教案吧 > 小学教案 > 五年级教案 >

五年级数学简单的教案

时间: 新华 五年级教案

教案按照教学过程的步骤编排,让教师能够清晰地了解整个教学流程,有利于教学的有序进行。好的五年级数学简单的教案是怎样的?这里给大家提供五年级数学简单的教案,供大家参考。

五年级数学简单的教案篇1

教学目标:

1、初步理解“平均数”的含义,探讨“求平均数”问题的分析方法。

2、能正确列式解答“求平均数”问题。

教学重点难点:

初步理解“平均数”的含义。探讨“求平均数”问题的分析方法。

教学过程:

一、引入

1、师:三个数学小伙伴都想和老师比赛投篮,1分钟内看谁投中的个数多。小胖1分钟投中了5个,他认为这不能完全代表他的水平,于是要求再给他两次机会,让他能充分发挥出水平。第二次,他投中了5个,第三次,还是5个。看来他的水平很稳定,用5来代表他1分钟投篮的水平合适吗?

二、新授

1、师:小淘气1分钟投了3个,他也要求再给两次机会。第二次投中5个,第三次投中4个。

刚刚小胖三次都投中5个,那显然就用5来代表小胖的水平。现在用几来代表小淘气1分钟的水平呢,说说理由。

生:用4来表示……;用5来表示……。

师:用超常发挥的补救发挥失常的,这时候,用4来代表他的水平比较合适。这个方法叫做移多补少。(板书)还有其它想法吗?

生:因为4在3和5的中间;把超常发挥和发挥失常的去掉,他们不具备代表性;因为4是3、4、5的平均数……

师:不管超常发挥还是发挥失常,都是他自己投的,就先求和再均分,(板书)能使每一次的个数一样多。移多补少的目的也是将每一次的个数变成一样多(板书)。用一样多的这个数来代表他的水平合适吗?

遇到这样数据多多少少的,就可以通过先求和再均分,找到能代表他水平的数。

2、师:小丁丁直接要求有3次机会,不看不知道,一看吓一跳。

第一次投了3个,第二次投了7个,第三次2个,看来水平很不稳定,一起用手势高低来表示他的三次投篮结果。

师:你觉得用几来代表他1分钟的水平呢?

生:计算,是4。

师:4是从哪里来的?前面的小淘气是3个、4个、5个,好歹还有个4出现,这里一个4都没有,怎么会用4来代表呢?和同桌说说道理。

生:3+7+2=12个12÷3=4个(板书算式)

生:还可以用移多补少的方法,把7拿出1给3,再拿出2给2。(媒体)

师:现在用4来代表小丁丁的水平合适吗?不管是求和均分还是移多补少,这两个方法的目的都是使得数据变得同样多,像这样通过求和均分或者移多补少,使得数据变得同样多,就是在求原来这些数据的平均数。(板书)

我们说,4是3、7、2这3个三个数的平均数。

那么小淘气的投篮水平也是4,这个4又是哪些数的平均数呢?

生:他投了3次,所以4是3、4、5的平均数。

师:这个4能代表小丁丁第一次的投篮水平吗?能代表他第二次的投篮水平吗?能代表他第三次的投篮水平吗?我们辛苦了那么久,结果这个4既不能代表第一次的水平,又不能代表第二次的水平,也不能代表第三次的水平,那它到底代表的什么呢?

师:平均数不代表某一次的水平,而是代表这一组数据的平均水平、整体水平。(板书)

3、师:终于轮到老师投篮了,老师想要4次投篮机会,小朋友会同意吗?为什么?

师:小丁丁笑了,老师,我们比的是平均水平,又不是比总数,你投好了,还要除以4,投得差了,仍然要除以4,更差了。我们就同意你投4次。

老师第一次1分钟投进了4个,第二次6个,第三次5个。到这里老师心里十分后悔,如果只投三次就好了。老师想就此收手,你们猜3个小朋友会同意吗?为什么?老师如果投第四次,可能赢吗?也可能输。

老师第四次投中了1个。我赢了还是输了?算一算。

如果我第四次投中了5个,我的水平是多少?如果第四次投中了9个呢?

三、练习

1、姚明比平均身高高,既然有人比平均身高高一点,就有人的身高……

不然移多补少补给谁去呢?

2、平均身高160,但不是人人都160,排在中间的人一定是160吗?

3、平均水深才110,所以以他140的身高肯定淹不死,是吗?

生:这是平均水深,是移多补少的结果,是求和均分的结果,也许有的地方比140深得多。

出示水下图片。

师:掌握了平均数以后,回到生活中再来看在这些数据还会上当吗?

4、有一则调查新闻,说先在的男性平均寿命是71岁。30年过去了,男性平均寿命从68上升到了71,该高兴还是难过?可是一个老爷爷看到新闻都难过得哭出来了,他今天刚过了70岁生日,你觉得他为什么会难过?他有必要去难过吗?说明他不懂平均数。你懂不懂平均数?你能用今天学的本领来劝劝他,让他喜笑颜开吗?

5、想不想猜一猜女性的平均寿命比男性长还是短?出示。《20__年世界卫生报告》显示:目前,中国男性的平均寿命大约是71岁,女性的平均寿命大约是74岁。

四、总结

五年级数学简单的教案篇2

设计说明

1.创设一定的生活情境,引出可探索的“数学问题”。

“生活即教育”,数学知识只有来源于生活实际,学生的学习才有可能是积极的、主动的。本节教学设计从给学校的长方形宣传栏刷油漆引入小数乘小数的计算,让学生运用转化思想初步经历小数乘小数的计算方法的探究过程,并让学生在此过程中感受到生活中的许多问题都可以用小数乘法来解决,加深数学与生活的联系。

2.尝试计算、自主探索,主动获得小数乘小数的算理。

《数学课程标准》中指出:“教师教学应该以学生的认知发展水平和已有的经验为基础”。本节教学设计联系原有的学习经验,首先给予学生充分的空间和时间,让学生独立尝试小数乘小数的计算,重点放在对小数乘小数的算理的理解上,不仅要让学生学会怎么计算,更要让学生理解为什么要这么计算。

3.运用计算法则,联系实际解决问题。

数学来源于生活,必然又回归于生活并高于生活。在学生初步掌握小数乘小数的计算法则与算理的基础上,应用生活化的练习让学生的知识得到系统的整理与巩固,并不断拓展、提高学生的思维能力。在学生掌握了小数乘小数的`计算方法后,通过不同层次的习题进行巩固。

课前准备

教师准备PPT课件课堂活动卡学情检测卡

教学过程

⊙创设情境,引入新课

(播放课件)我们的校园多美呀!有高大的教学楼、宽阔的操场。(课件出示正在刷油漆的宣传栏)看!工人叔叔正在给宣传栏刷油漆,可是有个问题却难住了他们。你们能帮助他们解决吗?(课件出示教材5页例3)

设计意图:创设生活情境,从给学校的宣传栏刷油漆的场面引入小数乘小数的计算,既调动了学生的学习兴趣,又渗透了数学来源于生活,且应用于生活的思想。

⊙探究新知

1.教学例3,初步掌握小数乘小数的计算方法。

(1)理解题意。

师:要想知道一共需要多少千克油漆,必须知道什么条件?(宣传栏的面积)

师:那么,宣传栏的面积怎么计算呢?

