教案吧 > 小学教案 > 五年级教案 >

小学五年级数学教案反思

时间: 新华 五年级教案

在编写教案时,应根据不同的学科和教学内容,选择合适的教学方法和手段,制定明确的教学目标和教学计划。如何才能写出优秀的小学五年级数学教案反思?这里给大家分享小学五年级数学教案反思供大家参考。

小学五年级数学教案反思篇1

教学内容:

人教版第五单元简易方程第1节用字母表示数52—53页

教学目标:

1、经历用字母表示数的过程,初步理解用字母表示数的意义;

2、能用含字母的式子表示数、数量关系或计算公式。

3、使学生经历把实际问题用含有字母的式子进行表达的抽象过程,体验用字母表示数的简明性。

4、体会用字母表示数的简洁和便利,感受符号化思想,培养学生用字母表示数的意识和兴趣。

教学重点:

用字母表示数的意义及用字母表示数量关系。

教学难点:

理解并掌握含有字母的乘法式子的简便写法。

教学准备:

多媒体

教学过程:

一创设情境,生成问题

生活中,我们都见过哪些字母?它们都代表什么呢?学生自由汇报结合课件出示你们看,字母不仅和生活密切相连,简洁地表示一些特定的名称、场所或标志,而且在数学王国中也有着广泛的应用。今天,我们就一起来研究“用字母表示数”。(板书课题)

二、探索交流,解决问题

1、学习例1

(1)彤彤11岁对吗?老师比刚才这位同学大30岁。(幻灯片)现在你知道老师几岁吗?怎么算的?

(2)当彤彤1岁时,2岁,6岁,18岁时老师多大?怎样才能用一个概括的式子简明地把你们的年龄,和任何一年老师的年龄都表示出来呢?

(3)你怎么想,就怎么写。自己开动脑筋。学生思考交流师:当a是一个具体岁数时,a+30表示什么?

(4)比较:用含有字母的式子表示老师的年龄,不仅简单明了,而且具有一般性。a+30随着a的变化而变化,它们之间是一一对应的。

(5)字母的取值范围:师:根据你的经验,可以是哪些数?

(6)代入求值当彤彤11岁时,老师的年龄是多岁?

(7)小结例1:

2、自学例2

(1)课件:航天知识

(2)看书例2,思考问题,自主学习。

(3)课件:

自学提示:

1、说说省略乘号的习惯写法。幻灯片

2、6x表示什么?

3、图中小朋友在月球上能举起的质量?

4、例1中a与例2中x,表示的数有什么共同点和不同点?

(4)课件:为什么人到月球上举重是地面的6倍。

(5)、汇报:

(6)、小结:用字母表示数6x,a+30非常简洁概括,有一般性,含字母的式子即表示一种数量关系,也表示一个量,取值范围由实际情况所决定。这就是代数学。

(7)课件,韦达简介

三、快乐儿歌,新知延续

1、数青蛙歌曲填空,说出数量关系,拍手齐说。

2、趣味练习,巩固知识课件:练习判断,填空

3、拓展知识:感知用字母表示计量单位(自学提高)

4、作业设计:

课下同学们可以搜集一些生活中和学习中的字母。

四、谈收获,全课总结

师:通过这节课的学习,你都学到了什么呢?用字母可以表示数,含有字母的式子也可以表示数量间的关系。

简明概括,便于应用。你喜欢用字母表示数吗?(喜欢)如果教师对你们今天的表现打一个分——“A”你认为属于你的A应该表示多少?同学们说得真好。

字母与我们的生活和学习是密切相关的,希望同学们做一个有心之人,能够发现数学中更多的奥秘!

小学五年级数学教案反思篇2

教学目标

1.通过自主探索、合作交流,自主构建、理解小数的除法计算法则,并能正确地进行计算。

2.使学生在经历探索计算方法的过程中,进一步体会转化思想的价值,感受数学思考的严谨性。

3.通过学习活动,培养对数学学习的积极情感。

教学重难点:

会笔算除数是整数的小数除法、

教学过程

一、创设情境,设疑导入

谈话:同学们,我们学习了小数的加、减、乘以及小数除以整数的除法,今天我们继续研究有关小数的计算。

(出示场景图)在动物乐园里有两只蜗牛欢欢、乐乐正在树林里游戏呢,我们一起去瞧瞧!(呈现:欢欢每小时爬行3米,一共爬行6.12米;乐乐每小时爬行4.2米,一共爬行7.98米。)

提问:要知道谁爬行的时间少一些?要先求什么?怎样列式呢?

根据学生回答,板书:6.12÷3,7.98÷4.2。

再问:你能估计一下,他们各自的时间大约是多少吗?

谈话:它们爬行的时间到底是多少呢,还需要进行精确的计算。先请大家算出欢欢爬行的时间。

学生练习后,提问:怎样计算除数是整数的小数除法?计算时要注意什么?

谈话:那么,怎样求出乐乐的爬行时间呢?

引导:7.98÷4.2和我们以前学过的小数除法算式有什么不同?

揭示课题:除数是小数的除法。

二、合作交流,探索方法

1.探索计算7.98÷4.2的思路。

除数是小数的除法是我们遇到的新问题,能不能把它转化成我们以前学过的知识来解决呢?先请同学们想一想,然后在小组里互相说一说。

学生在小组里活动,教师巡视。

学生中可能出现以下两种情况:

(1)分别把7.98米和4.2米转化成用“分米”作单位的数量,再进行计算;

(2)分别把7.98米和4.2米转化成用“厘米”作单位的数量,再进行计算。

交流第一种思路时,提问:把“米”作单位的数转化成把“分米”作单位的数,就是把被除数和除数同时乘──10。这样就把除数是小数转化成了怎样的除法?(相机板书:7.98÷4.2→79.8÷42)

交流第二种思路时,提问:把“米”作单位的数转化成“厘米”作单位的数,就是把被除数和除数同时乘──100。这样就把除数是小数的除法转化成了怎样的除法?(板书:7.98÷4.2→798÷420)

讨论:上面的两种思路有什么共同的地方?(板书:除数是小数——除数是整数)

追问:这两种转化都是可以的,这样转化的依据是什么?

小结:在数学学习中当面对一个新问题时,我们往往把新问题转化成会解答的旧问题,从而解决新问题。由此看来,转化是我们解决问题的一种重要的思想方法。

2.探索竖式计算的过程。

通过大家的努力,我们已经把要研究的新问题转化成了自己熟悉的旧问题。那么,怎样用竖式算出结果呢?

提问:如果把7.98÷4.2转化成除数小数的除法,就要把被除数和除数的小数点都向右移动几位?为什么这时的被除数是79.8?(板书)

再问:如果把7.98÷4.2转化成整数除法,就要把被除数和除数的小数点都向右移动几位?为什么这时的除数是420?(板书)

要求:选择一个自己喜欢的一个竖式,算出结果,并和同学交流。

指两名学生板演,评讲并反馈选择每种解法的人数。

提问:转化成798÷420也是可以算的,为什么选择这种转化方法的人很少呢?

小结:请同学们闭上眼睛,我们一起再来把7.98÷4.2竖式的转化、计算过程在眼前展示一遍。你觉得在这个过程中最重要的是什么?

说明:用竖式计算环节,虽然出现了不同的方法,但结果相同。在尊重学生选择的基础上,引导学生通过比较进行算法优化,让学生体会把除数转化成整数的除法算式比较方便。学生在这一过程中,再次体会计算策略,而且经历了由直观算理到抽象算法的过渡和演变过程,从而达到对算理的深层理解和算法的切实把握。

三、练习巩固,深化拓展

1.专项练习。

出示:把下列除法式子转化成除数是整数的小数除法,并想一想商的小数点的位置。

让学生说一说每一道题可以转化成怎样的除法算式,商的小数点在哪里。

2.先估再算。

下面各题,请同学们先估一估、再计算,看谁能把每一道题都算对。

出示:

5.76÷1.8=7.05÷0.94=0.672÷4.2=

学生练习后,组织反馈。

说明:估算是提高计算正确率的有效方法之一。上面的环节留给学生足够的思维空间,在判断、改错、计算的同时,将估算、验算等方法有机地结合在一起,既有利于培养学生的估算能力、反思能力,获得良好的数感,又有利于学生逐步养成把估算、计算、检验相结合的良好习惯,从而提高计算水平与能力。

4.总结计算方法。

提问:“除数是小数的除法”可以怎样计算?计算时要注意什么?

5.拓展练习。

(1)比一比,看谁算的既快又正确。

0.12÷0.250.12÷2.50.012÷0.25

提问:你能很快算出上面各题的得数吗?自己先试一试,再把你的算法和同学交流。

学生中可以出现两种算法:

①先用竖式算出第一题的商,再直接写出第二、三题的商;

②把第一题的被除数和除数同时乘4,使除数等于1,并直接用0.12×4算出得数,再直接写后面两题的得数。

着重引导学生理解第二种算法的思考过程,并鼓励学生在计算一些比较特殊的除法算式时,可以根据算式的特点,用比较简便方法进行计算。

小结:计算有时要根据具体问题、题目之间的关系,灵活地进行计算。

说明:在学生理解除数是小数的算理,掌握计算方法之后,安排拓展性练习,引导学生根据具体情况灵活确定计算方法,既有利于培养学生良好的审题习惯和灵活计算的学习品质,又能使不同层次的学生都能得到充分的发展,使计算课充满思维的张力和不断探索的活力。

四、全课小结,回顾反思

提问:这节课你学习了什么?怎样计算除数是小数的除法?为什么要把除数是小数的除法转化为除数是整数的除法?计算时要注意哪些问题?

