法、乘法的运算律对小数加法、乘法同样适用。

3、能运用运算律进行简便计算,掌握简便计算的方法,培养简便计算的意识。

教学重点:

正确计算小数四则混合运算,应用运算律进行简便计算。

教学难点:

运用乘法的运算律进行小数乘法的简便运算。

教学准备:

课件

教学过程:

一、复习导入,揭示课题。(4分钟左右)

1、回忆一下,我们学过的整数四则混合运算的运算顺序是怎样的?乘法运算律有哪些?请用字母表示出来。

总结:

(1)同一级符号从左往右依次计算;

(2)既有加减,又有乘除,先算乘除,再算加减;

(3)有小括号的,先算小括号里面的。

乘法交换律ab=ba

乘法结合律a(bc)=(ab)c

乘法分配率a(b+c)=ab+ac

2、明确课题。

今天就一起来学习“小数四则混合运算”。

二、自学例14。(15分钟左右)

1、明确例14中的数学信息及所需要解决的问题。

2、自学。

导学单(时间:5分钟)

(1)看图,根据题意列出综合算式。

(2)你是按照怎样的顺序进行计算的?为什么可以这样计算?

(3)比较两种解法,哪一种更简便?

(4)计算并比较三组算式。

点拨:先分别算出种茄子和辣椒的面积;或先算出这块长方形菜地的长是多少米。

点拨:小数四则混合运算的顺序和整数相同。

总结:“先算出这块菜地的长,再算它的面积”相对简便些。

3、小组交流。

交流内容

(1)小数四则混合运算的顺序是怎样的?

(2)三道算式的圆圈里能填等号吗?为什么?

(3)整数加、乘法的运算律,对小数加、乘法也都适用吗?

4、集体交流。

导学要点:整数加法、乘法的运算律对小数加、乘法同样适用。而且,应用运算律常常能使计算过程比较简便。

三、巩固练习。(13分钟左右)

(一)适应练习。

1、整合“练一练”第1题和练习十四的第2题,先说出各题的运算顺序,再计算。

点拨:“练一练”第1题的(1)可以先同时计算乘除法,再算加法;练习十四第2题的最后一题,算式中既有中括号又有小括号,先算小括号里的,再算中括号里的。

2.整合“练一练”第2题和练习十四的第2题,用简便方法计算。

点拨:0.25×36=0.25×4×9

运用了什么运算律?

2.4×1.02=2.4×(1+0.02)

运用了什么运算律?

(二)口答练习。

1、练习十四第1题中的6道题。

提醒:

(1)数位对齐;

(2)从个位算起;

(3)不要忘加小数点。

(三)整合练习。

1、练习十四第4题。

提示:要求这四名同学完成接力赛的总时间,只要把表中的四个数据相加就可以了;而求这四个数连加的和时,可以应用加法的交换律和结合律使计算简便。

2、练习十四第5题。

点拨:

(1)400×0.25×0.35先算400棵向日葵可收葵花子的千克数,再算可榨油的千克数;

(2)0.25×0.35×400先算每棵向日葵可榨油的千克数,再算400棵向日葵可榨油的总千克数。

(四)创编练习。

简便计算:7.3×9.90.125×8.8

提醒:7.3×9.9=7.3×(10-0.1)

0.125×8.8=0.125×8×1.1或

0.125×8.8=0.125×(8+0.8)

四、课堂总结;

通过这节课的学习你学到了什么知识?

五年级教案数学模板篇2

教材说明

综合应用“量一量找规律”是在完成了第四单元“简易方程”的教学之后安排的,旨在让学生综合运用所学的测量、统计和方程等方面的知识,通过动手操作揭示事物之间的内在规律,激发学生学习数学的兴趣,在培养学生实践能力的同时培养学生归纳推理的思维能力。

“量一量找规律”活动由以下四部分组成。

1.自制实验工具。

学生在充分理解方程意义的基础上,利用皮筋、木棒、盘子和细绳等材料小组合作制作一个简易秤。具体的做法是用细绳将盘子拴住做成一个托盘,然后用皮筋分别将托盘和木棒拴住。

2.收集实验数据。

学生利用自制的简易秤,依次称量1本、2本、3本等不同数量的课本,在统计表中记录称量的课本数和相应的皮筋总长度,并计算出每增加一本书皮筋伸长的长度。

3.分析数据。

引导学生观察统计表中的信息,并根据表中的数据绘制折线统计图,启发学生讨论从统计图表中能够获得哪些信息。

4.根据统计结果归纳推理。

根据统计图表的结果小组合作探究皮筋长度和课本数二者之间存在的规律及此规律适用的范围。

整个活动不仅使学生经历从收集实验数据、数据、制成统计图表到根据统计结果推理事物之间内在本质关系的全过程,而且促使学生进一步体验运用所学知识探究未知事物的乐趣。

教学建议

1.这部分内容可用1课时进行教学。

2.这个活动是一个操作性很强的活动,教学时可采用小组合作的形式放手让学生尝试,充分调动学生自主探索的积极性,教师只在关键处予以一定的引导和点拨。

3.在制作实验工具部分,教师可提前布置学生准备制作材料,并引导学生思考:对制作简易秤使用的橡皮筋和木棒有什么具体要求,启发学生选择弹性较好的橡皮筋,至少在称量6本数学书时不会超出弹性限度或发生永久变形;选择的木棒要尽量做到长度适中、粗细均匀,在称量时不会弯曲、变形。此外,拴盘子时要注意拴的角度和拴绳的长度,使托盘在称量时保持水平、稳定。当然,教师也可根据情况灵活安排,如可用弹簧来代替橡皮筋,在制作时用铁钩等代替木棒达到称量的目的。

4.在收集实验数据部分,教师可在实验之前要求学生先明确书本第77页中统计表中要求采集的信息,并引导学生讨论测量过程中应该注意的事项。例如,要明确测量的起点和终点;测量皮筋长度时要等橡皮筋和秤盘均处于稳定状态时再测;称量时要设法使木棒保持水平……这样得到的数据误差较小。具体实验的实施可采取小组分工合作的形式。

5.在分析数据部分,教师根据统计表绘制出折线统计图,引导学生仔细观察统计图表,想一想统计图表呈现的特点,并讨论它们传达出的信息。然后,对应统计图表,请小组同学互相说一说:“如果要称量7本书,皮筋会伸长多少?8本呢?10本呢?”