预设生:因为宣传栏是一个长方形,所以我们只要根据长方形面积的计算公式就可以计算出来。

(2)尝试列式。

师:怎么列式呢?(2.4×0.8)

(3)揭示课题。

(教师指着算式)请同学们观察这个算式,它有什么特点?(因数都是小数)

揭题:这就是我们这节课要学习的小数乘小数。(板书课题)

(4)合作探究。

师:两个因数都是小数,应该怎么计算呢?下面请同学们在小组内讨论一下这道题的计算方法。

(学生在小组内讨论,并汇报)

预设生1:可以利用分米和米之间的进率进行计算。

将“m”改写成“dm”。

2.4m=24dm0.8m=8dm

用竖式计算:

将积的单位“dm2”改写成“m2”:192dm2=1.92m2。

五年级数学简单的教案篇3

教学目标:

1、结合具体的情景,自主探索两位数乘两位数的乘法算法。

2. 学会进行两位数乘两位数的乘法计算,并能解决一些简单的实际问题。

教学重点:1、两位数乘两位数的估算。

2、探索并掌握两位数乘两位数(不进位)的乘法计算。

教学难点:掌握两位数乘两位数(不进位)的乘法并能熟练计算。

教学理念:组织学生讨论、交流,使学生体验学习中通过合作交流带来的方便和快乐。

教学准备:课件。

学生准备:预习课前知识。

教学过程:

一、实践调查

课前让学生在汇景新城作实地调查,调查本小区住户情况

二、课内交流

1、让同学们根据调查所得的数学信息编一道数学应用题。

2、根据所编的题目独立列式

3、探讨和交流如何解决问题。

(1)尝试通过估算结果解决问题。

A、分组讨论不同的计算过程

B、师:根据以上的结果你能判断“这栋楼能住150户吗?”

(2)讨论算法

三、习题巩固:

1、试一试

11×43 24×12 44×21

2、练一练:

第1、2题

3、第3题,学生独立思考,理解题意,再进行计算

四、综合应用:

陈老师班上有42名同学,她为同学们购置书包和文具,一个书包24元,一个文具11元,买书包和文具各花了多少钱?一共花了多少钱?

五、课堂总结:今天我们学习了什么知识?你学会了什么?

六、板书设计:

五年级数学简单的教案篇4

【教材分析】

对于学生来说,经历从两位数乘一位数到两位数乘两位数的乘法过程是形成乘法计算技能的重要环节,也是后续学习两位数乘三位数的基础。为此教材以“住新房”的情境为载体,通过解决一栋楼的总住户的问题,帮助学生理解两位数乘两位数的乘法的算理。在具体解决“总住户”的计算问题时,教材呈现了三种算法,前两种是计算两位数乘整十数、两位数乘一位数,再将这两部分的积相加,这是乘法竖式计算的重要基础,本节课应注重口算方法与竖式方法的沟通。第三种是竖式计算,这是计算两位数乘两位数的一般方法。

【学生分析】

本节课的学习是在学生学习了“乘数是整十数的乘法”和两、三位数乘一位数的竖式计算的基础上的进一步学习。学生可以通过独立探索、小组交流,全班汇报交流等学习活动,利用已有知识的迁移理解和掌握“两位数乘两位数(不进位)”的计算方法,学生很有成就感。

由于学生只有一位数乘法的基础,让学生独立思考怎样算14×12时,大多数学生只能想出口算方法,只有个别学生能在预习或家长提前指导的情况下,正确书写竖式,这节课正需要这些孩子来激发全班思维,让同学们在看竖式的过程中,分析竖式计算算理、算法,通过观察,分析,学生能把竖式计算与口算算法进行沟通。

【学习目标】

1.结合“住新房”的问题情境,探索两位数乘两位数(不进位)的乘法,经历估算与交流算法多样化的过程。会进行两位数乘两位数的乘法竖式计算,理解竖式乘法每一步计算的含义,并能解决一些简单的实际问题。

2.依据新教材特点,在独立思考的基础上,写出算式并交流,理解竖式计算的算理、算法。

3、通过交流相互启发、相互影响,共同寻找、自主探究、体验,掌握数学的知识、思想与方法,充分感受到数学的魅力和乐趣。

【教学过程】

一、 创设情境(3分钟)

师:淘气今天可高兴了,因为他要搬新家了,他邀请了很多小朋友参加,也邀请了我们,想去吗?

生:想

师:那去看看吧!(课件出示)

师:真漂亮,这栋电梯公寓真大,大家都想进去了(智慧老人:请你根据你发现的数学信息提出一个数学问题?)

生:每层14户,有12层,这栋楼能住多少户?(板书并问)你能出算式吗?想想算式的意思?

师:你能列出算式吗?

生:14×12=(板书) 或 12×14=

师:很能干,一下就说到了乘法的意义。

师:今天的算式和我们过去学过的乘法有什么不同?

生:今天的两个乘数都是两位数,以前我们只学过两位数乘一位数,昨天我们学的两位数乘整十数。(板书:两位数乘两位数)

师:你的记忆真好,很会学习,这就是我们今天要学习的新知识,任意两位数乘两位数。

[设计意图]能结合教材与学生实际创设一个生动的情境,既为后面学习“两位数乘两位数”(竖式)的算理做了铺垫,又激发了学生学习新知识的兴趣。

二、探索新知

1、估算14×12(5分钟)

师: 这栋楼房大约能住多少人呢?我们用过去学过的方法估一估淘气他们住的楼房大约能住多少户人家?

生:140

师:你是怎样估计的?

生:140户左右,把12想成10 ,14×10=140(户)。

师:知道把12想成整十数,估得真快,了不起。还有不同的估算结果吗?