小学五年级数学教案反思篇3

教学目标

(一)掌握长方体和正方体的特征,认识它们之间的关系。

(二)培养学生动手操作、观察、抽象概括的能力和初步的空间观念。

(三)渗透事物是相互联系,发展变化的辩证唯物主义观点。

教学重点和难点

(一)长方体和正方体的特征。

(二)立体图形的识图。

教具准备

教具:长方体框架、长方体、正方体、圆柱、圆台、长方台等;投影片;电脑动画软件。

学具:长方体和正方体纸盒。

教学过程设计

(一)复习准备

请同学们自己画一个已经学习过的平面图形;再请每位同学用手摸一摸画出的图形;然后老师说明这些图形都在一个平面上,叫做平面图形。

教师摆出长方体、正方体、圆柱、圆台、长方台、墨水瓶盒等。请学生先观察,再请两三位来摸一摸,然后问:这些物体的各部分都在一个面上吗?学生:它们的各部分不在一个面上。

教师:我们看到的这些物体,它们的各部分不在一个面上,它们的形状都是立体图形。

教师:这些物体在原来的位置不动,我们还能在它们所占的位置上放别的物体吗?(请一位同学演示。)

学生:不能。

教师:可见立体图形都占有一定的空间。

教师请学生从教具中挑出长方体后,说明本节课要进一步认识长方体有什么特征,并板书课题:长方体的认识(留出写“正方体”的空)。

(二)学习新课

1.长方体的特征。

(1)请同学取出自己准备的长方体。

教师:请用手摸一摸长方体是由什么围成的?

学生:面。(教师板书:面)

教师:请用手摸一摸两个面相交处有什么?

学生:有一条边。

教师:这条边称为棱。(板书:棱)

教师:请摸一摸三条棱相交处有什么?

学生:尖。

教师:相交的这点称为顶。(板书:顶。)

(2)教师:请同学们用自己的长方体,参考讨论提纲来研究长方体的特征。

投影片出示讨论提纲:

①长方体有几个面?面的位置和大小有什么关系?

②长方体有多少条棱?校的位置、长短有什么关系?

③长方体有多少个顶?

学生讨论并归纳后,教师板书:长方体:

面:6个,长方形(也可能有两个相对的面是正方形),相对的面完全相同。

棱:12条,相对的4条棱长度相等。

顶:8个。

请学生观看动画图(用电脑软件或实物展示)

出示有一组对面是正方形的长方体,展示同上,要表示有四个面相等;

第三步:出示8个顶点。

教师:请完整地说一说长方体的特征?(先请同桌两人互相说,然后请一两位同学拿着学具给全班同学说。)

(3)老师:长方体是立体图形,画在纸上如何与平面图形区别呢?

教师:(拿一个长方体正对学生)请观察,你能看到几个面?哪几个面?

请几位观察角度不同的同学回答。

教师:看不见的棱画在图纸上用虚线表示,最后面画出的是长方形,其它的面画出的是平行四边形。(介绍的同时用动画图像展示。)

教师:出示长方体框架请观察,再出示框架的投影图。(如图)请指出框架上的12条棱分几组?并指出哪几条棱是一组的?

请指出相交于一个顶点的三条棱。

教师:请量一量自己的长方体上相交于一个顶点的三条棱,看一看长度是否相等?

教师:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

练习:请分别说出下面两个长方体的长、宽、高各是多少?第二个长方体与第一个长方体有什么区别?(投影片)

2.正方体特征。

(1)展示动画图像:(或抽拉投影图)

第一步:长方体中的长边缩短,使长、宽、高相等;

第二步:长方体中的短边伸长,使长、宽、高相等。

教师:看一看新得到的长方体与原来长方体比较有什么变化?

学生:长、宽、高变为相等,六个面都变成了正方形,长方体变为正方体。

教师:请同学取出自己准备的正方体,(也叫立方体)观察,对照长方体的特征来研究正方体的特征。(把课题补充完整——加上“正方体”。)

学生讨论、归纳后,教师板书:正方体:

面:6个完全相同的正方形。

棱:12条棱长度都相等。

顶:8个。

请看动画图像。

(2)教师:请对比长方体和正方体的特征,说一说它们的相同点与不同点。

学生讨论后归纳:长方体和正方体在面、棱、顶点的数量上都相同;在面的形状、面积、棱的长度方面不相同。

教师:看一看长方体的特征正方体是否都有?试说一说长方体和正方体的关系。

学生:正方体是特殊的长方体。

教师板书集合图:

(三)巩固反馈

1.量一量自己手中的长方体的长、宽、高,说出每个面的长和宽是多少?

2.根据图中数据口答填空。(投影片)

(1)长方体的长是()厘米,宽()厘米,高()厘米。12条棱长的和是()厘米。

(2)这幅图中的几何体是()体,12条棱长的和是()分米。

(3)如图一个长方体,它的长、宽、高分别是9厘米,3厘米和2.5厘米。它上面的面长是()厘米,宽()厘米,左边的面长()厘米,宽()厘米,相交于一个顶点的三条棱长和是()厘米。

3.判断。正确的在括号里画√,错误的画×。(投影片)

(1)长方体的六个面一定是长方形;()

(2)正方体的六个面面积一定相等;()

(3)一个长方体(非正方体)最多有四个面面积相等;()

(4)相交于一个顶点的三条棱相等的长方体一定是正方体。()

(四)课堂总结及课后作业

1.说一说长方体和正方体的特征和它们之间的关系。如何看图纸上的立体图。

2.作业:教材P22练习五:1,2,3。

课堂教学设计说明

学生通过以前的学习,已经能识别长方体和正方体,本节课是在此基础上进一步认识它们的特征。立体图形的具体研究,学生是第一次,所以首先要让学生了解立体图形与平面图形的区别;然后再引导学生通过感受、观察、比较,认识到长方体和正方体的特征、以及它们二者的关系。平面图上的立体图形,学生接受比较困难,在教案设计中,安排实物观察、动画图像的生动演示,来加深学生对图上虚实线画法的理解,这样能更好地帮助学生初步形成立体图形的空间观念,提高学生看立体图的能力。

本节新课教学分为两大部分。

第一部分教学长方体的特征。共分三个层次进行:让学生通过感官了解长方体的面、棱和顶;利用教具学具和讨论提纲,帮助学生自己去认识并概括出长方体的特征;通过图像和练习,学生会看平面上的立体图,掌握长、宽、高。

第二部分教学正方体的特征。共分两个层次进行:利用长方体长、宽、高的变化来认识正方体的特征,会看立体图;对比长方体和正方体的相同点和不同点,认识它们之间的关系。

小学五年级数学教案反思篇4

教学内容:

教科书P86-87例1及相应的“试一试”,练习十五第1-3题。

教学目标:

1.引导学生在自主探究、小组交流等方式上,理解并掌握小数乘小数的方法,能正确计算相应的题目。

2.在探索计算方法的过程中,培养学生初步的推理能力以及抽象、概括能力。

3.引导学生进一步体会数学知识之间的内在练习,感受数学探索活动本身的乐趣,增强学好数学的信心。

教学重点:

确定积的小数点的位置。

教学难点:

理解把小数乘法转化成整数乘法后,得到的积回归小数乘法积的过程。

教学过程:

一、复习旧知,引入课题

1.用竖式计算

0.57×23 = 2.5×44=

提问:说说你是怎么算的?

2.根据13 × 12 = 156,直接写出下面各题的积。

1.3 × 12 =

13 × 1.2=

1.3 × 1.2 =

(要求学生回答问题要完整。例如:因为13 × 12 = 156,而1.3× 1.2中13缩小了十倍,所以积就要缩小十倍是15.6)

提问:我们以前学习了小数乘整数,那么1.3 × 1.2是小数乘小数,它的结果你们说的对吗?学完这节课你就知道了(导入课题)

二、引导探究,掌握方法。

1.课件出示例题。

提问:

①从图中,你能获取那些数学信息?

②根据这些信息,你能提出哪些数学问题?

③下面我们就来解决小明房间的面积有多大?

你会列式计算小明房间的面积吗?

(出示3.6×2.8=)

2、3.6×2.8=?和我们以前学过的小数乘法有什么不同?你能估算一下它的面积大约是多少吗?(指导学生估算3.6×2.8的积)

3、探索笔算方法

①通过刚才的估计,我们知道3.6×2.8的积应该在6~12之间,或者说是在9左右。那么准确的得数究竟是多少呢?我们可以用竖式计算。(谁能在黑板上写出3.6×2.8的竖式)。

②怎么用竖式计算呢?小组里的同学讨论讨论,如果讨论好了,可以试着写在随堂本上

③教师巡视,指名一学生上黑板计算,师生互动,完成后说说你是怎么想的,引导学生思考小数乘小数按照整数乘整数的计算想起。(在计算3.6×2.8时想起36×28的笔算,师板书:

36×28

④做错的同学订正一下。

⑤引导学生想一想小数乘小数怎么算?

三、自主探索,形成认识

教学“试一试”

1.我们现在来解决小明阳台面积的问题,请同学们列式计算(独立完成)。

2.观察黑板上的四道竖式,思考

①结合具体题目,让学生说说两个因数与积的小数位数有什么关系?

②小数乘小数与小数乘整数在计算的过程中有什么相同点与不同点?

3.总结、归纳小数乘小数的计算方法。

四、巩固练习,加强理解

1.解决1.3×1.2=1.56

让学生说说为什么?(去掉问号)

2.你能给下面各题的积点上小数点吗?(P87第一题)

提问:说说为什么这样点小数点?要注意些什么?

4.用竖式计算:

4.6×1.2= 1.8×4.5= 10.4×2.5=

3.下面的计算对吗?把不对的改正过来(P89第2题)

五、全课小结

这节课你有什么收获?有什么需要提醒其他同学的?

六、作业:

P89第1.3题

小学五年级数学教案反思篇5

一、设计理念:

1、以学生为主体,让学生真正成为课堂的主人,让学生自主参与“创设情境,提出问题——自主探究,感悟算理——观察比较,概括方法——巩固练习,应用提高”等环节,使学生不断焕发“思维的活力”。

2、计算方法的掌握,计算技能的提高更需要学生对算理的理解和感悟。小数乘法和整数乘法从整体上看是一个系统,整数乘法和小数乘整数的计算方法和算理为小数乘小数的学习奠定了扎实的知识和思维基础。不同的是,小数乘小数积的小数点的定位稍显复杂。基于这样的认识,教学设计要重视计算教学探索过程的有效开放,充分利用学生已有的知识和经验,让学生经历独立尝试、思维交流、体验评价,理解感悟算理。

二、教学目标:

1、让学生自主探索小数乘法的计算方法,能正确进行笔算,并能对其中的算理作出合理的解释。

2、使学生体会小数乘法是解决生产、生活中实际问题的重要工具。

3、培养学生的友好合作意识和自主探究解决问题的能力。

4、创设情境,激发学生学习数学的兴趣,使学生感受学习数学的乐趣。

三、教学重点:让学生通过主动探索,理解并掌握小数乘小数的计算方法。

四、教学难点:理解小数乘小数的算理。

[教学过程]

一、创设情境,引入新课

1、教师谈话导入,下面一幢宽敞漂亮的住房的平面图。

(1)从图中,你能搜集到哪些信息?