6.在根据统计结果归纳推理部分,老师引导学生思考皮筋长度和课本数二者之间存在的规律,向学生初步渗透函数的。如果有的小组实验数据与理论上y=a+bx(a代表皮筋原长,b代表每增加一本书皮筋伸张的长度)的关系存在一定误差,老师可引导学生分析原因,也可向学生客观说明。

7.在学生出二者之间存在的规律后,老师还可进一步启发学生思考“如果要称量的课本越来越多的话,皮筋会发生什么变化”,帮助学生理解上述二者的关系均是建立在皮筋的弹性限度之内的,反之,二者的关系不存在。

五年级教案数学模板篇3

学法指要

1.有一块三角形菜地,底为160米,它比高的2倍少20米。菜地面积是多少平方米?

思路分析:此题是求三角形面积的题目。求三角形的面积的关键是知道三角形的底和高。题目中底已经直接给出,而高没有直接给出。因此这题要想求出面积,必须先求出高。求高是求1倍量的,应先把160米补上20米后,正好对应2倍。因此高这样计算:(160+20)÷2=180÷2=90(米)。

再求三角形菜地的面积,直接应用公式计算就可以了。

解:(160+20)÷2

=180÷2

=90(米)

160×90÷2

=14400÷2

=7(平方米)

答:菜地的面积是7平方米。

2.有一块梯形田,上底6米,比下底的一半少0.4米,高比上底多2米,求梯形田的面积是多少平方米?

思路分析:这题的题目要求是求梯形的面积。求梯形的面积计算公式是S=(a+b)×h÷2,根据公式说明求梯形面积的关键是知道上底、下底和高的长度。

观察已知条件,我们发现这个梯形的下底和高都没有直接给出,因此应先求出下底和高,再求面积。

根据条件,求下底是求上底的一半少0.4的数是多少,列式是:

6÷2-0.4=3-0.4=2.6米。

根据条件,求高是求比上底多2的数是多少,列式是6+2=8(米)。

最后求出梯形面积,直接公式计算就可以了。

解:(1)6÷2-0.4=3-0.4=2.6(米)

(2)6+2=8(米)

(3)(6+2.6)×8÷2

=8.6×8÷2

=68.8÷2

=34.4(平方米)

答:梯形田的面积是34.4平方米。

3.如图:梯形的面积是24平方分米,求梯形的下底是多少厘米?

思路分析:这题已知梯形的面积和上底以及高,求下底的长度,是利用公式逆解的题。

我们可以看出,由于两个完全一样的梯形能够拼成一个平行四边形,要计算梯形的下底,必须先把梯形面积乘以2还原成拼得的平行四边形的面积,平行四边形的高等于梯形的高,平行四边形的底等于梯形的上底和下底之和。这样,我们用拼得的平行四边形面积除以高就得出了梯形上底和下底之和,再减去梯形的上底,就算出了下底的长度。

注意,这题中的高的单位名称、面积的单位名称与要求的下底单位不统一,应先统一单位,再计算。

解:24平方分米=2400平方厘米

4分米=40厘米

2400×2÷40-45

=4800÷40-45

=120-45

=75(厘米)

答:这个梯形的下底是75厘米。

4.一个三角形的底是6厘米,面积是12平方厘米,和它等高的平行四边形的底是三角形底的2.5倍,求平行四边形的面积。

思路分析:我们知道,求平行四边形的面积的关键是知道平行四边形的底和高,已知条件中指出,平行四边形的底是三角形底的2.5倍,而三角形的底题目中直接给出,用乘法就可直接求出平行四边形的底了。

题目中又告诉我们三角形和平行四边形等高,因此,只要求出三角形的高就可以了。而求三角形的高又是利用公式逆解的题,这与梯形给出面积利用公式逆解题思路一样,只要先还原成拼得的平行四边形的面积,再算高就可以了。

解:12×2÷6

=24÷6

=4(厘米)

6×2.5=15(厘米)

15×4=60(平方厘米)

答:平行四边形的面积是60平方厘米。

5.求组合图形的面积。

单位:厘米

思路分析:要求这个组合图形的面积,要先做一条辅助线(如图)。

这样就可以看出这个组合图形是一个梯形和一个长方形组合而成的。梯形的下底就是长方形的长,高就是45减35的差,只要利用梯形和长方形的面积公式就可以计算出这两个基本图形的面积,最后用加法就可求出组合图形的面积了。

解:(1)梯形面积:

(20+50)×(45-35)÷2

=70×10÷2

=350(平方厘米)

(2)长方形面积:

50×35=1750(平方厘米)

(3)组合图形面积:

350+1750=2100(平方厘米)

答:这个组合图形的面积是2100平方厘米。

6.小莉走一步的平均长度是55厘米。她从家走到新华书店的距离是1705米,要走多少步,才能走到?

思路分析:这题是知道平均步长和两地间的距离,求步数的题目。由于这题的单位名称不统一,只要先统一单位,就能直接用两地距离除以平均步长就可以了。

解法一:1750米=175000厘米

175000÷55=3100(步)

解法二:55厘米=0.55米

1750÷0.55=3100(步)

答:要走3100步才能走到。

思维体操

1.面积相等的两个三角形,第一个底长是40厘米,高是35厘米;第二个底长是70厘米,高是多少厘米?

思路分析:这道题是求三角形的高,是利用公式逆解的题。题目中给出了两个三角形的面积相等,又直接给出了第一个三角形的底和高,这样就求出了第一个三角形的面积,这也就等于知道了第二个三角形的面积,最后再利用三角形的面积公式逆解此题就可以了。

解:40×35÷2

=1400÷2

=700(平方厘米)

700×2÷70

=1400÷70

=20(厘米)

因为这两个三角形的面积相等,还原成平行四边形的面积也相等。所以还可以还可以这样列式计算:

40×35÷70

=1400÷70

=20(厘米)

答:第二个三角形的高是20厘米。

2.一个三角形和一个平行四边形的面积相等,底也相等,三角形的高是8厘米,平行四边形的高是多少厘米?