生:120户左右,把14想成10 ,12×10=120(户)。

生:100户左右,把10想成10 ,10×10=100(户)

师: 把它们都想成了整十数,很快地估出了结果,同学们想一想,这三种估算方法里面,哪种更接近正确结果呢?为什么?

生:我觉得得数是140更接近准确结果,因为这样估计的误差最小。……

2、思考怎样计算14×12,探索方法(10分钟):

师:这栋楼到底能住多少户人呢?可是,像这种两位数乘两位数的怎样算呢?你能想办法算出14×12的准确结果吗?试一试,把你计算的方法写在作业本上。(教师巡视,请学生将自己的算法写在黑板上,只展示与竖式有关的算法,看学 生竖式的书写情况,请学生上台板书有代表性的三种竖式方法。)

[设计意图]让孩子在估算的基础上,通过一些挑战性的问题——像“这种两位数乘两位数的怎样算呢?”,“你能想办法算出14×12的准确结果吗?”,激起学生主动探索欲望,也凸显了本节课的重点。

师:你能看懂这种方法吗?(口算)谁来说一说他是怎么算的?(提示:乘法意义,也就是算几个几)

生:14×10=140(先算14×10,也就是10个14,等于140)

14×2=28 (再算14×2,也就是2个14,等于28)

140+28=168(最后把它们的积加起来,得168)

师:你理解得太好了,非常能干。那这种方法呢?你能看懂吗?谁又来说一说?

生:12×10=120(先算每层楼有10户人,12层就有12个10,共120户)

12×4=48(但它每层还有4户人,12层就有12个4,共48户)

120+48=168(最后把它们的积加起来,得168)

师:还有其它方法吗?

生:我把12拆成了3×4,也就变成14×3×4=168(人)

师:它转化成了二位数乘一位数的知识,想得真好。大家都能灵活地运用我们学过地知识,来解决新问题,这不仅是我们聪明和能干,也是一种非常好的学习方法,在以后的学习数学过程中会经常用到。

[设计意图]让学生在独立思考的基础上,通过生生互动,在合作交流中,理解口算每一步的意思及方法,为学习竖式打下了坚实的基础。

3、探索竖式计算14×12的方法(10分钟)

师:大家请看,两位数乘两位数还能用竖式计算?从结果来看,对了吗?

生:对的,都是168。今天我们就重点讨论,如何用竖式计算两位数乘两位数?看一看,想想同学是怎样算的?(板书:怎样算)先独立思考,再将你的想法在四人小组里说一说。

师:谁来代表你们小组说一说这些竖式是怎么算的?

生:我们小组发现第1,2个竖式都是先算2×14等于28,再算10×14等于140,最后将结果加起来,等于168。只是一个写了0,一个没有写0,但都不影响计算结果,都是对的。

师:听懂了吗?谁再来说一说?

生:第一步还是先算2×14=28,第二步因为1在十位上,代表一个十,相当于10×14=140,所以应该在结果上写成140。再用28+140=168,第三种方法相当于把140后的0省略了,但1对齐百位,4对齐十位,还是表示的140,对最后的结果没有影响。

师:说得太精彩了,一下就看出了每一步是怎样算出来的,真有数学头脑。

大家明白了吗?还有补充吗?

生:先算2×14就是算的2层楼共住28户,就是2个14;再算的是10层楼住140户,也就是10个14。

师:你不仅知道它是怎样算的,还知道用乘法的意义来解释这样算的道理,太会思考了,值得大家学习。大家都听懂了吗?那你能看懂第三个算式吗?

生:它是先拿第一个乘数的个位上的数4分别乘2和 1,得到48,再用十位上的数1乘2和1,得到120,最后将48和120相加,得168。

师:这种算法和前两种不一样,但它也是正确的,只是我们通常先用第二个乘数个位上的数乘第一个乘数每一位上的数,再用第二个乘数十位上的数乘第一个乘数每一位上的数,以此类推。所以我们今天重点研究前2个竖式,对于它们,你还有什么疑惑?

生:为什么有0和没0都是对的呢?

师:问得好,谁能解释?

生:因为这题写0和不写0都不影响最后的结果,所以可以省略不写。

师:说得很好,就是这样的。

生:为什么4要写在十位上,1要写在百位上呢?

师:你真是问到点子上了,有谁能回答?

生:十位上的1代表1个十,所以得到的是14个十,也就是140,把末尾的0省略了,而不是14。

师:同意吗?(生:同意)这一点很重要,是我们竖式中很重要的一步,你明白了吗?

[设计意图]把 “用竖式怎样算”确定为本节课的探究点,很多学生并不会列竖式,通过观察同学列出的竖式,先独立思考,再小组合作研究它们每一步是怎么算的。不仅准确地突出了本节课的重点和难点,也为学生理解用竖式计算“两位数乘两位数的乘法”的算理,掌握其算法提供了广阔的自主探究空间,充分体现了学生的主体作用。

4、强化理解竖式(5分钟)

师:还有疑惑吗?那好,智慧老人他可有问题了,看你是不是真的懂了? 请注意!(课件演示每一步,并展示竖式计算的步骤)

师:28怎么得来的?()×(),也就是()个()

具体怎样算呢2×14呢?请你认真看屏幕。你明白了吗?谁来说一说?

生:先用第二个乘数个位上的2,乘第一个乘数的每一位上的数。[设计意图]看得很仔细,你真会学习。)

师:第二步出现(14),它是怎么得来的?

师:有什么疑问?

生:4为什么可以写在个位?

师:问得真好谁来帮助他?

生:十位上的1代表1个十,所以得到的是14个十,也就是140,把末尾的0省略不写,所以4在十位上,1在百位上。

师:最后一步呢?指着( )+( )

生:28+140

师:同意吗?你们的脑筋转得真快,真聪明!现在你明白了两位数乘两位数竖式的运算顺序了吗?请再看老师演示,谁来讲一讲?

生:先用第二个乘数个位上的数乘第一个乘数每一位上的数,得到一个结果,再用第二个乘数十位上的数乘第一个乘数每一位上的数,得到第二个结果,最后将两个结果相加。

师:你很会学习,并且很会表达你的想法,是大家的好榜样!

师:现在赵老师可有问题了,对比口算和竖式,你有什么发现?

生:我发现竖式中每一步口算中也有,它们的算法是一样的,只是表现的形式不一样。比如说:竖式中第一步2×14=28,口算中有;第二步10×14=140,口算中还是有,最后28+140=168,口算中还是有。

师:你太会发现数学最本质的现象了,说得很经典,谁听明白了?