(2)根据这些信息,你能提出哪些数学问题?

学生可能会提出:

问题1,客厅有多少平方米?

问题2,厨房有多大?

问题3,主卧室有多少平方米?

问题4,书房多少平方米?

问题5,房间内过道多少平方米?

……

2、这些问题你会解决吗?你打算怎样计算?引导学生列出乘法算式。(过道:6.5×0.9;客厅:6.3×4.2;书房:5.4×3;主卧室:5.4×3.5;厨房:4.27×2.6;卫生间:4.27×1.4;小卧室:4.27×3)

[设计意图:教材提供的学习素材是解决校园生活中的装玻璃问题,主要体现了新课标中“计算教学同解决问题紧密联系”思想。因此在教学中注意创设生活情境,让学生根据呈现的数据独立提出能解决的问题,并根据自己提出的问题列出算式,这样不仅引起了新知和旧知的认知冲突,同时也提高了学生解决实际问题的能力。]

3、通过观察比较所列的乘法算式,哪些是你解决过的,你是怎样解决的,哪些你还没有解决过?(揭示课题:小数乘小数)[设计意图:引导学生对所列算式的比较,不难发现算式中有我们会解决的整数乘小数的算式,如“5.4×3,4.27×3”也有不曾计算过的小数乘小数算式。通过回忆和计算来调动学生已有的知识储备,启发学生运用转化的数学思想来解决新问题;新知的对比认知也提高学生参与探究的兴趣。]

二、自主探索,掌握算法

1、教学新知,初步探索小数乘小数的计算方法。

(1)引导谈话:根据以往我们计算小数乘法的经验,你觉得用竖式计算小数乘小数时,是否也可以把小数看成整数来计算呢?“6.5×0.9”请学生尝试把两个小数都看成整数,并按整数乘法进行笔算。

思考:按整数乘法计算,请你猜一猜,算出的结果跟实际的结果相比会有多大分别呢?

(2)组织学生共同探究竖式计算算法和算理。

学生独立思考后在四人小组内进行交流其中计算的道理。教师巡视让不同算法的学生上台板演。

请学生根据板演说一说的计算算理,并年顺势画上算理指示图。

讨论交流并小结:把两个小数都看成整数,实际上发生了什么变化,这样算出的结果和实际的结果之间到底有什么关系?怎样把算出的结果转换成实际的结果呢?

2、独立练习,进一步理解小数乘小数的计算方法。

(1)请你想一想可以怎样计算“6.3×4.2、5.4×3.5、4.27×2.6、4.27×1.4”,根据自己的思考过程跟同桌说一说。

(2)学生独立完成后交流计算方法。

引导学生明确:把两个因数都看成整数,等于把一个因数乘10(或100),另一个因数乘10,所以得到的积等于原来的积乘100(或1000)。要求原来的积,就要用积除以100(或1000)。

[设计意图:探索小数乘小数的笔算方法是本节课的教学重点,在教学中注意从整数乘小数的计算入手,更是为了给接下来探索小数乘小数笔算方法提供一种技术支持——学生可以通过对整数乘小数笔算方法和转化思想的借鉴,从而确定相应正确的计算方法。并利用图示帮助学生很好地理解了小数乘小数的计算方法。]

三、进行比较,概括方法

1、引导探究因数与积的小数位数的关系。

出示:5.4×36.5×0.96.3×4.2、4.27×2.6竖式

组织讨论:

(1)小数乘法算式题中的两个因数分别是几位小数,积是几位小数?

(2)通过比较,你发现积的小数位数与因数的小数位数有什么关系?

2、小结:小数与小数相乘,两个因数一共有几位小数,积里面就有几位小数。

[设计意图:将学生做过的有代表性的习题作为研究的对象,来探究因数与积的小数位数的关系具有可观性和对比性,利于小结出小数乘法的一般方法,这样处理,既培养了学生的抽象概括能力,又达到了省时、高效的教学目的。]

3、交流:在小组里相互说说应该怎样计算小数乘小数?你能不能总结一下,这类小数乘小数的题应该怎样计算?在小组里概括一下方法。先怎么做的,再怎么做的。

4、根据学生回答进行小结:先按整数乘法算出积是多少,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

[设计意图:在这一环节中,学生通过观察、比较分析,主动地抽象、寻找出小数乘小数的运算中因数与积的小数位数的关系,明确怎样点小数点的方法。进一步体会到知识之间的内在联系,感受数学知识和方法的应用价值,激发学习数学的兴趣,提高学好数学的自信心。]

5、出示“0.56×0.04”,你能不能按照我们刚才总结的计算方法计算一下。看一看,你有什么新的发现?交流后组织小结出“乘得的积的小数位数不够要在前面用0补足,再点小数点”。

四、巩固练习,深化理解

1、在下面各题计算的积里点上小数点的正确位置。

2、完成“练习一”第4题。

让学生独立完成后,让学生说说思考的过程,重点说说是怎样确定积的小数位数的。

3、完成“练习一”第5题。

先让学生独立完成,再集体评议。

[设计意图:及时的练习巩固了新知,在这个环节中注重了学生思考过程的交流,有利于学生进一步深化小数乘小数的计算方法。习题1和2,重点落实“因数中的小数位数决定积中的小数位数”的知识点,习题3主要体现了学以致用的思想,把计算教学和解决问题的紧密联系,让学生体验到数学的价值。]

五、全课总结,拓展延伸

今天这堂课大家运用知识间的联系,探索出小数乘小数的计算方法,请谈谈你的收获和大家一起分享一下。同学们要做个有心人,生活中有许多小数乘法的问题,希望你们能用学过的知识去解决。[设计意图:渗透并启示学生要学会运用转化的数学思想,自主地开展对自己学习的评价,使学生充分感受数学学习的乐趣。引导学生用数学,更喜欢数学。]

小学五年级数学教案反思篇6

教学目标1、使学生进一步掌握小数乘法的计算法则。

2、使学生初步理解和掌握:当乘数比l小时,积比被乘数小;当乘数比1大时,积比被乘数大。

教学重点运用小数乘法的计算法则;正确计算小数乘法。

教学难点正确点积的小数点;初步理解和掌握:当乘数比l小时,积比被乘数小;当乘数比1大时,积比被乘数大。

教具准备小黑板或投影片若干张

教学过程一、复习准备:

1、口算:P.5页10题。

0.9×67×0.081.87×00.24×21.4×0.3

0.12×61.6×54×0.2560×0.5

老师抽卡片,学生写结果,集体订正。

2、不计算,说出下面的积有几位小数。

2.4×=1.2×=

4、揭示课题:这节课我们继续学习小数乘法。(板书课题:较复杂的小数乘法)。

二、新授:

1、教学例5:非洲野狗的速度是56千米/小时,鸵鸟的速度是非洲野狗的1.3倍,鸵鸟的速度是多少千米/小时?

⑴想一想这只非洲够能追上这只鸵鸟吗?为什么?(鸵鸟的速度是非洲狗的1.3倍,表示鸵鸟的速度除了有一个非洲狗那么多,还要多,所以非洲狗追不上鸵鸟。)

⑵是这样的吗?我们一起来算一算?

①怎样列式?②为什么这样列式?(求56的1.3倍是多少,所以用乘法.)

使学生明确:现在倍数关系也可以是比1大的小数。

⑶生独立完成,指名板演,集体订正。

⑷算得对吗?可以怎样验算?

⑸通过刚才同学们的计算、验算,鸵鸟的速度是72.8千米/小时,比非洲狗的速度怎样?能追上鸵鸟吗?说明刚才我们的想法怎样?现在我们再来看一组题。

2、看乘数,比较积和被乘数的大小。

①(出示练习一10题中积和被乘数的大小)先计算。

②引导学生观察:这两道例题的乘数分别与l比较,你发现什么?

③乘数比1大或者比1小时积的大小与被乘数有什么关系?为什么?(因为1.20.4的乘数是0.4比1小,求的积还不足一个1.2,所以积比被乘数小;而2.4×3的乘数是3比1大,求的积是2.4的3倍(或3个2.4那么多),所以积比被乘数大。

④你能得出结论吗?(当乘数比1小时,积比被乘数小;当乘数比1大时,积比被乘数大。我们可以根据它们的这种关系初步判断小数乘法的正误。)

三、运用

1、做一做:3.2×2.5=0.82.6×1.08=2.708先判断,把不对的改正过来。

2、P.9页13题

四、体验今天,你有什么收获?