思路分析:题目中的三角形和平行四边形的面积相等,也就是,不仅面积相等,两个图形的底也相等,也就是a1=a2,要使面积相等,三角形的高必须是平行四边形的高的2倍,才能达到要求,所以三角形的高是这个平形四边形高的2倍。

解:8÷2=4(厘米)

答:平行四边形的高是4厘米。

3.一个三角形与一个长方形面积相等,已知长方形的周长是37厘米,长是16厘米。而三角形的底是长方形长的一半,高是多少?

思路分析:这道题的已知条件指出,三角形与长方形的面积相等,只要求出长方形的面积就等于知道了三角形的面积。

根据条件,已知长方形的周长和长,要先求出宽,才能求面积。我们用37÷2-16就可以算出宽了,再利用公式就求出面积了。

又根据条件,三角形的底是长方形长的一半,就有求出三角形的底,再利用公式逆解就能求出三角形的高了。

解:37÷2-16

=18.5-16

=2.5(厘米)

16×2.5=40(厘米)

40×2÷(16÷2)

=80÷8

=10(厘米)

答:这个三角形的高是10厘米。

评析:以上三题的解题思路相同,要抓住两个图形面积相等的这个已知条件去分析思考,因此这两题是“面积相等,图形状不同”的题目,求另一图形的底或高,都是利用公式逆解的题目。

要想很快找到解题方法,认真审题非常重要,求面积的公式也要相当熟练,要从题目的已知条件入手,利用公式,求出所求问题。这种思维方法,大家还应掌握。

4.一个正方形的边长增加5厘米,它的面积就会增加95平方厘米,原来的正方形的边长是多少厘米。

思路分析:这题要想求出所求问题,可以根据已知条件,画出一幅平面图,我们可以对照图来分析。

通过画图,我们可以看出,阴影部分的面积就是增加的95平方厘米的面积。而阴影部分是由两个由原正方形为长,5厘米为宽的长方形面积和以5厘米为边长的正方形面积组合而成的。我们只要从95平方厘米中减去5×5的积再除以2再除以5就算出原正方形的边长了。

解:5×5=25(平方厘米)

95-25=70(平方厘米)

70÷2=35(平方厘米)

35÷5=7(厘米)

答:原正方形的边长是7厘米。

注意,这题不能这样画图。

如果按照上图的画法,等于把正方形的每条边长增加了10厘米,题意理解错,肯定结果就错了。

5.一个平行四边形,若底增加2厘米,高不变,面积就增加4平方厘米。若高减少1厘米,底不变,面积就减少3平方厘米。求原平行四边形的面积。

思路分析:根据题意,我们也可画出这题的平面图。我们也可以对照图来分析。

通过观察图,明显看出,当底增加2厘米,高不变时,原来的平行四边形的面积增加了一个和原来的平行四边形相等的底是2厘米的平行四边形的面积,这样就求出了原来平行四边形的高。

我们还可以从图上看出,当高减少1厘米而底不变时,原来的平行四边形就减少了一个和原来的平行四边形等底、高是1厘米的平行四边形的面积,这样就可算出平行四边形的底了。最后根据条件,就可算出原平行四边形的面积了。

解:4÷2=2(厘米)

3÷1=3(厘米)

3×2=6(平方厘米)

答:这个平行四边形的面积是6平方厘米。

评析:以上两题是比较复杂的平面图形的有关计算题目。为了使条件和问题形象地展示出来,我们就可以通过图来解决。画图法也是解答数学难题的方法之一,它对于解答数量关系复杂的题目,有着很重要的作用。因此,大家不能忽视画图法的学习。

智能显示

心中有数

本单元学习的主要内容:

1.平行四边形面积计算公式的推导;平行四边形面积的计算公式;利用平行四边形面积的计算公式解决实际问题。

2.三角形面积计算公式的推导;三角形面积的计算公式;利用三角形面积的计算公式解决实际问题。

3.梯形面积计算公式的推导;梯形面积的计算公式;利用梯形的面积公式解决一些实际问题。

4.组合图形面积的计算方法以及计算。

5.用工具测地面的直线距离。

6.步测和目测的方法以及有关计算。

五年级教案数学模板篇4

教学目标

1.通过收集图案,小组交流,感受图案的美,并为自身以后创作图案提供借鉴。

2.通过欣赏图案,发展同学的审美意识和空间观念。

3.自身经历创作实践的整个过程,感受创作的乐趣,进一步培养同学的审美情趣。

重点难点:

1.进一步利用对称、平移、旋转等方法绘制精美的图案。

2.加深感受图形的内在美,培养同学的审美情趣。

教学准备:

课件、方格纸、正方形白板纸、手工纸三张和剪刀等。

教学过程:

一、展览导入

课前让同学收集图案,以小组为单位进行交流。

考虑:这些图案是怎样设计的,它有什么特点?

指名介绍本组中最美的图案,并结合考虑说一说它的特点。

二、学习新课

(一)尝试发明:

让同学做第8页第1、2题。

1、鼓励同学用学过的图形设计图案,对不同的同学提出不同的要求。

2、交流时,教师对有创意、绘图美观的同学给予褒扬和激励。

(二)设计图案:

做第10页“实践活动”7题。

1、提出三个步骤:

(1)先选择一个喜欢的图形;

(2)再确定你选用的对称、平移和旋转的方法;

(3)动手绘制图案。

2、分别利用对称、平移和旋转创作一个图案后,全班交流。

三、巩固练习

(一)反馈练习:

1、制作“雪花”:

取一张正方形纸,按书上所示的方法对折和剪裁。可以经过多次练习,直到会剪一朵美丽的“雪花”。

2.作品展示。

3、独立观察并尝试做第9页第5题。

四、全课总结

全班交流各自的作品,选出好的作品互相评价,全班展览。

五年级教案数学模板篇5

教学内容:

教材第122 、123 页的内容及第124 、125 页练习二十四的第1-3题。

教学目标:

1、使学生理解众数的含义,学会求一组数据的众数,理解众数在统计学上的意义。

2、能根据数据的具体情况,选择适当的统计量表示数据的不同特征。

3、体会统计在生活中的广泛应用,从而明确学习目的,培养学习的兴趣。

重点难点:

1、重点:理解众数的含义,会求一组数据的众数。

2、弄清平均数、中位数与众数的区别,能根据统计量进行简单的预测或作出决策。

教具准备:

投影。

教学过程:

一、导入

提问:在统计中,我们已学习过哪些统计量?(学生回忆)指出:前面,我们已经对平均数、中位数等一些统计量有了一定的认识。今天,我们继续研究统计的有关知识。

二、教学实施

1、出示教材第122 页的例1 。

提问:你认为参赛队员身高是多少比较合适?