师:今天真有成就感,用口算和竖式这种新的方法都算出了准确结果,和哪个估算结果比较接近(生:140)对,请你将书上26页的方法,再算式和答语补充完整。

[设计意图]巧妙地通过“智慧老人提问”的情境,引导学生进一步深化理解竖式计算每一步的意义,梳理用竖式计算的方法和运算顺序,让不同层次的学生都学会竖式.

【习题设计】

1、竖式计算(5分钟)

师:同学们今天学习很投入,我们来小试一下伸手,看看你能用竖式准确地解答这题吗?

24×12 44×21

师:你想提醒同学做竖式计算应注意什么吗?哪容易错?

生:注意第二步一定要错位,别算错了。

2、密码门(3分钟)

师:淘气要邀请我们去他家了,可是他怎么了?遇到了什么问题?喔这是一个密码门,密码就是23×13的结果,等于92怎么不对呢?赶紧帮他算算密码是多少?

生:密码是第二步算错了,23应该错位写,因为它表示230,3写在十位上,2写在百位上得299。

……

师:你们眼力真好,一下帮淘气解决了问题,谢谢你们!赶紧进他家吧!

[设计意图]设计的练习,既让学生在巩固的基础上获得了提高,又克服了学生在新课后的疲倦感,课尽趣依浓。

3、总结(2分钟)

师:淘气的家真漂亮啊,今天真高兴,你有什么收获?

生1:我知道了两位数乘两位数的口算和竖式方法。

生2:我知道了用最简洁、方便的方法算两位数乘两位数(师:什么方法?)用竖式计算。

师:你们说得都很好,很高兴大家今天有这么多收获,下课!

(总结,让学生在交流收获的过程中,了解竖式计算的重要性。)

五年级数学简单的教案篇5

课型:

新授

教学内容:

教材P5~6例3、例4及练习二第1、9题。

教学目标:

知识与技能:

理解并掌握小数乘小数的计算方法,会正确进行笔算,并且会运用该知识解决一些实际问题。

过程与方法:

在小组讨论中探究、发现、感悟小数乘小数的计算法则,提高计算能力。

情感、态度与价值观:

渗透转化的数学思想,感受数学知识间的内在联系,培养科学、严谨的学习态度。

教学重点:

在理解小数乘法和小数意义的基础上掌握计算方法。

教学难点:

让学生自主探究小数乘法的计算方法并正确地进行笔算。

教学方法:

观察、分析、比较。

教学准备:

多媒体。

教学过程:

一、复习引入

1.口算。0.7×59×0.81.2×60.23×314×31.4×3

口算后提问:从14×3和1.4×3的口算中,你有什么发现?

2.列竖式计算。26×71.36×1230.8×25

学生独立完成,指名板演,订正时让学生说一说计算的过程。

3.引入新课。我们已经掌握了小数乘整数的计算方法,那么小数乘小数又该怎样计算呢?这节课我们来探究这个问题。(板书课题:小数乘小数)

二、自主探究

1.创设情境,引入问题。出示教材第5页例3的主题情境图。

师:观察图片,说说你发现了什么?(学校有一个长2.4米、宽0.8米的宣传栏。现在学校要给它刷油漆,一共需要多少千克油漆?)

师:给宣传栏刷油漆,一共需要多少千克油漆?该怎样计算呢?

全班交流,然后说出解决问题的方法。

师:我们该如何解决问题呢?

生:要算出一共需要多少千克油漆,需要先求出宣传栏的面积。

师:那么怎样求宣传栏的面积呢?如何列式呢?生:2.4×0.8

师:这个式子中,两个因数都是小数,该如何计算呢?

生1可以用竖式计算:×0.8

生2:也可以把它们可作整数来计算(下左)。

师:那么如何求一共需要多少油漆呢?

生:算式是1.92×0.9,可以仿照上面同样的方法计算。(上右)

所以一共需要1.728千克油漆。

师:同学们能说说我们在列竖式计算小数乘法时,要注意什么吗?

学生小组交流讨论,老师加以总结。

小结:所有小数右边的数一律对齐,其他小数位从右往左依次对齐。

师:看一看算式的两个因数中一共有几位小数?积呢?

生:两个因数中一共有2位小数,积也有2位小数。

2.探究小数乘法的计算方法。完成P6例4上面的填空。

(l)组织学生尝试完成教材第5页的“做一做”。

(2)学生独立计算后,指名板演并汇报自己是怎样计算的,然后集体订正。

(3)教学例4。0.56×0.04

师:这个算式中的两个因数都是两位小数,通过列竖式计算,我们能发现一个问题,即这个算式中,乘得的积的小数位数不够,那么如何点小数点呢?

学生讨论,教师板书。

师:乘得的积的小数位数不够时,要在前面用0补足,再点小数点。

师:观察黑板上各题,小组讨论。(出示讨论提纲。)

讨论提纲:①小数乘小数,我们首先怎样想?

(把两个因数的小数点去掉,转化为整数乘法。)

②怎样得到正确的积?(因数扩大到它的几倍,积就缩小到它的几分之一。)

③积的小数位数和两个因数的小数位数有什么关系?能举例说明吗?

(教师以竖式中的因数的小数位数和积的小数位数为例,说明因数中一共有几位小数,积就有几位小数,积的小数位数不够时,要在前面用O补足。)

3.根据上面的分析,想想小数乘法是怎样计算的?

学生讨论后,教师组织学生交流,回答上面的问题,归纳出计算小数乘小数应该注意哪些问题。

生:小数乘小数,先按整数乘法计算,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。当积的小数位数不够时,要在前面用0补足,再点小数点。

教师引导学生讨论、归纳,进一步得出“1看、2算、3数、4点”。

三、巩固练习

1.不计算,说一说下列各题的积有几位小数。

2.3×0.40.08×0.97.3×0.06

9.1×0.030.25×0.2345.9×3.5

提问:怎样判断积有几位小数?

2.用竖式计算。(教材第6页“做一做”的第1题)

提问:你是怎样计算0.29×0.07的?