五、作业:P8页8题,P9页11、14题

个人修改

3、思考并回答。

(1)做小数乘法时,怎样确定积的小数位数?(2)如果积的小数位数不够,你知道该怎么办吗?如:0.02×0.4。

⑤专项练习:练习一12题先让学生独立判断。集体订正时,让学生讲明道理,明白每一小题错在什么地方。

板书设计:

当乘数比1小时,积比被乘数小;当乘数比1大时,积比被乘数大。

教后反思:在指导学生在积上应怎样点小数点,这是关键,也是教学难点,要强调整个一道乘法算式中共有几位小数,在积中就点几位小数。其中的道理也要让学生明确,把小数看成整数,是先扩大几倍,最后也要缩小相同的倍数,所以要在积中点几位小数。

小学五年级数学教案反思篇7

教学目标

1、让学生通过找次品的操作活动和分析、归纳的理性思考,发现解决这类问题的最佳策略-把待测物品平均分3组。

2、以“找次品”活动为载体,让学生通过观察、猜测、试验、推理等方式感受解决问题策略的多样性及运用优化的方法解决问题的有效性。

3、让学生体会用缩小范围逐步逼近的方法来解决问题的数学思想,培养学生思考问题的严密性和口头语言表达的逻辑性。

学情分析

解决问题的策略研究学生已经不是第一次接触,此前学习过的“沏茶”、“田忌赛马”、“打电话”等都属于这一范畴,在这几节课的学习中,对简单的优化思想方法、通过画图的方式发现事物隐含的规律等都有所渗透,学生已经具有一定的逻辑推理能力和综合运用所学知识解决问题的能力。本节课学生的探究活动中要用到天平,在以往学习等式的性质时,学生对天平的结构、用法以及平衡与不平衡所反映的信息都已经有了很好的掌握。新课程实施以来,小组合作交流、自主探究的学习方式已为广大学生所接受,成为学生比较喜爱的主要学习方式,学生已具备一定的合作能力,在小组学习中学生能够较好地分工、合作、交流,较好地完成探究任务。

教学重点:

发现解决这类问题的最佳策略。

教学难点:

理解并认可最佳策略的有效性。

教学过程

活动1【导入】创设情境、激发兴趣

1、看视频,谈感受。

播放美国“挑战者”号航天飞机失事的视频。看后你从中了解到什么信息?你有什么感受?

2、发现次品。

生活中经常会有一些产品与合格产品不一样。有的是外观瑕疵,有的是成分不过关,还有的是产品的质量与正常的不同……我们把这些不合格的产品称为“次品”。(板书:次品。)你身边有哪些次品?和同学交流。

今天我们要找的次品的就是外观一样,质量不同,或轻一些、重一些的次品。(板书:找)

活动2【讲授】初步感知、寻找方法

1、出示例题。

有81瓶木糖醇,其中有一瓶少了10片,可以用什么办法把它找出来呢?

数一数,掂一掂,摇一摇等方法,选择最优化的方法,用天平。

2、天平的原理。

如果两端重量相等,天平就平衡;如果不相等,重的一端下沉,轻的一端上扬。

3、华罗庚的数学思想。

让学生自由猜测称的次数。

师:同学们猜的结果不一样,可能是数量太大了。数学中有种方法叫做“化繁为简”,这正和华罗庚思想不谋而合,让我们从数量较小的来研究吧!

活动3【活动】自主探究、方法多样

1.研究2瓶

师:如果利用天平来测量,至少需要几次可以找出次品呢?板书做好记录:2次(1,1)

2.讨论3瓶的问题

如果利用天平来测量,至少要称多少次才能保证找出来呢?生叙述称球的过程。板书记录:3(1,1,1)

注重天平一共有3个空间可以利用,这样节省次数。 生将探究结果填入导学案中。

3.研究4-8瓶的问题

如果利用天平来测量,至少要称2次才能保证找到次品的可以是几瓶?

学生以小组为单位,运用手中的小圆片动手操作,并记录在导学案中。

课件出示小组活动要求。

(1)把待测物品分成了几份?每份几个?

(2)如果天平平衡,次品在哪里?如果天平不平衡,次品又在哪里?

4.重点汇报8瓶的设计方案。

(1)师引导学生:比较3、4种分法,并展开讨论:想想为什么方法3的次数是最少的?你觉得它会和什么有关系呢?

(2)师小结:所以我们在找物品的次品时,把待测的物品平均分成3份是最好的。板书:把待测物品分3份。

(3)师:比较1、2、3种分法,讨论为什么同样分3份,为什么第3种方法只用了2次哪?

(4)师小结:所以我们在找物品中的次品时,只要把物品平均分成3份,如果不能平均分成3份,就尽量平均分成3份。每份之间的差尽可能少。板书:每份之间的差尽可能少。

5.研究9瓶

学生根据总结的方法直接说出次数,小组验证。

活动4【练习】拓展提高,优化方案

1.运用掌握的方法找方法:12瓶、15瓶、24瓶需要几次能找到次品?

2.举一反三: 从26瓶木糖醇中,找到一个次品,至少称几次一定能找出次品?在导学案上完成。

3.发散思维:有2187瓶矿泉水,其中2186瓶质量相同,另有1瓶是盐水,比其他的水略重一些。至少称几次能保证找出这瓶盐水?

小学五年级数学教案反思篇8

教学内容:教材第14~15页。

教学目标:

1、在实践活动中认识奇数和偶数,了解奇偶性的规律。

2、探索并掌握数的奇偶性,并能应用数的奇偶性分析和解释生活中一些简单问题。

3、通过本次活动,让学生经历猜想、实验、验证的过程,结合学习内容,对学生进行思想教育,使学生体会到生活中处处有数学,增强学好数学的信心和应用数学的意识。

教学重点:探索并理解数的奇偶性

教学难点:能应用数的奇偶性分析和解释生活中一些简单问题

教学过程:

一、游戏导入,感受奇偶性

1、游戏:换座位

首先将全班39个学生分成6组,人数分别为4、5、6、7、8、9。我们大家来做个换位置的游戏:要求是只能在本组内交换,而且每人只能与任意一个人交换一次座位。

(游戏后学生发现4人、6人、8人一组的均能按要求换座位,而5人、7人、9人一组的却有一人无法跟别人换座位)

2、讨论:为什么会出现这种情况呢?

学生能很直观的找出原因,并说清这是由于4、6、8恰好是双数,都是2的倍数;而5、7、9是单数,不是2的倍数。

(此时学生议论纷纷,正是引出偶数、奇数的时机)

3、小结:交换位置时两两交换,有的小组刚好都能换位置,像4、6、8、10……是2的倍数,这样的数就叫做偶数;而有的小组有人不能与别人换位置,像5、7、9……不是2的倍数,这样的数就叫做奇数。

学生相互举例说说怎样的数是奇数,怎样的数是偶数。

二、猜想验证,认识奇偶性

活动1

(1)出示题目和情景图:小船最初在南岸,从南岸驶向北岸,再从北岸驶向南岸,不断往返。

(2)提出问题:小船摆渡11次后,船在南岸还是北岸?为什么?

(3)探究活动

学生可能会运用数的方法得出结果,不一定正确。

师:小船摆渡100次后,船在南岸还是北岸?你会怎样做?能保证正确吗?

引导学生运用策略:①列表法;②画示意图法。

三、实践操作、应用奇偶性

我们已经知道了奇偶数的一些特性,现在要用这些特性解决我们身边经常发生的问题。

1、试一试

(1)一个杯子,杯口朝上放在桌上,翻动一次,杯口朝下。翻动两次,杯口朝上……翻动10次呢?翻动19次?105次?请尝试说明理由。

学生动手操作,发现规律:奇数次朝下,偶数次朝上。

师:把杯子换成硬币,你能提出类似的问题吗?

(2)有3个杯子,全部杯口朝上放在桌上,每次翻动其中的两只杯子,能否经过若干次翻转,使得3个杯子全部杯口朝下?

你手上只有一个杯子怎么办?(学生:小组合作)

学生开始动手操作。

反馈:有一小部分学生说能,但是上台展示,要么违反规则,要么无法进行下去。

引导感受:如果我们分析一下每次翻转后杯口朝上的杯子数的奇偶性,就会发现问题的所在。

学生动手操作,尝试发现

交流:一开始杯口朝上的杯子是3只,是奇数;第一次翻转后,杯口朝上的变为1只,仍是奇数;再继续翻转,因为只能翻转两只杯子,即只有两只杯子改变了上、下方向,所以杯口朝上的杯子数仍是奇数。由此可知:无论翻转多少次,杯口朝上的杯子数永远是奇数,不可能是偶数。也就是说,不可能使3只杯子全部杯口朝下。

学生再次操作,感受过程,体验结论。

2、活动2

出示两组数:圆中的数有什么特点?正方形中的数有什么特点?

(1)学生独立猜想,完成“试一试”,小组内汇报交流,然后统一意见进行验证(要求:验证时多选几组进行证明)。

如果两个数相减呢?如果是连加或连减呢?

汇报成果:

(1)奇数﹢奇数=偶数(2)奇数-奇数=偶数(3)奇数+奇数+……+奇数=奇数(奇数个)

偶数+偶数=偶数偶数-偶数=偶数奇数+奇数+……+奇数=偶数(偶数个)

奇数+偶数=奇数奇数-偶数=奇数偶数+偶数+……+偶数=偶数

你能举几个例子说明一下吗?

(学生的举例可以引导从正反两个角度进行)

(2)运用判断下列算式的结果是奇数还是偶数。

10389+2004:_____46786-5787:_____11231+2557+3379+105:

11387+131:_____60075-997:_____335+7757+223+66789+73:

268+1024:_____9876-5432:_____2+4+6+8+10……+998+1000:

3、游戏。规则如下:用骰子掷一次,得到一个点数,以A点为起点,连续走两次,转到哪一格,那一格的奖品就归你。谁想上来参加?

学生跃跃欲试……如果继续玩下去有中奖的可能吗?谁不想参加呢?为什么?

生:骰子始终在偶数区内,不管掷的是几,加起来总是偶数,不可能得到奖品。

是呀,这是老师在街上看到的一个,他就是利用了数的奇偶性专门骗小孩子上当,现在你有什么想法?

学生自由说。

四、课堂小结,课后延伸。

1、说说我们这节课探索了什么?你发现了什么?

2、那如果是4个杯子全部杯口朝上放在桌上,每次翻动其中的3只杯子,能否经过若干次翻转,使得4个杯子全部杯口朝下?最少几次?