学生分组进行讨论,然后派代表发言,进行汇报。

学生会出现以下几种结论:

( 1)算出平均数是1 . 475 ,认为身高接近1 . 475m 的比较合适。

( 2)算出这组数据的中位数是1 . 485 ,身高接近1 . 485m 比较合适。

( 3)身高是1 . 52m 的人最多,所以身高是1 . 52m 左右比较合适。

2、老师指出:上面这组数据中,1 . 52 出现的次数最多,是这组数的众数。众数能够反映一组数据的集中情况。

3、提问:平均数、中位数和众数有什么联系与区别?

学生比较,并用自己的语言进行概括,交流。

老师总结并指出:描述一组数据的集中趋势,可以用平均数、中位数和众数,它们描述的角度和范围有所不同,在具体问题中,究竟采用哪种统计量来描述一组数据的集中趋势,要根据数据的特点及我们所关心的问题来确定。

4、指导学生完成教材第123 页的“做一做”。

学生独立完成,并结合生活经验谈一谈自己的建议。

5、完成教材第124 页练习二十四的第1 、2 、3 题。

学生独立计算平均数、中位数和众数,集体交流。

三、思维训练

小军对居民楼中8 户居民在一个星期内使用塑料袋的数量进行了抽样调查,情况如下表。

( 1)计算出8 户居民在一个星期内使用塑料袋数量的平均数、中位数和众数。(可以使用计算器)

( 2)根据他们使用塑料袋数量的情况,对楼中居民(共72 户)一个月内使用塑料袋的数量作出预测。

五年级教案数学模板篇6

一、教学目标:掌握有括号的小数四则混合运算的运算顺序。

二、教学重点:掌握有括号的小数四则混合运算的运算顺序。

难点:弄清有括号的运算顺序。

三、教学准备:多媒体。

四、教学过程:

A、准备题:

19×(935-875÷25)[51÷(120-103)+24]×64

1、先让学生说一说运算顺序。

2、让学生独立完成。校对。

B、导入新课:

有括号的小数四则混合运算和有括号的整数四则混合运算相同。今天我们就来学习有括号的小数四则混合运算。

C、讲授新课:

例3:4.38÷(36.94+34.3×0.2)

提问:1、在有括号的算式里要先算什么?

2、先算什么,再算什么?

3、学生独立完成。校对。

4.38÷(36.94+34.3×0.2)

=4.38÷(36.94+6.86)

=4.38÷43.8

=0.1

例4:[(5.84-3.9)÷0.4+0.15]×0.92

提问:1、先算什么,再算什么?

2、独立完成。校对。

3、做错的说一说错的原因。

[(5.84-3.9)÷0.4+0.15]×0.92

=[1.94÷0.4+0.15]×0.92

=[4.85+0.15]×0.92

=5×0.92

=4.6

D、巩固练习:

1.8×(1.4-0.26÷2)[7.6-5×(0.3+0.9)]÷10

1、先说一说运算顺序,再进行计算。

2、抽两名学生板演。

E、课堂小结:

在既有中括号,又小括号应该先算什么,再什么?

F、布置作业:

P-52第一题、第二题和第三题。

课堂作业本

练习十一

一、教学目标:1、掌握小数四则混合运算的运算顺序。

2、掌握方程的解法。

3、学会应用题的分析方法。

二、教学重点:掌握小数四则混合运算的运算顺序。

难点:学会应用题的分析方法。

三、教学准备:卡片和多媒体。

四、教学过程:

A、口算训练:

6+4.4=0.01×80=7.4-0.9=6.3÷0.63=

2.3×5=0.4×0.5=0.2÷0.04=5÷0.02=

18.6-6=5.4+6=9-1.35=0.3×0.05=

1、以小组开火车形式看口算报得数。

2、错的说一说错的原因。

B、比较训练:

8-0.8÷5+0.24×9

8-(0.8÷5+0.24)×9

[8-(0.8÷5+0.24)]×9

1、说一说每题的计算顺序。

2、括号有什么作用?

3、抽三名学生板演,教师巡视,帮助学困生。

4、校对,错的说出错在哪一步?

C、求未知数:

7.2+X=15.4X-0.8=3.6

1、抽两名学生板演,教师巡视。

2、说一说每题求X的依据什么?

D、应用题:

P-53第五题:

1、说一说解答应用题的一般步骤。

2、先让学生分析数量关系。两人相互讨论。

3、让学生独立完成,教师巡视。

4、42÷1.5表示什么?42+42÷1.5表示什么?

E、布置作业:

P-53第三题。

《课堂作业本》

练习十一(二)

一、教学目标:1、运用加法和乘法的运算定律进行简便运算。

2、掌握四则混合运算的运算顺序。

3、学会分析解答应用题的步骤。

二、教学重点:掌握四则混合运算的运算顺序。

难点:学会分析解答应用题的步骤。

三、教学准备:多媒体

四、教学过程:

A、简便运算:

0.27×99+0.270.25×1.25×40×8

(0.25+2.5+25)×0.48.4+7.66+2.34+1.6

1、抽四名学生板演,教师巡视。

2、说一说错的原因。

B、四则混合计算:

8.4-8.4×1.5÷18

(1-0.99)×(38.6-8.6)

[0.05×(83+117)]÷(9.6-5.6)

1、先说一说每题的运算顺序。

2、抽三名学生板演,教师巡视。

3、校对,错的订正。

C、文字题:

2.5乘以6.6与1.4的和,积是多少?