3.完成教材第6页“做一做”的第2题。先由学生独立完成,然后集体订正。

师:分别比较积和第一个因数的大小,你能发现什么?小组交流讨论,教师总结。

师:一个数(0除外)乘大于1的数,积比原来的数大。

一个数(O除外)乘小于1的数,积比原来的数小。

四、课堂小结

师:请同学们想一想,我们今天学到了哪些知识?你有什么收获?在计算小数乘法时应注意什么?(学生发言,说说自己的收获,并回答问题,教师予以点评。)

作业:教材第8~10页练习二第1、9题。

板书设计:

小数乘小数

2.4×0.8=1.920.56×0.04=0.0224

1看、2算、3数、4点

五年级数学简单的教案篇6

教学目标:

1、能将正方体、长方体、棱锥、棱柱展开成平面图形;并由它们的平面图形折叠成立体图形

2、在操作活动中认识棱柱的某些特性;

3、经历折叠、模型制作等活动,发展空间观念,积累数学活动经验;

教学重点:

通过活动认识归纳出棱柱的特性,并能初步感受到研究空间问题的思维方法

教学难点:

根据简单的立体图形判别平面图形;反之,根据平面图形判别立体图形。

教学过程:

一、导入情境

让学生自己出示现实生活中某些商品的包装盒(课前准备工作),制作这些纸盒,我们是先根据它们表面展开后图形的形状剪裁纸张,再折叠围成,从而引入课题——展开与折叠。

二、通过动手操作,加强对图形(棱柱)的感受,体会棱柱的性质做一做

活动一:

1、如图1所示的平面图形经过折叠能否围成一个棱柱?请同学们以同桌的形式动手做做看。

2、操作完后,请学生展示他们制作的模型。

3、实践验证图1所示的平面图形经过折叠可以围成如图2所示的棱柱。

4、教师介绍棱柱的各部分名称。

五年级数学简单的教案篇7

一、复习

1、3.6×0.47.25×0.8板演

2、把240缩小10、100、1000、10000是()

同步口答追问指出:移动小数点位数不够添0补足。

3、评议追问算法随即揭题

二、新课

1、例30.36×0.24

试算集体评议比一比一样对吗?追问:为什么积的十分位上是0?

你能用交换因数位置的方法验算吗?

结果怎样?说明什么?

2、例4小明体重35.5千克,爸爸体重是小明的1.8倍,爸爸体重多少千克?

集体读怎样列式?为什么用乘法?35.5×1.8表示什么意思?

估计积比35.5大还是小?为什么练习简评

3、香蕉买多少元?

每千克3.6元

师引出第一条规律,生说规律2、3。

一个大于0的`数乘,积这个数

应用规律比较大小

3.2×0.8○3.2

0.56×1○0.56

0.63×1.1○0.63

0.9×2.7○2.7

三、练习

练一练1

练一练2

四、收获

五、作业

五年级数学简单的教案篇8

教学内容:

p53--54练习十一1,2,3

教学目标:

1. 通过观察天平演示,使学生初步理解方程的意义;

2. 使学生能够判断一个式子是不是方程,并能解决简单 的实际问题;

3. 培养学生观察、描述、分类、抽象、概括、应用等能力。

教学重点:

判断一个式子是不是方程;初步理解方程的意义。

课前准备:

课件,习题板

教学过程:

一、复习旧知,激趣导入

同学们,我们上节课学了用含有字母的式子表示一些数量关系,现在老师要考考你们,已知我们学校有88位同学,再加上所有老师,你能用一个式子来表示师生一共有多少人吗?(板书:88+ x)。学得真不错,今天我们要进一步来研究这些含有未知数的式子所隐藏的数学奥秘,想知道吗?请你用饱满的姿态告诉老师!

二、出示学习目标

1、初步理解方程的意义,会判断一个式子是否是方程

2、按要求用方程表示出数量关系,培养学生观察、比较、分析概括的能力。

三、学习过程。

(一)认识天平

(二)新课学习

自学指导(一)。

自学p53, 分别说一说图1,图2,,显示的信息。

图1天平两边平衡,一个空杯重100克。

图2在空杯里加一杯水后天平不平衡了。

自学指导(二)

再看图3说说图3 显示的信息。

天平1杯子和里面的水比200克法码重

天平2杯子和里面的水比300克法码轻

自学指导(三)

请用算式表示图3数量关系。

天平1、100+x>200

天平2、100+x<300

自学指导(四)

再看图4说说图4 显示的信息,请用算式表示图4数量关系

100+x=250

自学指导(五)

观察比较下列算式说说你的发现

观察比较

100+x>200

100+x<300

100+x=250

前面两个算式两边不相等,后面一个算式两边是相等的。

教师总结:像这样两边相等的算式我们把它叫做等式。(板书)

课堂练习(一)

写出几个等式

自学指导(六)

请学生把这里的等式分类,并说说你们是如何分类的?

20+30=50

20+χ=100

50×2=100

14-8=6

3y=180

78× 3=234

100+2y=3×50

学生汇报后让学生说出分类的理由。(有的含有未知数,有的没有未知数)

教师总结:含有未知数的等式,称为方程。(板书)

课堂练习(二)

请大家写出几个方程。

四、小结:回答什么是方程?

五年级数学简单的教案篇9

教学目标:

1、通过动手操作,知道长方体、正方体的展开图,加深对长方体、正方体的认识。

2、在想象、操作等活动中,发展空间观念,激发学习数学的兴趣。

教学重点:

通过动手操作,知道长方体、正方体的展开图,加深对长方体、正方体的认识。

教学难点:

通过动手操作,知道长方体、正方体的展开图,加深对长方体、正方体的认识。

教具准备:

长方体、正方体的模型,纸盒、剪刀、尺子。

教学过程:

一、复习

说一说:复习长方体、正方体的特征。

相同点:(1)六个面(2)12条棱(3)8个顶点

不同点:六个面的面积。

二、动手操作,知道长方体、正方体的展开图。

1、剪一剪:

引导学生通过把1个正方体盒子沿着棱剪开图。

2、说一说:

正方体展开图是怎样的?

3、将长方体盒子沿棱剪开,试试看。

4、比一比。学生回顾:

长方体和正方体的基本特征{相同点不同点

学生动手剪开正方体纸盒。

观察,得到了一个怎么样的展开图。

小组中进行交流。说说自己剪的方法,比一比展开图是否相同?

引导学生剪开长方体盒子,观察长方体的展开图。

引导学生对长方体盒子和正方体盒子进行比较。

通过复习巩固对长方体、正方体的认识。引入认识展开长方体、正方体的折叠。

通过剪一剪等实践活动,把长方体、正方体盒子剪开得到平面图形的活动,引导学生直观认识长方体和正方体的展开图。

教师指导与教学过程学生学习活动过程设计意图

相同点:有六个面。

不同点:六个面的大小不同。

5、做一做

引导学生观察图形正方体?长方体?

①围成正方体所要的条件?

②用手中的材料尝试折叠。

③独立想一想哪些图形符合要求。

④组织学生进行交流。

三、练一练

1、教科书第17页“练一练”第1题。

引导学生:看展开图。

在操作中进行验证。

先让学生看展开图进行思考,并把结果写下来,然后再利用附页中的图试一试。

思考:与1、2、3号面相对的的是几号面?