教学反思:

踏入七中育才(东区),心情就像这九月的天气一样时阴时晴。教学的压力,学生的现状,迫使我不得不放下我原有的教学模式,改进教学策略,尽快适应这所学校紧张的氛围。

听说学校要组织青年教师公开课比赛,我第一个报了名,旨在让其他老师给我提出一些建设性意见,提高我的课堂教学能力。最后定于第三周完成我的展示。

我上的是五年级数学“数的奇偶性”一节内容。报名后,我便积极的着手准备,钻研教材,查阅资料,设计程式,制作课件,并虚心请教了同教研组的余加秋老师和刘红敏老师,征求了他们的意见。

我的设计思路是:多给学生思维的空间;让学生全方位参与学习;要让学生体验到数学的探索方法;体现数学的生活化和趣味性。为此,我的教学目标定格为:1、在实践活动中认识奇数和偶数,了解奇偶性的规律。2、探索并掌握数的奇偶性,并能应用数的奇偶性分析和解释生活中一些简单问题。3、通过本次活动,让学生经历猜想、实验、验证的过程,结合学习内容,对学生进行思想教育,使学生体会到生活中处处有数学,增强学好数学的信心和应用数学的意识。

在此基础上,我对教学过程进行了如下设计:

一、游戏导入,感受奇偶性

通过两两结对入座的游戏引出数的奇偶性

二、猜想验证,认识奇偶性

教学“活动1”,引导学生运用策略:应用列表法和画示意图法探索数的奇偶性。

三、实践操作、应用奇偶性

1、翻杯子游戏。

2、探索整数加减法得数的奇偶性,通过学生独立猜想,小组内交流,统一验证,巩固练习,让学生自主获取新知。

3、游戏“开心乐”,运用数的奇偶性解释生活中的现象。

四、课堂小结,课后延伸。

课后,教研组组织了所有老师评课。老师们各抒己见,既肯定了我的教学风格,又提出了宝贵的意见,让我受益非浅。我也及时的自省,在不同层面上进行了思考。

1、游戏是学生喜闻乐见的教学形式,能够激发学生的学习兴趣。但是不能没有目的性的为了游戏而游戏,应该在游戏中给学生解决数学问题的启发。本节课,我一共设计了两两结对入座的游戏、翻杯子游戏、“开心乐”等三个游戏,都是结合了教学内容而安排的,第一个游戏重在感受数的奇偶性,第二个游戏重在应用数的奇偶性,第三个游戏重在解释数的奇偶性,游戏的重心最后都落到了“数的奇偶性”上,因此起到了预想的效果。

2、现行的教材内容的广度和深度都有很大的挖掘空间,课前的准备将直接影响课堂教学的容量。本节课,教材上仅有两个活动和两个“试一试”,练习几乎没有,两个活动的探索过程也非常简单,学生稍作思考就能得到正确的答案。课前,我查阅了一些资料,将“翻杯子游戏”和“探索整数加减法得数的奇偶性”进一步拓展,并增加了一些练习,使内容更加丰满,但是练习的典型性、层次性仍然不够,还有值得改进的地方。

3、新课后的应用新知,不能单纯的是例题的改版,还应该有所变化,有所突破,注入新的元素,这样才能让学生灵活牢固的掌握所学知识。这节课中,我所设计的练习就过于程式化,没有跳出固有的“圈”,顺向思维练得多,逆向思维练得少,学生很难推陈出新。

4、数学课上的板书必须要能诠释重点,疏通难点。我在这堂课上的板书做到了前者,而疏漏了后者。“探索整数加减法得数的奇偶性”是本节课的重点,我特意将探索结果板书罗列了出来;探索的过程,是一个不完全归纳的思维过程,本是难点,但我没有把算式板书出来,就有点“空对空”的感觉了。

以上仅是我现有的一点感触,我想,随着教学工作的不断深入,我和学生的不断磨合,教学过程中还有许多的问题等着我去解决,我会以的状态去迎接每一次的挑战。

小学五年级数学教案反思篇9

教学内容:

教材P44-P46例1-例3做一做,练习十第1-3题

教学目标:

知识与技能

1.使学生理解用字母表示数的意义和作用。

2.能正确运用字母表示运算定律,表示长方形、正方形的周长、面积计算公并能初步应用公式求周长、面积。

3.使学生能正确进行乘号的简写,略写。

过程与方法

经历用字母表示数的理解过程,体验迁移推理的学习方法,渗透求未知数的思想。

情感态度与价值观

在学习活动中,使学生获得热爱数学知识的积极情感,沟通算数知识与代数知识之间的联系,培养学生的抽象思维能力。

教学重点:

理解用字母表示数的意义和作用

教学难点:

能正确进行乘号的简写,略写。

教学过程:

一、谈话激趣,引入课题

同学们,在生活中只要我们去认真的观察思考,就会发现很多的知识。大家看,老师在生活中找到一些这样的字母,你们知道它们都代表了什么吗?(利用生活中的经验把学生带入数学。)

课件出示:CCTVKFCNBAQQ(中国中央电视台肯德基美国男子篮球联赛腾迅聊天工具)

大家想想,用这些字母来代替这些名称有什么样的好处?

(简单好记。渗透用字母表示的优越性)

其实,这样的字母不仅仅我们日常的生活中经常可以看到,我们在数学的世界里也经常会用到,今天我们就来学习用字母表示数(板书课题)

二、探究新知

1.投影出示例1:(探秘)

(1)观察第一组三角形中的数字,你有什么发现?

(都是按规律排列的,三角形两底角的数字之和等于顶角上的数字)

那么图中的符号表示什么数字呢?(指名口答)

问:每行图中的数是按什么规律排列的?(指名口答)

(2)尝试练习:想一想、填一填(课件出示)

①2、4、6、c、10、12c=()

②b+b+b=24b=()

③a×5=40a=()

观察一下,你有什么发现?(不同的字母可以表示相同的数)。提问请学生思考回答:这几小题中,要求的未知数表示的方法都有一个什么共同的特点?(都

是用一些符号或字母来表示的)

师:在数学中,我们经常用字母来表示数。

问:你还见过那些用符号或字母表示数的例子?

如:扑克牌,行程A、B两地,C大调„„。

2、教学例2

(1)a×b=b×()

a+b=()+()

(课件出示)

师:你怎么想到要填a,你的根据是什么?

生:我是根据乘法的交换律和加法的交换律来填的。

师:如果用a、b、c来表示三个数,你们能用字母表示出其它运算定律吗?

学生尝试写,后汇报展示。

(2)你们认为用字母来表示运算定律有什么好处?

我们已经学过了一些运算定律,你会把它们表示出来吗?

同桌之间先说一说运算定律是怎么样的,如何用字母表示出来,然后指名汇报。

师:我们用字母表示出这些运算定律,你有什么体会?

组织学生交流,使学生明确:用字母表示运算定律,简明易记,便于应用。

(3)让学生看书45页的“你知道吗?”然后汇报字母还可以表示哪些计量单位。

3.教学简写

(1)师:观察6×X,你们发现了什么?(X和×长的很象),因为这个,在数学王国里曾经引发过一场风波:一天早朝上,乘号对国王说:“国王,我和X长的太象了,您得想个办法把我们区分开来呀。”国

王下令:“+”“-”“÷”先行退朝,“×”号留下下议事。第二天,国王宣布了以下规定:(多媒体出示)

①在含有字母的式子里,数字和字母,字母和字母中间的乘号可以记作“.”,也可以省略不写。省略乘号时,一般把数字写在字母的前面。如:a×b=a.b=ab,4×a=4.a=4a②两个相同字母相乘时,可以写成以下形式:如:a×a=a.a=a2读作:a的平方,表示2个a相乘。

③当数字1与字母相乘时,1也省略不写。如:1×m=m(2)学生四人小组为单位讨论学习国王的规定:

教师提出小组合作学习的要求:

组长组织,要求每个组员都要发表意见。

记录员记录学习过程。

4、阶段练习

1、省略乘号写出下面各式。

2、小小审判官。

⑴6+a可以简写作6a。()

⑵6×4可以简写作6.4()

⑶x2与2x所表示的意义相同。()

5、教学例3。

今天我们跟字母成了好朋友,其实以前也和字母打过交道,比如计算公式。

回顾:你们能用含有字母的式子表示学过的计算公式吗?

如果周长用字母C表示,面积用字母S表示,边长用字母a表示,你会用字母表示正方形的周长和面积吗?

C=S=还记得我们学过哪些运算定律吗?那能不能用字母它们呢?真自信。好!下面请大家写在练习本上。

反馈:说说表示的是什么计算公式?师:你们能利用这些计算公式进行计算吗?试一试。

出示例题:你能利用公式计算下面正方形的面积和周长吗?(黑板贴出正方形纸片)

师:6㎝表示什么意思吗?

生:表示正方形的边长是6厘米。

师:你们能求出它的面积和周长吗?

(请一名学生上黑板来做,其余学生在下面练习)

师:谁来评价一下他做得怎么样?

生1:我认为做得比较可以。

生2:我认为他的面积单位应写成㎝2,不应写成㎝。

师:看看老师是怎么做的?

师:“利用公式计算”就是要求我们在计算时先写出公式,然后把字母表示的数值代入公式进行计算。

三、轻松一刻,发展提高。

(一)数青蛙

同学们学得真好,现在我们来轻松一下。

(课件):1只青蛙1张嘴,2只眼睛4条腿;

2只青蛙2张嘴,()只眼睛()条腿;

3只青蛙()张嘴,()只眼睛()条腿;„„

()只青蛙()张嘴,()只眼睛()条腿。

我们先试着读一读。你能用一句话说说这首儿歌吗?

(二)练兵营

填空

1、用a、b、c表示三个数,乘法分配律可表示成()。

2、用字母a表示苹果的单价,b表示数量,c表示总价。那么c=(),b=()。

3、一个等边三角形,每边长a米。它的周长()米。

4、一辆汽车t小时行了300千米,平均每小时行()千米。李师傅每小时加工40个零件,加工了a小时,一共加工了()个。

5、5x+4x=()

8y-y=()

7x+7x+6x=()

7a×a=()

15x+6x=()

5b+4b-9b=()

选择(将正确答案的序号填在括号里)

1、a2与()相等。

(1)a×2(2)a+2(3)a×a2、2x一定()x2。

(1)大于

(2)小于

(3)等于

(4)不能确定

3、丁丁比昕昕小,丁丁今年a岁,昕昕今年b岁,2年后丁丁比昕昕小()岁。

(1)2(2)b-a(3)a-b(4)b-a+24、当a=5、b=4时,ab+3的值是()。

(1)5+4+3=12(2)54+3=57(3)5×4+3=23

四、走进名人屋

最早使用字母来表示数的人是法国数学家韦达,韦达一生致力于对数学的研究,作出很多重要贡献,成为那个时代最伟大的数学家,自从韦达系统使用字母表示数后,引出了大量的数学发现,解决很多古代的复杂问题。

师:看了介绍你想对韦达说点什么吗?