1、求什么?积是哪两个数相乘?

2、所以我们要先求什么?

3、列式计算。

D、应用题讲解:

P-55第十二题:

1、要求平均每天的营业收入四月份比三月份多多少元?我们必须知道哪两个条件?

2、四月份每天怎么求?三月份每天怎么求?

3、四月份为什么要除以30,而三月份要除以31呢?

E、课堂小结:

今天我们练习了哪些内容?哪些方面还掌握的不够呢?

F、拓展题:

先让学生讨论完成。

G、布置作业:

《课堂作业本》

五年级教案数学模板篇7

教学内容

质数和合数

教材第14页的内容及练习四第1~3题。

教学目标

1.理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按因数的个数进行分类。

2.通过自主探究、合作交流的方法,理解质数和合数的意义,经历概念的形成过程。

3.培养学生自主探索、独立思考、合作交流的能力,充分展示数学的魅力。

重点难点

重点:初步学会准确判断一个数是质数还是合数。

难点:区分奇数、质数、偶数、合数。

教具学具

投影仪。

教学过程

一、创设情境,激趣导入

师:“六一”快到了,老师给大家送来了礼物!(出示百宝箱)大家想要吗?可是这上面有锁,而且是一个密码锁,打不开,怎么办?

师:密码是一个三位数,它既是一个偶数,又是5的倍数;最高位上的数是9的最大因数;十位上的数是最小的质数。你能打开密码锁吗?

学生质疑:什么是质数。教师引入本节课内容,板书:质数和合数。

二、探究体验,经历过程

1.认识质数与合数。

师:找因数--找出1到20的各个数的因数,看一看它们的因数的个数有什么特点?

学生分组进行,找出之后进行分类。

生:老师,我发现这些数的因数有的只有1个,有的有2个,有的有3个,还有的有4个或更多。

师:很好,我们可以把它们分类,大家把分类结果填在表中。

投影展示学生的分类结果。

【设计意图:在学生独立思考的基础上,找出1~20的因数后总结出特点,为下文概念的出示做准备,使学生亲身经历概念的形成过程,印象深刻】

师:一个数,如果只有1和它本身两个因数,这样的数叫做质数。如2、3、5、7都是质数。一个数,除了1和它本身还有别的因数,这样的数叫做合数。如4、6、15、49都是合数。1既不是质数也不是合数。

师:再举出几个质数和合数的例子,举得完吗?说明了什么?(质数和合数都有无数个)

想一想:最小的质数(合数)是几?最大的呢?

师:所以按照因数个数的多少,自然数又可以分为哪几类呢?

课件出示:可以把非0自然数分为质数和合数以及1,共三类。

2.制作质数表。

投影出示例1。

师:怎样找出100以内的质数呢?

生1:可以把每个数都验证一下,看哪些是质数。

生2:先把2的倍数划去,但2除外,划掉的这些数都不是质数。然后划掉3的倍数,但3不划掉……

【设计意图:通过教师的引导,学生自主建构知识,完成100以内的质数表,使学生形成一个知识网络,进一步培养了学生的数感】

三、课末总结,梳理提升

这节课我们学习了质数和合数的概念,知道了1既不是质数也不是合数。在利用所学知识进行判断时,我们要抓住质数与合数的本质特点,从因数的个数入手进行判断。在对整数进行分类时,要明确分类标准,不能把质数和合数与奇数和偶数混淆。

板书设计

教学反思

1.学生是数学学习的主人,是数学课堂上主动求知、主动探索的主体。教师是数学学习的组织者、引导者和合作者。课堂上,我尽一切所能为学生创设可观察、可探索、可发现的问题情境,让学生以科学探究的方法学习数学,促进每一位学生的发展。

2.学生是知识建构过程的主体。自主探究要让学生根据自己的生活经验或已有的知识背景去探索知识,从某种意义上说,自主探究的目的不单纯在于数学知识的掌握,而在于数学方法的掌握和情感体验的获得,通过自己探索获得“再创造”的体验。

五年级教案数学模板篇8

教材类型:

苏教版所属学科:数学

教学目标:

1.使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。

2.使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。

3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。

4.增长学生的自然知识,产生热爱自然,享受自然的情感。

教学重点:

初步认识正数和负数以及读法和写法。

教学难点:

理解0既不是正数,也不是负数。

教学具准备:

温度计、练习纸、卡片等。

教学过程:

(一)游戏导入,感受生活中的相反现象。(放在课前)

1.游戏:我们来玩个游戏轻松一下,游戏叫做《我反我反我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。

①向上看(向下看)②向前走200米(向后走200米)③电梯上升15层(下降15层)。

下面我们来难度大些的,看谁反应最快。

①我在银行存入了500元(取出了500元)。

②知识竞赛中,五(1)班得了20分(扣了20分)。

③10月份,学校小卖部赚了500元。(亏了500元)。

④零上10摄式度(零下10摄式度)。

2.谈话:李老师的一位朋友喜欢旅游,11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)

(二)教学例1

1.认识温度计,理解用正负数来表示零上和零下的温度。

⑴(课件出示地图:点击南京出示温度计和南京的图片)首先来看一下南京的气温。这里有个温度计。

那我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄式度呢?5小格呢?10小格呢?

问:好,现在你能看出南京是多少摄式度吗?

学生交流:是0℃。

师:你是怎么知道的?(那里有个0,表示0摄式度)。

没错。(结合图说)这是零刻度线,表示0℃。(教师板书0)。

谁来温度计上表示出0℃。

⑵我们再来看上海的气温。(课件:点击上海出现温度计和上海的图片)

上海的最低气温是多少摄式度呢?(学生回答4摄式度后,教师板书4)在温度计上拨一拨。问:拨的时候是怎样想的呢?(在零刻度线以上四格)

指出:上海的气温比0℃要高,是零上4摄式度。(教师结合图,突出上海的气温在零刻度线以上)。

⑶接着让我们一起来了解首都北京的最低气温。(课件点击北京的图片和温度计)

北京又是多少摄式度呢?