2、教科书第17页“练一练”第2题。

先让学生按展开图说说哪两个面是相对的面,再联系长方体说说展开图中的各个长方形对应的是长方体中的哪个面。

3、动手折一折,试一试。

通过做一做,引导学生体会展开图形与长方体、正方体的联系。

通过折叠正方体、长方体的展开图,发展学生的空间观念。

四、全课小结

跟小组内的同学谈谈你这节课的收获在什么?

板书设计:

展开与折叠

面―――体

五年级数学简单的教案篇10

一、教学目标

1.借助“旅游中的数学”中“快餐店”这一具体情境,体验到日常生活中有数学,感受数学与生活的密切联系。

2.丰富学生对现实生活的认识,让学生应用小数的知识解决生活中的问题,培养学生的应用意识和主动探索的精神。

3.培养学生初步的合作和评价意识,使学生获得学习数学的信心,感受到学习数学的乐趣。

二、教材分析

小数的初步认识拓展了数及其应用的范围,小数概念的理解是学生对“数”的概念理解的一个关键环节,有助于进一步培养学生的数感。学生在本册的第一单元已经初步认识了小数,已经能正确地认、读、写简单的小数。而这节课,是新教材中增加的内容之一――实践活动课,是让学生应用小数的有关知识解决生活中的实际问题,以巩固、应用、拓展数学知识为目标,培养学生学习数学的兴趣和创新能力,从而提高学生对数学知识的应用能力。

教材中为我们提供的是一个快餐店的情境图,它体现了数学与现实世界的联系。让学生参加社会实践活动,应用数学解决实际问题,经历一个“数学建模”的过程。在这一过程中,要将解决现实问题和小数加减法的计算结合起来,培养学生的应用意识,感受数学和生活的密切联系;要给学生独立思考和解决问题的机会,体验解决问题策略的多样性与合理性。这不仅需要学生具有将现实问题转化为数学问题、选择创造一定的数学方法的能力,而且还要有合作学习的群体意识。这样一来,就留给我们教师更多的创造空间,进行创造性的数学课堂教学。

三、学校及学生状况分析

我校是一所农村小学,教学条件与本县同类学校比较属于中等水平。学生学习积极主动,参与数学学习活动的热情很高,特别是对于生活化的、具有挑战性的数学课堂,他们尤为喜欢。几年来,通过课堂教学改革实践,我班学生已经有了一定的在独立思考之上的小组合作的意识。《标准》总体目标明确地提出:教学目标要真正实现知识、能力、态度的整合,因此,在教学的过程中还要进一步培养学生的情感、态度以及各方面的能力。

由于每个人都有自己的生活背景、家庭环境、特定的生活与社会文化氛围,这就导致学生有着不同的思维方式、不同的兴趣爱好以及不同的发展潜能。所以我针对学生的实际情况和知识的特点,在设计这节课时,以“介绍菜单、合理的点菜、配菜、定价位”为情节,对各个环节进行串联,力求体现数学知识的生活化,使整个教学过程充满生活的气息和挑战性,为学生创设良好的主动探索的氛围和空间,有意识地培养学生丰富的情感和积极的态度。

四、课堂实录   (一)情境引入

用多媒体课件出示快餐店的店面图。

(二)介绍菜单

师:请一位同学扮演服务员向顾客介绍本店的菜单,谁想试一试?

生1:本店有拌豆腐、土豆丝、炒芹菜……(只介绍了菜名)

生2:我觉得我能说得更好、更全面。顾客您好!本店现有凉菜拌豆腐3元、土豆丝4元、水果沙拉6元;热菜有鱼香鸡丝7元、炒芹菜4元,……(此学生不但报出了菜名,还报出了价格。)

师:通过刚才两位同学的介绍,你还发现什么?

生1:我发现本店最贵的菜是鱼香鸡丝,的是拌豆腐。

生2:我发现土豆丝与炒芹菜的价钱一样。

生3:我发现各种饮料的价格都一样。

生4:我还发现水果沙拉比烧茄子贵一些。

……

(学生意犹未尽。)

(三)合理点菜

1.顾客1

师:本店的第一位顾客就是老师。老师点什么呢?共花多少钱?请大家都来帮我想一想,并说一说你是怎样想的?

生1:我想老师应该要一个水果沙拉,因为能美容,还要鱼香鸡丝有营养,再要一个烧茄子、一瓶饮料、一碗米饭。一共花21.50元。

生2:太浪费了吧!刘老师吃得了吗?我认为刘老师应该点一个鱼香鸡丝、一碗米饭、还有一瓶矿泉水就足够了,一共花10.50元,比生1的便宜。

生3:我知道刘老师喜欢吃土豆丝,所以要一个土豆丝、一碗面条、再加上一瓶果汁,一共花8.50元。比他们的方法便宜一些,也很合算。

……

2.顾客2

(1)师:假如你们一家人到本店吃饭,你们想吃什么?共花多少钱?请大家设计一个最合理的方案。

(2)学生设计消费方案,并在组内交流自己的想法。

(3)汇报。

生1:我家有三口人,我要点一个水果沙拉、一个鱼香鸡丝,还有一个土豆丝,外加三碗米饭、2瓶果汁、一瓶汽水,一共花27.50元。

生2:我家也有三口人,我和妈妈都喜欢吃土豆丝,所以我们要一个土豆丝花4元,爸爸爱吃豆腐,我们再要一个拌豆腐3元,再加上3碗米饭,每种饮料来一瓶,一共花17.50元。

生3:我们家是第一次来本店,所以我每一种菜都要一个,一共花……(还没有等生3说完,其他学生已经着急地站起来想打断他的发言。)

生4:我反对生3的做法,快餐店的菜这么多,你每一种都要,你们一家吃得了吗?太浪费了吧!

生5:我也有同感,假如你们是为了尝一尝本店的菜,你们可以分成几次来,每次点不同的菜,就可以了。

生3:好吧!我接受。让我再想一想。

生6:我家有4口人,所以我要点4个菜才够吃……

……

(四)新菜定价

师:李叔叔在经营快餐店的同时,顾客都反应肉食太少了。于是,他就加了一道辣鸡块的菜。这个菜色香味美,比鱼香鸡丝的本钱要高一些,假如你是快餐店的老板,你打算卖多少钱?   生1:我认为这是新菜,应该便宜一些推出,所以定价8元。

生2:我认为它的本钱比较高、味香,所以定价12元。

……

师:根据大家的定价,假如在刚才你们一家点的菜上减去一个菜,再加上这个菜的话,你们要花多少钱?