生1:韦达,我要对你说,你的智慧真是不可限量。

生2:韦达真伟大,你发明的用字母表示数使人类生活和学习方便了许多,谢谢你!

师:你们想不想像韦达一样将来做一个成功的人?

师:那好,老师这里就有一个成功秘诀,想不想知道。

课件出示:A=x+y+zA代表成功,x代表艰苦的劳动,y代表正确的方法,z代表少说空话。

师:看了这个公式,你得到了什么启示?

生:我知道了只要艰苦劳动,掌握了方法,少说空话,就能成功。

师:说得真好,只要同学们在今后的学习中掌握好正确的方法,刻苦努力,少说空话,一定能够取得成功!祝你们早日成功!

五、课堂小结,质疑评价。

阅读课本第44-46页。四人小组交流,汇报

这节课你们有收获吗?你们有收获就是老师今天的收获。谁来说说你收获些什么?最成功的地方是什么?还有什么问题?

六、作业

第49页练习十第1、2、3题

小学五年级数学教案反思篇10

教学内容:义务教育课程标准实验教科书北师大版数学五年级上册第14-15页。

教学目标:

1、使学生尝试运用“列表”、“画示意图”等方法发现规律,运用数的奇偶性解决生活中的一些简单问题。

2、让学生经历探索加法运算中数的奇偶性变化的过程,发现数的奇偶性的变化规律。

3、在活动中培养等毛生的观察、推理和归纳能力。

4、学生通过自主探索发现规律,感受数学内在的魅力,培养学生学习数学的兴趣。

教学重点:探索数的奇偶性变化规律。

教具学具准备:数字卡片,盒子,奖品。

教学过程:

复习引入新课。(通过引导学生回忆、提问或列举等形式,复习奇、偶数的意义。)

活动1:数的奇偶性在生活中的应用。

(一)激趣导入。

清早,笑笑第一个走进了教室,像往常一样把门打开后就去开灯,结果灯未亮,于是,他自言自语地说了声“停电了”就走到座位上坐下。不一会儿,同学们陆陆续续来到了教室,看到教室里光线有些暗,都下意识地伸手去按电灯开关,却都像笑笑一样无奈地走回自己的座位。你知道第11个同学按过开关后,“开关”是打开的还是关闭了?

(二)自主探究,发现规律。

1、学生独立思考后进行汇报交流。

方法:用文字列举出开、关的情况

开、关;开、关;开、关;开、关;开、关;开、关……

让学生数数,直观地发现第11个人按过开关后,开关是打开的。

2、增加人次,深入探究。

如果是第47个同学或第60个同学进去,用列举的方法判断“开关”的开、关情况还方便吗?你还能想出什么好方法?

3、第二次汇报交流。

投影下表:

用列表的方法启发学生总结规律并作答:当人数是1、3、5、7……的时候,开关处于开启状态,而当人数是2、4、6、8……的时候,开关处于关闭状态。即,进来的是奇数个同学时,开关被打开;进来的是偶数个同学时,开关被关闭。因为47是奇数,开关被打开;108是偶数,开关被关闭。

(三)巩固应用。

1、看书学习并解决小船的靠岸问题。

2、解决杯子上下翻转,杯口的朝向问题。

3、举例说说数的奇偶性还能解决哪些生活问题?

(四)活动小结。

当一个事物只有两种(运动或变化)状态时,运动奇数次后,状态与初始状态相反,运动偶数次时,状态与初始状态相同。

活动2:探索奇、偶数相加的规律。

(一)有奖游戏。

1、出示分别装有奇数卡片和偶数卡片的两个盒子。宣布游戏规则:从自己喜欢的盒子里任意抽取两张卡片,如果卡片上两个数的和为奇数,你就可以领取一份奖品。

2、游戏开始。部分学生按规则抽取卡片,并将卡片上两个数相加的算式及得数写在黑板上。上来的同学无一人获奖。

3、引发思考。

师:是你们运气不好,还是其中隐藏着什么秘密?想一想:如果继续抽下去,你们有获奖的可能吗?

4、发现规律。

学生观察黑板上的算式,很快发现其中的“秘密”:两个奇数相加和是偶数;两个偶数相加和也是偶数。如此抽取卡片,永远无法获奖。

5、举例验证。

6、修改游戏规则。

(1)师:现在同学们已经发现了不能获奖的原因了,那么,你能不能修改游戏规则,保证你们能够获奖呢?

(新规则:在两个盒子里各抽出一张卡片,两张卡片上数的和是奇数可获奖。)

(2)请学生按修改后的规则试抽几次,并发奖以资鼓励。

(3)举例验证:奇数+偶数=奇数

(二)总结奇、偶数相加的规律。

奇数+奇数=偶数、偶数+偶数=偶数、奇数+偶数=奇数。

(三)应用规律解决问题。

1、不计算,判断下列算式的结果是奇数还是偶数。

10389+200411387+131268+1024

2、把5颗糖(全部)分给两个小朋友,能否使每个小朋友都分到偶数颗糖?奇数颗呢?结果是什么?

全课小结:说说这节课有什么收获?

小学五年级数学教案反思篇11

教学内容:

北师大版五年级上册第80、81页。

教材分析:

“鸡兔同笼”问题是我国古代的一道数学趣题,最早出现在《孙子算经》中。它集题型的趣味性、解法的多样性、应用的广泛性于一体,是实施开放式教学的好题材。

教材中要求掌握3种解题方法(逐一列表法、跳跃列表法、取中列表法),要求学生在教师的指导下,通过小组合作,运用假设举例列表等方法,寻找解决的结果。教学中,要求教师不宜补充其他解法,以免分散学生的注意力。

学情分析:

五年级学生已经学了一些用列表法解决问题的策略,?还有一些学生在兴趣小组、奥数等的学习中已经学过“鸡兔同笼”问题。学生的程度参差不齐。学生的思维活跃?敢想、敢说,有一定的小组合作经验。

教学目标:

1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2、尝试用列表、假设的方法解决“鸡兔同笼”问题,通过列表尝试和不断调整的过程,从中体会解决问题的一般策略—列表,让学生学会从不同角度分析,掌握解题的策略与方法。

3、在解决问题的过程中,培养学生的迁移思维能力。合作、交流等学习品质和能力。

教学重点:

让学生经历列表、尝试和不断调整的过程,体会解决问题的一般策略—列表。

教学难点:

运用学到的解题策略解决生活中的实际问题。

教学过程:

一、创设情境

(出示儿歌)鸡兔同笼不知数,三十六头笼中露,数数脚有一百只,几只鸡来几只兔?

师:这就是我国民间的三大趣题之一,最早记载在1500年前的数学名著《孙子算经》中(课件出示古书动画打开书出现原题),原题是这样的,请看:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?谁知道,这是一个什么问题?(鸡兔同笼问题,课件出示鸡兔同笼情境图)这节课我们就来研究中国历的数学趣题

“鸡兔同笼”。(板书:鸡兔同笼)

师:谁能用自己的话说说这道题的意思?(鸡兔同笼,上面数有35个头,从下面数共有94条腿,问鸡、兔各有几只?)

师:这道古代趣题你能解决吗?我们还是化繁为简,从简单入手吧!

二、探索新知

出示例题:鸡兔同笼,有20个头,54条腿,鸡兔个有几只?

1、明确问题,独立思考通过读题你获得了那些数学信息?这道题里还有隐藏的数学信息吗?

同学们先来猜一猜鸡、兔可能各有多少只?(找一两个同学猜测)

到底是几只鸡几只兔呢?

2、小组合作交流。

师:小组讨论,要解决这个问题可以用什么方法?

师:把你们的方法写在纸上。可以使用桌子上老师提供的表格。

师:哪个小组说说你们的想法?

小组1:我们采用列表法得出的答案。(实物投影展示小组的成果)先假设有1只鸡,19只兔子,脚就有78条。脚太多,然后又假设有2只鸡,18只兔子,脚还是太多了。这样试下去就得到了有13只鸡,7只兔子。

师:腿多了,减少谁的只数,增加谁的只数?

师:你们是怎么想到这种方法的?

生:在旅游费用的租车、租船中,我们就是用列表的方法找出答案,这题的类型跟那差不多,我们想,也可以用这种尝试列表的方法找出答案。

师:这种列表法有什么特点?

生:鸡一只一只地增加,兔子一只一只地减少。

师:谁能给这种列表法取个名字?

生:逐一列表法。

师:还有哪些小组采用不同的列表法?

小组2:我们也采用列表法得出的答案,我们发现鸡增加1只,兔子减少1只,腿就减少2条,所以我们没有一个一个的试,那样太麻烦,而是从1只鸡,19只兔直接跳到6只鸡,14只兔。最后也得到了13只鸡,7只兔。

师:腿的总条数多了或少了你们组是怎么调整的,也就是你们的调整策略是什么?

生:腿多了,我们减少兔子的只数,腿少了我们增加兔子的只数。

师:我们也给这种方法取个名字,好吗?

生:跳跃列表法。

小组3:我们小组也是列表法。我们是先假设鸡有10只,兔子也有10只。这样比较简便。

师:你能给这种方法取个名字吗?

生:取中列表法

师(展示台展示三张表格)同学们三张表格都能很好地求出鸡、兔的只数,哪种方法最捷径。

生1:取中列表法直取中间数减少了“试”的过程能更简便、快捷地找到答案。

生2:我认为应该三种列表法结合使用,先用取中列表法减少一半的猜测数字,再用跳跃列表法加快猜测的速度,在接近答案时用逐一列表法。

生3::那是数字大时使用,数字小时,还是使用逐一列表法好,它答案不会重复、不会遗漏。

小组4:(展示台展示)我们组认为还是采用列方程法最简便、快捷,先假设鸡的只数为ⅹ,兔子的只数就为20-x。

列式是:2x+4(20-x)=54解得x=13兔子的只数是7.师:你们小组的同学很聪明,但这种方法我们暂不讨论,有兴趣的同学,课后和老师一起向他们请教,好吗?