与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)

你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄式度)

你能在温度计上拨出来吗?

⑷现在我们已经知道了这三个地方的最低气温。仔细观察上海和北京的最低气温,它们一样吗?(不一样,一个在0℃以上,一个在0℃以下)。

对,上海的气温比0℃高,是零上4摄式度,我们可以记作+4℃,读作正四摄式度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)

北京的气温比0℃低,是零下4摄式度。我们可以用-4℃来表示零下4摄式度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。

⑸小结:通过刚才对三个城市的温度的了解,我们知道,记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。

2.试一试:学生看温度计,写出各地的温度。并读一读。(写在卡片上)

师:我们再来了解一下其他几个城市的最低气温,注意观察温度计,把这些温度记录在卡片上,并读一读。准备好了吗?

香港:(19℃或+19℃)。写好了请举起你们的卡片。提问:你是怎么想到用+19℃来表示的?这位同学是用19℃来表示的?行吗?为什么?(对,正号可以省略不写)。

哈尔滨:(-10℃)。老师写了10℃后举起来:“和老师的记录一样的请举牌。为什么没人和我的一样啊?(对,零下10摄式度,我们用-10℃来表示,10摄式度是表示零上10摄式度的)。

西宁:你们记录好了,同桌互相校对一下再来交流。问:为什么这样用这个数来表示?

⒊我们再来听一段中央台的天气预报,将你听到城市的最低和最高温度记录下来。

播放中央台播音员播报的天气预报(天津呼和浩特乌鲁木齐银川)

指名一位学生上前交流。师:你们觉得他记录怎样?这位同学的前面的正号没写,可以吗?老师把-1的负号去掉,你们同意吗?

谁能在温度计上拨出11℃?谁来拨-1℃?

小结:通过刚才的学习,我们得出:以零摄式度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。

(三)自主学习珠峰、吐鲁番盆地的海拔表达方法,进一步认识正数和负数。

五年级教案数学模板篇9

教学目标:

1、结合具体的长方体和正方体的展开与折叠的情景,经历探究长方体和正方体6个面相对位置的过程,能够准确的掌握长方体和正方体的6个表面的展开与折叠。

2、能够认识长方体和正方体,具有初步的立体空间想象能力。

3、使学生感受到长方体和正方体与生活的密切联系,培养学习数学的良好兴趣。

教学重点、难点:

能够准确的掌握长方体和正方体的6个表面的展开与折叠。

教学方法:

师生共同归纳和推理

教学准备:

正方体的盒子。

教学过程:

一、复习导入:

教师让学生拿出正方体的盒子并沿着棱剪开,把正方体展开成6个面和把6个面折叠成正方体。复习上节课学习的有关内容。

二、课堂练习:

1、学生做课本17页第1题。

教师把正方体盒子6个面分别按照题目中的要求标上1、2、3、4、5、6个数字,让学生找一找每个数字相对的面哪一个?

2、学生做课本17页第2题。

让学生把长方体盒子的6个面展开标上数字,然后找出每个数字所对应的面上是多少?

三、课堂小结:

同学们,这一节课你学到了哪些知识?(提问学生回答)

板书设计:

展开与折叠每个面相对的面上的数字是多少。

五年级教案数学模板篇10

教学目标:

1、体会小数混合运算的运算顺序和整数是一样的,会计算小数四则混合(以两步为主,不超过三步)

2、利用学过的小数加、减、乘、除法解决日常生活中的实际问题,发展应用意识。

3、培养学生善于探讨数学问题的良好习惯,能够综合问题的能力。

教学重点:

掌握小数四则混合运算的算法,会进行小数四则混合运算。

教学难点:

通过解决具体问题理解运算间的联系。

教学过程:

一、情境导入

师:前几天五年级同学对我们平时所产生的生活垃圾进行了调查研究,下面就是五年级两个班级的调查汇报情况。(课件出示教材情境图)师:从这个调查汇报情况中你获得了哪些数学信息?

学生:五年级1班汇报信息:一个人4周可产生30.8千克生活垃圾。五年级2班汇报信息:一个小区周一到周五共产生生活垃圾3.5吨,周末每天产生生活垃圾1.3吨。

师:看到这些数学信息,你能提出哪些数学问题?引导学生根据不同的信息提出不同的数学问题。

二、探究新知

1、研究连除、乘除混合运算。

根据学生提出的不同问题,教师有选择性地出示问题:一个人4周可产生30.8千克生活垃圾,那么一个人平均每天产生多少千克生活垃圾?

学生阅读题目后,教师提问:“要想求出一个人平均每天产生多少千克生活垃圾,需要什么书籍条件?题目中是否直接给出?用什么方法计算?”学生独立思考计算后,在小组内交流自己的想法。

小组汇报,学生可能会呈现的方法

一种方法:先计算4×7=28,算出四周一共多少天,再用30.8÷28算出平均一天产生多少垃圾。

另一种方法:先算每周产生多少千克垃圾,用30.8÷4=7.7,再用7.7÷7算出平均每天产生多少千克垃圾。

2、研究除、加混合运算。

出示问题2:一个小区周一到周五共产生生活垃圾3.5吨,周末每天产生生活垃圾1.3吨。与平时相比这个小区周末每天要多处理多少吨生活垃圾?

学生独立完成,教师要引导列分步算式的同学试着列出综合算式,根据其中的数量关系,运算出结果。

3、总结规律

引导学生面容两题中的三个综合算式,再一次得出结论:小数四则混合运算的顺序与整数四则混合运算顺序相同,整数运算定律在小数运算中同样适用。

三、巩固练习

完成教材第17页算一算

五年级教案数学模板篇11

[教学目标]

1、通过操作活动,经历推导梯形面积公式的过程。

2、能运用梯形的面积计算公式计算相关图形的面积并解决一些实际问题。

[教学重、难点]

推导梯形的面积公式并能运用公式计算。

运用多种方法推导梯形的面积公式。

[教学准备]多媒体课件、2个完全一样的梯形纸片。

[教学过程]

、提出问题

一个梯形的堤坝的横截面,如何计算面积?