生1:我们一家要花的钱是 27.50―6=21.50(元),21.50+8=29.50(元)。

生2:17.50-4=13.50(元),13.50+12=25.50(元)。

……

(五)合理配菜

1.师:同学们,现在本店隆重向大家推出了20元三菜一汤并赠米饭的活动,假如你是快餐店的老板,你打算怎样配菜?怎样配菜才合理呢?请大家想一想,在小组内设计出一种合理的配菜方案。

2.学生小组交流,设计方案。

3.汇报。

生1:为了吸引顾客,我们小组认为三菜可以是:鱼香鸡丝、水果沙拉,烧茄子,再加一个三鲜汤。

生2:我们反对,假如这样配菜的话,快餐店肯定要亏本了。我们小组认为三菜一汤应该是,土豆丝、鱼香鸡丝、炒芹菜,再加一个紫菜汤,正好20元,这样能保证不亏本,也能给顾客赠送米饭。

……

(六)总结

五年级数学简单的教案篇11

教学内容:

北师大版小学数学五年级上册第82——83页的内容。

教学目标:

1、结合具体的图形,明确什么是“点阵”,了解点阵的基本知识。

2、能在具体的观察活动中,发现点阵中隐藏的规律,体会图形与数的联系。

3、培养学生观察、概括与推理的能力。

4、了解数学发展的历史,感受数学文化的魅力。

教学重点:

通过观察活动,引导学生探索发现“点阵”中隐藏的规律。

教学难点:

能从不同的角度观察到点阵图形的不同排列规律,并能把观察到的规律用算式表示出来。

教学准备:

(师)多媒体课件;(生)彩笔。

教学过程:

一、谈话引入

(老师在黑板上画点)今天给大家请来了一位图形朋友——点,不要小看了这个小小的点,早在2000多年前,古希腊的数学家们就是从这样一个小小的点开始研究,发现了由许多个这样的点组成的点子图形中的规律,还给这些图形取了一个好听的名字,叫点阵。同学们想不想过一把当数学家的瘾,自己来寻找这些规律?今天,我们就一起来探究点阵中隐含的规律。(板书课题:点阵中的规律)

二、探究正方形点阵中的规律

1、探究正方形点阵的规律。

(1)我们一起来看看数学家们当年研究的点阵图,边看边说出各个点阵的点子数。

教师依次出示前四个正方形点阵图,并逐步引导学生想像、猜测:下一个点阵图会是什么样子呢?

(随着点阵图的依次出现,学生的思维逐渐活跃,当第三个点阵图出现的时候,学生已经忍不住地说出了点数。说明学生已经发现了正方形点阵中的规律。但这时,教师没有急于让学生发表自己的看法,而是给学生留出了完善自己想法的时间,同时也暗示学生:规律的呈现不能依靠一个或几个图形来归纳,应该有耐心地继续自己的观察活动。)

(2)除了能说出各个点阵的点数之外,仔细观察点阵图:你还有什么其它的发现?

(学生能够发现各个点阵的形状是正方形的,还能用1×1、2×2、3×3、4×4这样的算式来表示每个点阵的点数。)

(3)根据刚才发现的规律,想:第五个点阵是什么样子,独立画出来,并用算式表示点数。

(学生独立画出第五个5×5的点阵图)

(4)思考:照这样的规律继续画下去,第100个点阵的点数如何用算式来表示?第n个呢?

(结合发现的规律,引导学生逐步完善自己的想法,建立总结正方形点阵规律的模型。)

小组讨论:你觉得每个正方形点阵的点子总数与什么有关系?

(学会用简单的语言表述自己的想法,使得初步的形象感知得到提升)

小结:每个正方形点阵的点子总数可以看作是一个相同数字相乘的积,这个数字与点阵的序号有关,与每个正方形点阵每排的点子数也有关系。

2、刚才我们研究了一组正方形点阵中隐含的规律,那么对于同一个点阵来说,如果划分的方法不同,所呈现的规律也就不同。

(1)请大家仔细观察第五个正方形点阵中点的划分方法,你能发现什么规律?

学生会有如下发现

①是用折线划分开的。

②每条线内的点分别是1、3、5、7、9。

③这个正方形点阵的点数就可以表示为:1+3+5+7+9=25。

(2)如果把每条线所包围的点子数记下来,如何用算式来表示?

第一条线:1=1;

第二条线:1+3=4;

第三条线:1+3+5=9;

第四条线:1+3+5+7=16;

第五条线:1+3+5+7+9=25;

(3)每条线所包围的点子数与前面研究的一组正方形点阵的点子数有什么关系?(正好是第一到第五个点阵的点子数。)

(第二、三个问题需要老师引导,学生自己难以发现,尤其是第三个问题,学生很难想到它们和开始时依次出现的几个正方形点阵的点数之间的关系。当学生想不到这种联系时,是否一定要引导?)

(4)思考:表示这个正方形点阵的点数的算式有什么特点?

(这个点阵的点子总数可以看作是连续奇数的和。)

(5)如果按这样的划分方法划分第六个正方形点阵,它的点数该如何表示?

1+3+5+7+9+11=36;

(6)前面老师是把这个5×5的正方形点阵用折线进行了划分,你们还有哪些不同的划分的方法?在用算式表示上有什么规律?

学生的划分有以下几种

①横向划分:用算式表示为5+5+5+5+5;

②竖向划分:用算式表示为5+5+5+5+5;

③斜向划分:用算式表示为1+2+3+4+5+4+3+2+1;

至于前面两种方法,都可以简单地表示为:5×5;重点引导学生讨论第三种划分方法,观察这个算式,你们发现了什么?

学生的发现如下

算式里的数是5;

从1开始加到5再加回到1;

这个算式是两边对称的;

这个点阵的点数是中间那个数字5乘5的积;

教师引导:照这样的规律类推,第六个正方形点阵的点数如何表示?第9个呢?第n个呢?

(在这里把寻找不同划分方法的任务交给学生,既是学生前面探究过程思维的延续,又体现了学生学习的自主性,还用另一种方式解读了“练一练”中的第一题。培养了学生从不同的角度去发现问题,总结概括规律的能力。)

三、延伸应用,形成策略

1、除了我们刚才研究的正方形点阵,请大家猜猜看,还会有什么形状的点阵呢?

(学生列举了长方形点阵、三角形点阵、圆形点阵、椭圆形点阵等等。)

2、请大家尝试运用前面学会的方法探究长方形点阵规律。

(1)小组合作研究:如何用算式表示每个长方形点阵的点子数?