师:还有哪些组没有汇报?

小组5:我们组也是用列式法算出鸡、兔的只数(展示):假设全部是鸡

(54-20×2)÷(4-2)求出兔7只,鸡13只。

师:这种方法,我们也留在课后私下交流。

师:我们的祖先很聪明,为我们的祖先感到骄傲,其实老师也为你们感到骄傲,你们在这么短的时间内就想出了这么多解决问题的办法,你们很了不起!

四、方法应用,巩固新知

过渡语:、“鸡兔同笼”问题传到日本,日本人称它为“龟鹤问题”,你认为“龟鹤问题”与“鸡兔同笼”问题有什么相似之处?

1、师:除了“龟鹤问题”与“鸡兔同笼”问题类似以外,我们在实际生活中还有很多类似的

问题。(出示)学校举行乒乓球比赛,有单打和双打。12张乒乓球台上共有34人同时在打球。问:正在进行单打和双打的台子各有几张?

问:这题是否属于“鸡兔同笼”问题

2、师:我们班同学很聪明,会解“鸡兔同笼”类型的问题,那聪明的你,是否会出一道“鸡兔同笼”类型的题,考考其他组的同学呢?

3、(出示)一百个馒头,一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几人?

师:有兴趣的同学,课后思考这一趣题。

四、小结交流

今天这节课,我们跨越了1500多年的历史,即探讨了中国古代的数学名题,又解决了我们身边的一些数学问题。经过这节课,你有哪些收获?

小学五年级数学教案反思篇12

教学目标:

1、通过动手分一分,让学生体会把很多物体看成一个整体,平均分以后用分数表示的含义。

2、通过学习,掌握真分数和假分数的特征,并且会运用所学知识解决一些实际问题。

教学重点:

让学生体会把很多物体看成一个整体,平均分以后用分数表示的含义。

教学难点:

掌握真分数和假分数的特征。

教学过程:

(一)活动一:分饼。

1、讲故事引入。

唐僧师徒四人去西天取经的路上,这一天,师傅把解决午餐的事教给了八戒来解决。八戒出去化缘,从一户人家里化来了三张饼。这可让八戒犯难了,三张饼怎样分给四个人呢?同学们你们能帮帮他吗?

2、用圆片代表饼,剪一剪,拼一拼,画一画。

(自己动手操作,与同组的同学交流自己的想法。然后全班交流。)

3、根据学生的交流,教师板书并讲解。

(1)每张饼每个人得四分之一,每个人工得四分之三张饼。

师画图进行讲解。

(2)把三张饼放在一起分,平均分成四份。每人一份,就是一张饼的四分之三。

4、9张饼平均分给4个人,每人又得多少张饼呢?

用9个圆代替饼,分一分。

(自己动手,在小组内说说你的想法。)

a)9张饼平均分给4个人,我可以先分给1张,每人四分之一张,这样一张一张的分,9个四分之一实际是四分之九。

b)(2)可以先分8张,每人2张,再分1张,每人四分之一张,和起来是二又四分之一张。

c)介绍四分之九就是二又四分之一。

5、介绍真分数和假分数。

(二)活动二:试一试。

1、分别写出几个真分数、假分数、带分数,它们各有什么特点?与同学进行交流。

(自学概念,说说你的理解。你是怎样理解带分数的?)

2、师板书概念:

像1/2、1/4、2/3、3/4......这样的分数叫作真分数。

像3/2、3/3、5/4、9/4......这样的分数叫作假分数。

(三)活动三:练一练。

1、用假分数和带分数分别表示下列图中的阴影部分。

2、以7为分母,分别写出3个真分数和3个假分数。

3、在直线上填上假分数,在下面填上带分数

(独立完成,重点用带分数表示。

自己写,全班交流。

自己完成,说说假分数怎样化成带分数。)

(四)总结。

谁能把上完今天这节课的体会说给大家听一听?

板书设计:

课题:分饼

像1/2、1/4、2/3、3/4......这样的分数叫作真分数。

像3/2、3/3、5/4、9/4......这样的分数叫作假分数

小学五年级数学教案反思篇13

教学内容:人教版小学数学五年级上册第五单元第三节内容。

教学目标:

知识与技能:在实际情境中,认识计算梯形面积的必要性,能运用梯形面积的计算公式,解决相应的实际问题。

过程与方法:培养学生学会发现知识之间的规律,加强学生动手操作能力和观察能力,在小组合作探索的活动中,经历推导梯形面积公式的过程。

情感态度价值观:在探索梯形面积计算方法的过程中,获得探索问题成功的体验。

教学重点:理解梯形面积的计算方法,正确计算梯形的面积。

教学难点:梯形面积计算方法的推导过程。

教学准备:给每个小组准备梯形若干个,剪刀一把;课件。

教学过程:

一、复习导入,创设情境。

师:同学们,我们在学平行四边形和三角形面积的计算时,学到一种非常重要的学习方法,还记得是什么方法吗?(转化)

师:谁来说说平行四边形式三角形的面积是怎样推导出来的?

(根据学生所述,教师电脑演示平行四边形和三角形面积公式的推导过程)

师:推导平行四边形和三角形面积公式时,我们都用到了转化的方法,把我们要研究的图形转化成已经学过的图形来发现他们之间的联系,进而推导出面积计算的公式。

师:在生活中,我们能看到各种形状的物体,(出示课件)这辆小汽车的车窗玻璃是什么图形?还记得梯形各部分的名称吗?(出示课件)这是一大一小两个梯形,你认为梯形面积的大小可能会与什么有关?它们之间到底有着怎样的关系呢,这节课我们就来探究梯形的面积计算。(板书课题)

二、猜测验证,自主探究。

师:现在请大家想一想,你准备怎么出梯形的面积?看来“转化”这种方法确实很重要,我们在解决很多问题的时候都是利用已有的知识去解决新问题,那么你们认为梯形可以转化成我们以前学过的什么图形呢?

1、生猜想。(平行四边形、长方形、三角形……)

2、公式探究。

师:你们的这些想法是否正确呢?下面咱们一起来验证一下。

先给同学们30秒的时间独立思考,自己想办法。

(30秒过后)

师:好了,下面的时间请同学们把自己的想法在小组内先交流一下,然后选出一种的方法,利用你们手中的学具推导出梯形面积公式。

3、学生进行探究,师相机指导。

4、生汇报。

师:刚才老师在下面走的时候发现第x组的同学最先推导出了梯形的面积公式,下面请第x组的同学派代表到前面展示一下你们是怎么做的。

(生展台展示)

组1:我们组用两个完全一样的梯形拼成了一个平行四边形,得出拼成的平行四边形的面积是梯形面积的2倍,平行四边形的高与梯形的高相等,平行四边形的底等于梯形的上底与下底之和,从而推导出梯形的面积=(上底+下底)×高÷2(师随机贴图并板书)

师:其它组有没有不同的拼摆方法?(让生在座位上说)

请你说说你们组是怎么拼的,推导出的梯形面积公式是什么?

组2:我们用两个完全一样的直角梯形拼成了一个长方形,推导出梯形的面积公式是梯形的面积=(上底+下底)×高÷2

师:老师在下面走的时候发现有一个组采用了割补的方法推导出了梯形的面积公式,是哪个小组?请到前面展示一下。

组3:我们选择了一个梯形,沿着它的腰对折,然后剪开,再移到右边拼成了一个平行四边形,平行四边形的面积与梯形的面积相等,平行四边形的底等于梯形的上底与下底的和,平行四边形的高等于梯形高的一半,所以梯形的面积=(上底+下底)×高÷2(师随机贴图)

师:哪个小组还有不同的方法?

组4:我们组把梯形剪成了两个三角形,得出梯形的面积等于两个三角形面积之和,这个小三角形的底等于梯形的上底,高等于梯形的高,所以小三角形的面积=上底×高÷2,这个大三角形的底等于梯形的下底,高等于梯形的高,所以大三角形的面积=下底×高÷2,从而推导出梯形的面积=上底×高÷2+下底×高÷2(师随机贴图)

(注:师在生汇报的过程中要让生到黑板上画出小三角形也就是钝角三角形的高在哪里,并引导生说明钝角三角形的高为什么和梯形的高相等)

师:刚才同学们说出了这么多的方法,你们真了不起!老师也想出了一种方法,我们一起来看看。

(幻灯出示转化过程)

师:谁能根据老师展出的这种方法推导出梯形的面积公式?

生口头叙述。

师:你真聪明!其实推导梯形面积公式的方法还有很多很多,有兴趣的同学可利用课下时间进一步探究。

师:好了,如果用s表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,那么梯形的面积公式用字母可以怎样来表示?

生:s=(a+b)h÷2

(师板书)

师:请同学们观察这个公式,想一想,要想求梯形的面积必须知道哪些条件?

由此看来梯形面积的大小与它的上、下底和高这三个因素有关,那么,在计算时应注意什么呢?

三、实践运用,解决问题

接下来我们一起走进生活,来解决一个实际问题。

师:课件出示例题:

(这是我国长江三峡水电站大坝,它的横截面的一部分是梯形,求它的面积。)

师:让生以最快的速度在练习本上只列式不解答。老师算了一下这道题的结果,等于10530平方米,同学们可利用课下时间验证一下老师算的到底对不对。

师:梯形的面积应用很广泛,在很多物体中经常会看到梯形。下面我们来解决另一个日常生活中的问题。(幻灯出示)

一辆汽车侧面的两块玻璃是梯形(如下图),它们的面积分别是多少?

师:好,剩下的时间我们来解决其他问题。

1.算出下面每个梯形的面积。(单位:厘米)90页第3题

2.判断题。

(1)两个梯形都能拼成一个平行四边形。()

(2)两个形状一样的梯形一定能拼成一个平行四边形。()

(3)两个完全一样的梯形一定能拼成一个平行四边形。()

(4)平行四边形的面积是梯形面积的2倍。()

3选择题

(1)梯形的上底是4米,下底是6米,高是5米,它的面积是()。

A.45平方米B.25平方米C.25米

(2)一个梯形上底是80厘米,下底是12分米.高是5分米,它的面积是()平方分米。

A50B.25C.230

4.90页第3题

5、一条新挖的渠道,横截面是梯形,渠口宽2.8米,渠底宽1.4米,渠深1.2米.横截面的面积是多少平方米?