二、合作探索

1、小组活动探索计算梯形面积的方法。

(1)数方格。

(2)对拼法。

(3)割补法。

(4)折一折。

2、交流方法

3、归纳计算公式

梯形的面积=(上底+下底)__高÷2

S=(a+b)h÷2

三、练一练:

第2题:通过计算每个梯形的面积,让学生发现当梯形的底和高相等时,其面积也相等。

第4题:让学生自己尝试,再交流方法。

五年级教案数学模板篇12

教学目标:

知识与技能:会解决同一天中,时和分、分和秒形式的两个时刻与时间(段)的计算问题。

过程与方法:引导学生用时间线段图和竖式解决同一天中,时和分、分和秒形式的两个时刻与时间(段)的计算问题。

情感与态度:在学习中使学生明白时间的宝贵,养成珍惜时间的好品质。

教学重点:

用时间线段图和竖式解决同一天中,时和分、分和秒形式的两个时刻与时间(段)的计算问题。(加法计算)

教学难点:

学生对于题意的理解。

教学过程:

一、导入阶段

出示

小丁丁和同学约好上午9时15分在动物园门口集合,小丁丁早晨7时48分出门,路上用了1小时23分。

(1)在这段文字叙述中你获得了哪些信息

上午9时15分在动物园门口集合;

早晨7时48分出门;

路上用了1小时23分。

(2)9时15分、7时48分、1小时23分各表示什么,有什么不同?

9时15分、7时48分表示时刻,是指某一事件发生的时候。

1小时23分表示时间,是指某一事件经过了多久。

(3)出示问题“小丁丁几时几分到达动物园门口”这是求时间还是求时刻?

是求时刻

(4)今天我们就要来讨论关于时间的计算的问题。(出示课题)

[对于学生经常会混淆的“时间”“时刻”这2个数学用语进行简单的辨析。使学生在解决问题时能明确地知道是要求什么?]

二、中心阶段

1、请学生试着计算。

2、汇报

(1)画图

(2)竖式算

注意:这步计算,“分”的计算满60要向“时”进1,因为分与时之间的进率是60。

答:小丁丁9时11分到达动物园门口。

3、比较2种方法得出2种方法都很好,都很直观、很简洁。

4、小结

我们可以利用时间线段图和竖式来解决某一时刻经过多少时间会到哪一个时刻的计算问题。

三、练习阶段

7时50分+45分=()时()分

8时26分+2小时37分=()时()分

15分18秒+3分52秒=()分()秒

五年级教案数学模板篇13

一、教学目标

1、通过动手做,认识平行四边形,三角形和梯形的高。

2、会用三角板画出平行四边形,三角形和梯形的高。

3、在方格纸上能画出指定边和这条边上高的长度的平行四边形,三角形和梯形。

二、重点难点

重点:画平行四边形、三角形和梯形的高。

难点:在方格纸上画指定条件的图形。

三、教学准备

平行四边形、三角形和梯形、剪刀、三角板

四、教学设计

(一)情境设计,导入课题

1、同学们都学过哪些平面图形?(长方形、正方形、圆……)

2、现在老师有一个平行四边形,我想把它剪成一个尽可能大的长方形,应怎么剪呢?同学们动手试试。

3、出示课题《动手做》

(二)自主探究,学习新知

1、小组内探讨剪切的方法。

2、师巡视。

3、小组汇报。

4、课堂内总结:

(三)认识平行四边形、三角形和梯形高

1、回忆刚才你们是怎样剪平行四边形的,你们剪得边都是平行四边形的高。

2、总结:

(1)平行四边形:从一组平行边的一条边上的一点到对边引一条垂线,这条线段叫做平行四边形的高;

(2)三角形:从一个顶点到对应边引一条垂线,这条线段叫做三角形的高;

(3)梯形:从上底的一点到对边(下底)引一条垂线,这条线段叫做梯形的高;

(四)巩固练习

1、P21试一试第一题。

学生依次标出各个图形中的高是哪条线段,再找出它所对应的底。

2、P21练一练第一题、第二题。

画出给定底的高。

五、教学反思

本节课继续从设计上讲,仍然采用小组合作、探索交流的教学形式,先让学生大胆猜测、推导,从自己的演示中寻找解决问题的

五年级教案数学模板篇14

教学目标

知识与技能:

明确组合图形的意义,掌握用分解法或添补法求组合图形的面积。

过程与方法:

能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

情感态度与价值观:

渗透转化的教学思想,提高学生运用新知识解决实际问题的能力,在自主探索活动中培养他们的创新精神。

教学重难点

教学重点:

在探索活动中,理解组合图形面积计算的多种方法,会利用正方形、长方形、平行四边形、三角形、梯形这些平面图形面积来求组合图形的面积。

教学难点:

根据图形特征采用什么方法来分解组合图形,达到分解的图形既明确而又准确求出它的面积。

教学工具

多媒体设备

教学过程

教学过程设计

1创设情境,引导探索

师:生活中有许多图形,老师今天准备了4幅,大家观察一下,这些图形是由哪些简单图形组成的?如果求它们的面积可以怎样求?

图一

图二

图三

图四

课件逐一出示图一、图二、图三,图四让学生发表意见。

生1:小房子的表面是由一个三角形和一个正方形组成的。

生2:风筝的面是由四个小三角形组成的。

生3:队旗的面是由一个梯形和一个三角形组成的。

生4:七巧板是由三角形,长方形,正方形和平行四边形组成的。

师:这几个都是组合图形,通过大家的介绍,你觉得什么样的图形是组合图形?

生1:由两个或两个以上的图形组成的是组合图形。

生2:有几个平面图形组成的图形是组合图形。

师小结:组合图形是由几个简单的图形组合而成的。

图一:是由三角形、长方形、加上长方形中间的正方形组成的,

面积=三角形面积+长方形面积-正方形面积

图二:作辅助线使它分成一个大梯形和一个三角形。

方法一:分割法:将整体分成几个基本图形,求出它们的面积和。

是由两个梯形组成的。

师:为什么要分成两个梯形?怎样分成两个梯形?

引导学生说出将它转化成以学过的简单图形以及在图中作辅助线。

师:是的,可以用作辅助线的方法将它转化成以前学过的简单图形来计算。

(板书:转化)

大家想想,用辅助线的方法还有不同的作法吗?

方法二:添补法:用一个大图形减去一个小图形求出组合图形的面积。

作辅助线补成一个长方形,使它变成一个大长方形减去一个三角形

图三:是由四个三角形组成的。

面积=三角形面积+三角形面积+三角形面积+三角形面积

2新知探究

(一)右图表示的是一间房子侧面墙的形状,它的面积是多少平方米?

(三角形+正方形)

右图表示的是一间房子侧面墙的形状,它的面积是多少平方米?

(两个完全一样的梯形)

(二)计算组合图形的面积,一般是把它们分割成基本图形,如长方形、正方形、三角形、梯形等,再计算它们的面积。

3巩固提升

(一)这是学校教学楼占地的面积平面图,你能用几种方法求出它的面积?

(二)一张硬纸板剪下4个边长是4厘米的小正方形后,可以做成一个没有盖子的盒子。这张硬纸板还剩下多大的面积?

(三)下面各个图形可以分成哪些已学过的图形?

(四)学校要油漆60扇教室的门的正面。(单位:米)需要油漆的面积一共是多少?

(五)求下列图形中阴影部分的面积。

(六)求下列图形中阴影部分的面积。

(七)如图,有两个边长是200px的正方形放在桌面上,求被盖住的桌面的面积。

课后小结

(一)学生总结

这节课你学习了什么?有什么收获?还有什么不明白的地方?(小组说--组内总结--组间交流)

(二)教师总结

今天我们认识了组合图形,并能将组合图形分割成已经学习过的图形,计算出它的面积。

板书

组合图形的面积

组合图形是由几个简单的图形组合而成的

五年级教案数学模板篇15

一、教学内容

1.因数和倍数

2.2、5、3的倍数的特征

3.质数和合数

二、教学目标

1.使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。

2.使学生通过自主探索,掌握2、5、3的倍数的特征。

3.逐步培养学生的数学抽象能力。

三、编排特点

1.精简概念,减轻学生记忆负担。

三方面的调整:

A.不再出现“整除”概念,直接从乘法算式引出因数和倍数的概念。

B.不再正式教学“分解质因数”,只作为阅读性材料进行介绍。

C.公因数、公因数、公倍数、最小公倍数移至“分数的意义和性质”单元,作为约分和通分的知识基础,更突出其应用性。

2.注意体现数学的抽象性。

数论知识本身具有抽象性。学生到了高年级也应注意培养其抽象思维。

四、具体编排

1.因数和倍数

因数和倍数的概念

过去:用÷=表示能被整除,÷=表示能被整除。

现在:用=直接引出因数和倍数的概念。

(1)用2×6=12给出因数和倍数的概念。

(2)用3×4=12进一步巩固上述概念。

(3)让学生利用因数和倍数的概念自主发现12的其他因数。

(4)可引导学生利用一般的乘法算式×=归纳出因数和倍数的概念。

(5)说明本单元的研究范围。

注意以下几点:

(1)虽然不出现“整除”一词,但本质上仍是以整除为基础,因此,乘法算式中的乘数和积都必须是整数。

(2)因数和倍数是一对相互依存的概念,不能单独存在。

(3)注意区分乘法各部分名称中的“因数”和本单元中的“因数”的联系和区别。

(4)注意区分“倍数”与前面学过的“倍”的联系与区别。

例1(一个数的因数的求法)

(1)可用不同的方法求出18的因数(列出积是18的乘法算式或列出被除数是18的除法算式),但应引导学生有序思考。

(2)用集合圈表示因数,为后面求两个数的公因数作铺垫。

一个数的因数的特点

(1)因数是其自身,最小因数是1。

(2)因数个数有限。

(3)此结论通过例1和“做一做”中的特例通过不完全归纳法得出,体现了从具体到一般的思路。

例2(一个数的倍数的求法)

(1)求法:用该数乘任一非0自然数所得的积都是该数的倍数。

(2)用集合圈表示倍数,为后面求两个数的公倍数作铺垫。

做一做

与例1结合起来,提供了2、3、5的倍数,为后面探讨2、3、5倍数的特征作准备。

一个数的倍数的特点

(1)最小倍数是其自身,没有的倍数。

(2)因数个数无限。

(3)此结论通过例1和“做一做”中的特例通过不完全归纳法得出,体现了从具体到一般的思路。

2.2、5、3的倍数的特征

因为2、5的倍数的特征在个位数上就体现出来了,而3的倍数涉及到各数位上的数字之和,较为复杂,因此后安排3的倍数的特征。本部分内容对于熟练掌握约分、通分、分数的四则运算有很重要的作用。

2的倍数的特征

(1)从生活情境“双号”引入。

(2)观察2的倍数的个位数,总结出2的倍数的特征。

(3)介绍奇数和偶数的概念。

(4)可让学生随意找一些数进行验证,但不要求严格的证明。

5的倍数的特征

(1)编排方式与2的倍数的特征类似。

(2)可进一步总结既是2的倍数又是5的倍数的特征,即10的倍数的特征。

3的倍数的特征

(1)强调自主探索,让学生经历观察――猜想――__猜想――再观察――再猜想――验证的过程。

(2)可任意选择一个数,用正面、反面的例子对结论进一步验证。

(3)也可对任一3的倍数的各位数调换位置,更深刻地理解3的倍数的特征。

3.质数和合数

质数和合数的概念

(1)根据20以内各数的因数个数把数分成三类:1、质数、合数。

(2)可任出一个数,让学生根据概念判断其为质数还是合数。

例1(找100以内的质数)

(1)方法多样。可以根据质数的概念逐个判断,也可用筛法。

(2)把握教学要求:知道100以内的质数,熟悉20以内的质数。

五、教学建议

1.加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。

从因数和倍数的含义去理解其他的相关概念。

2.要注意培养学生的抽象思维能力。

26254