四、小结。

师:这节课同学们在探索的过程中发挥了自己的聪明才智,利用转化的思想创造出了多种推导梯形面积计算公式的方法,并能用所学的知识解决生活中的问题。你们真了不起!今后我们将会利用这种方法来探究更多的有关图形的知识。相信你们今后会有更加出色的表现。

小学五年级数学教案反思篇14

教学内容

人教版《数学》五年级上册第4、5页,例3、例4;第7、8页,练习一第4-6题。教材分析

“小数乘小数”是人教版《数学》五年级上册第一单元的教学内容。本节课教学前,学生已经掌握了小数乘整数的竖式计算方法,并能对其中的处理做出合理解释。通过本节课的教学,不但要让学生掌握小数乘小数的计算方法、理解算理,还要引导学生再次经历将未知转化为已知的学习过程,获得用转化的思想方法去探究新知的本领;通过引导学生有序地总结小数的计算方法,培养学生的抽象概括能力。

教学目标

1、引导学生自主探索并总结小数乘法的计算方法,能对其中的算理做出合理的解释。

2、能正确笔算小数乘小数,提高计算的速度和正确率。

3、培养和发展学生的观察、概括能力。

教学重点

引导学生自主探索并总结小数乘法的计算方法。

教学难点

乘得的积的小数位数不够时小数点的定位问题。

教学过程

一、复习导入

1、组织学生列竖式计算下面各题。

0.86×73.5×16

(1)学生独立计算,指名两生板演。

(2)反馈,校对答案,并请学生说一说计算方法和算理。

2、揭示课题:继续学习小数乘法。

【设计意图:通过复习激活学生的原有认知,教师应重点引导学生清晰阐述小数乘整数的算法和算理,为探索小数乘小数的算法和算理做好铺垫。】

二、探索新知

1、投影呈现例3主题图。

(1)引导学生独立审题后指名列式:1.2×0.8。

(2)请学生估一估1.2×0.8的积。

(教学预设:1.2×0.8≈1×1=1(平方米))

(3)提出问题:1.2×0.8的积到底是多少?两个因数都是小数怎么计算呢?

学生自主探索计算方法。

(4)指名三位学生板书不同的计算方法,

(教学预设三种可能如下:)

生1:1.2米=12分米

0.8米=8分米

12×8=96平方分米=0.96平方米

生2:1.2生3:1.2

×0.8×0.8

9.60.96

(5)组织学生思考、讨论以下问题:

①积是9.6还是0.96,为什么?

在澄清错误的过程中,引导学生学会阐述小数乘小数的算法和算理,形成如下的完整板书。

②观察并思考生1和生3方法指间的内在联系,揭示这两种方法都体现了把未知转化为已知的数学思想方法,外显形式不同,数学本质是相同的。

(6)引导学生观察竖式,讨论以下问题:

①因数和积的小数位数有什么关系?引导学生初步发现规律。

②比较积和两个因数的大小关系,发现0.96比因数1.2小,比因数0.8大。

【设计意图:由计算长方形玻璃面积引入两个因数都是小数的乘法计算,让学生感受生活中许多问题的解决离不开小数的乘法。同时,具体的长度单位为学生提供了开放的思维空间,为学生采用不同的方法解决问题提供了可能。

在反馈过程中,教师有意识呈现了学生不同的算法和错误,并为此资源组织学生辨析、沟通,从而让学生深刻理解小数乘小数的算法,初步掌握了算法。】

2.基本练习:教材第4页做一做。

6.7×0.32.4×6.20.56×0.04

(1)观察并判断:积与两个因数的大小关系。如:6.7×0.3的积比6.7小,比0.3大;

2.4×6.2的积比2.4和6.2的都大;0.56×0.04的积比0.56和0.04都小。

(2)学生独立完成,指名几位学生板演。

教师应注意收集学生在计算过程中出现的错误0.56

特别是计算0.56×0.04时,学生可能出现如右错误×0.04

0.224

(3)校对答案,并指名说一说算法和算理,重点讨论:0.56×0.04的积到底是0.224还是0.0224?乘得的积的小数位数不够,怎样点小数点?

3.总结小数乘法的计算方法。

(1)引导学生观察板书并思考:这些小数乘法是怎样计算的?

(2)组织四人小组进行组内交流。

(3)全班交流,总结小数乘法的计算方法:先按整数乘法算出面积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

【设计意图:在整数乘法的学习经验中,学生已经建立了一种片面的认识,即“两个因数相乘(0和1除外)总是越乘越大”。教师通过小数乘法的学习使学生打破这种片面的认识,即要使学生认识到,两个因数(0和1除外)相乘,积可能比两个因数都大,也可能比两个因数都小,还有可能比其中一个因数大,比另一个因数小。在“做一做”的计算前,先引导学生判断积和两个因数的大小关系,正是为了帮助学生纠正上述错误认知。如果学生清晰地认识到了积与两个因数的大小关系,那么当学生面对“0.56×0.04=0.224”的错误时,

就能自觉地进行校正。在教学教材第9页练习一第10题时,将进一步引导学生通过比较,发现判断积与因数大小关系的方法。当然,没有必要让学生讨论“为什么会越乘越小”的道理,因为这需要学生具备分数乘法意义的相关知识。】

三、巩固应用

1.完成教材第5页做一做。

3.7×4.60.29×0.076.5×8.4

(1)先引导学生判断“积是几位小数”,其中6.5×8.4的积是不是两位小数可能会有争议,教师不要急于下结论。

(2)独立计算。

(3)投影反馈,重点是第3小题。

6.5

×8.4

260520

54.60

6.5

×8.4

260520

5.460

引导学生讨论两个问题:①当乘积末尾有0时,是先撇去0再点小数点,还是先点小数点再撇去0?②6.5×8.4的积为什么变成一位小数?

2.口算训练。

0.7×0.61.2×72.5×0.43.6×10

0.3×0.29×0.090.04×0.51.25×0.8

四小题一组,口算卡片依次呈现,学生独立写答案,然后校对答案,重点落实小数点的定位问题。

3.独立完成教材第5页练习一第4题,反馈时选择其中三个算式说一说想法。

四、课堂总结

请学生再次说一说小数乘法的计算方法和计算时需要注意的地方。

五、课堂作业

独立完成教材第6页练习一第5题和第6题。

小学五年级数学教案反思篇15

教学内容:北师大版小学数学五年级上册第一单元。

教学目标:

1、尝试运用“列表”、“画示意图”等方法发现规律,运用数的奇偶性分析和解释生活中的一些简单问题。

2、通过活动,让学生经历猜想结果,举例验证,得出结论的探究过程,并在活动中发现加法中数的奇偶性的变化规律,掌握数的奇偶性特征。

3、让学生在活动中体验研究方法,提高推理能力。

教学准备:一次性纸杯、硬币、课件等。

教学过程环节设计:

一、创设情境,产生认知冲突。

师:同学们,有一位家住在河南岸,以摆渡为生的船夫,想请我代他向同学们提一个问题,不知同学们是否愿意帮这位船夫解决一下呢?

(愿意)

课件出示情境图和问题。

【设计意图】创设情境,让学生产生认知冲突,激发学生的学习兴趣,将学生引入到新知探究中来,调动学习的积极性。

二、分组活动,动手操作,感受奇偶性,建构数学模型。

1、活动一:

讨论:船夫将小船摆渡11次后,船在南岸还是北岸?

小组合作,教师引导学生尝试用“列表”、“画示意图”等方式探究。小组汇报时,展示表格或示意图,全班交流。

2、活动二:

一个纸杯子杯口朝上放在桌上,翻动1次杯口朝下,翻动2次杯口朝上,翻动10次呢?翻动19次呢?100次呢?

学生动手操作,发现规律,汇报结果。

师:同学们,如果把“杯子”换成“硬币”,你能提出怎样的问题?试着回答这些问题,并用硬币操作验证自己的结论。

3、活动三:

讨论:加法中数的奇偶性与结果的奇偶性。

课件出示填有偶数的图形,奇数的正方形。

小组合作,完成表格(先猜一猜结果,再举例验证)

小组汇报,全班交流。

(师板书:)

偶数+偶数=偶数

奇数+奇数=偶数

偶数+奇数=奇数

【设计意图】让学生通过活动,经历加法中加数与和的奇偶性特点。培养提出问题,猜想结果,再实践验证的数学习惯,发展学生主动探究的能力。注重学生相互之间的交流,创设自主、合作、探究的数学学习课堂,让学生经历数学模型建构的全过程。

三、运用模型,解决问题。

1、判断下列算式的结果是奇数还是偶数。

10389+20__:11387+131:

268+1024:46786+25787:

6007+8997:

2、有3个杯子,全部杯口朝上放在桌上,每次翻动其中的两只杯子,能否经过若干次翻转,使得3个杯子全部杯口朝下?

你手上只有一个杯子怎么办?

……(学生小组合作)

完成后,汇报反馈。

3、数学游戏。

规则如下:用骰子掷一次,得到一个点数,以A点为起点,连续走两次,转到哪一格,那一格的奖品归你。

谁想上来参加?

……(学生玩游戏。)

这样玩下去,能获得奖品吗?为什么?

【设计意图】采用层层推进的方法,让学生学会运用所学的数学知识,解决生活中的实际问题。学会从生活实际中寻找数学问题,能运用数学知识分析并解决生活中的数学问题。培养学生的数学应用意识,提高学生的数学综合素质。

四、课堂小结,课后延伸。

1、说说我们这节课探索了什么?你发现了什么?

2、如果将4个杯子全部杯口朝上放在桌上,每次翻动其中的3只杯子,能否经过若干次翻转,使得4个杯子全部杯口朝下?最少几次?

板书设计:

数的奇偶性

偶数+偶数=偶数

奇数+奇数=偶数

偶数+奇数=奇数

30057