学生通过讨论很快达成共识

1×2;2×3;3×4;4×5;

(2)请你独立画出第五个长方形点阵并用算式表示出点数。

(学生独立画图并写出算式,互相交流。)

算式表示为:5×6;

(3)思考讨论:你们觉得自己所写的算式中的数字与图形中的点子之间有什么关系?

(学生的发现为:乘法算式中的第二个因数总是比第一个因数多1,第一个因数是长方形点阵的竖排点数,第二个因数是长方形点阵的横排点数。并没有发现第一个因数与点阵序号间的关系,因此,当要求他们写出18个点阵的点数时,出现了两种不同的答案:17×18、18×19。在争论各自的理由时,学生的注意力才联系到了点阵的序号与算式的关系,从而确定了正确答案。)

(4)照这样继续写,你能写出第n个长方形点阵的点数吗?

学生可以很顺利地写出:n×(n+1)。

3、看来对于任何一个点阵,只要我们认真观察研究,总能发现其独特的规律。在小组内研究三角形点阵中的规律,要求

(1)个人思考活动:观察给出的四个三角形点阵的规律,画出第五个三角形点阵。

(2)小组讨论:对自己画出的第五个三角形点阵进行划分,你能想到哪些不同的划分方法?分别用算式表示点数。

(学生活动)

全班交流

划分一:横向划分,1+2+3+4+5=15;

划分二:竖向划分,1+2+3+4+5=15;

划分三:斜向划分,1+2+3+4+5=15;

划分四:折线划分,1+5+9=15;

(对于前面的三种划分方法,都在我的预设之内,学生到此,已经很轻松地用语言表述出自己的想法:这样的三角形点阵的点数是从1开始的连续自然数的和。而对于第四种划分方法,是我没有想到的。有一个孩子却用非常强烈地要求,表达了自己的这种划分方法,并且说出了这个算式依次递加4的规律。)

4、同学们真了起!真正具有未来数学家的风范,用自己的聪明才智,发现并总结了各个不同的点阵图中隐藏的规律。那么你觉得应该从哪些方面来探究点阵的规律?

学生交流

仔细观察点阵的形状;

数清每一行的点子数;

看清前后两个点阵的变化……

(在这里不需要学生说出多么专业的、深奥的数学原理,只是引导学生对自己探究性学习方法的一个总结,尽管语言可能不够简练,总结不够到位,只要学生用自己的语言在表述,就是对学生思维训练的一个提升,一种飞越。)

四、课堂总结

1、点阵的知识在生活中有着广泛的应用,比如北京奥运会开幕式上的“击缶表演”、“太极表演”等,都是把一个人看作了一点,来排列有规律的队形。你还知道什么地方运用了点阵的相关知识?

学生交流

五子棋、阅兵式的方队、节日的花坛……

2、课后继续搜集点阵的相关资料,下节课继续交流。

(在这里,把学生的课堂学习延伸到生活,链接到学生已有的相关生活经验,然后让学生在生活中继续寻找哪里用到点阵的知识,体现了数学与生活的密切联系,数学来源于生活,又应用于生活。)

五年级数学简单的教案篇12

教学目标:

1、在观察、讨论、判断等活动中,经历初步认识扇形的过程。

2、了解扇形的特征,能在同一个圆中,根据圆心角的大小比较扇形的大小。

3、在活动中进一步积累认识图形的学习经验,增强观察能力,发展数学思维。

教学重点:

掌握扇形的特征。

突破方法:

通过扇子引出扇形这个抽象的概念,帮助学生理解并建立扇形的概念,并通过观察、讨论、判断等活动认识扇形。

教学难点:

在同一圆里,比较扇形的大小。

突破方法:

引导学生发现圆心角的大小决定扇形的大小。

教学准备:

多媒体课件

教学过程

一、谈话导入

教师拿出圆形折扇并打开,让学生观察。

谈话:你想到了什么图形?这样打开的扇子和圆的哪些知识能联系在一起?学生交流。

小结:今天这节课,我们一起来学习扇形。(板书课题)

二、互动新授

1.教学例3。

(1)认识扇形。

出示教材第88页例3的三幅图。

提问:这几幅图有什么共同的特点?它们的样子像什么?

学生讨论交流。

教师小结:它们都是由圆的两条半径和一段曲线围成的;它们都有一个角,角的顶点在圆心。

教师指出:上面各圆中的涂色部分都是扇形。

(2)认识扇形各部分的名称。

学生自学教材例3下面的一段话。

师生交流并明确:图中A、B两点之间的曲线是弧,它是圆的一部分。像图中∠1那样,顶点在圆心的角叫作圆心角。

讨论:同一个圆中,扇形的大小与什么有关?你准备怎样比较扇形的大小?学生独立思考后小组讨论。

组织学生操作:画大小相同的圆,在这个圆里画扇形,小组成员互相比较自己画的扇形的大小。

师生共同小结:同一个圆中,圆心角越大,扇形越大。

2.即时练习。

(1)完成教材第88页“练一练”第1题。

课件出示图形。

指名说说哪些是扇形及理由。

学生回答。

(2)完成教材第88页“练一练”第2题。

学生读题,小组交流。

指名口答。

(3)完成教材第88页“练一练”第3题。

学生判断三部分的大小并说说自己是怎样判断的。

提示:根据圆心角的大小,判断扇形的大小。

三、巩固练习

1.完成教材第91页“练习十三”第11题。

教师出示钟面,学生操作、画图,并说说:分针从12起所经过的部分都可以看作什么图形?(扇形)

2.完成教材第91页“练习十三”第12题。

提问:每个圆里的涂色部分和空白部分都可以看作什么图形?这些图形各占圆的几分之几?

学生独立思考,在小组内交流后完成。

四、课堂小结

这节课我们认识了扇形,知道了扇形是由圆的两条半径和一段曲线围成的。顶点在圆心的角叫作圆心角。同一个圆中,圆心角越大,扇形就越大,圆心角越小,扇形就越小。

板书设计

扇形的认识

同一个圆中,圆心角越大,扇形就越大;圆心角越小,扇形就越小。

五年级数学简单的教案篇13

《数的世界》是一节数学概念课,即教学因数和倍数。在老教材中是先建立整除的概念,再在此基础上认识因数倍数;而现在是在未认识整除的情况下用乘法算式直接认识倍数和因数。数学中的“起始概念”一般比较难教,而这部分内容学生是初次接触,对于学生来说是比较难掌握的。根据本节课知识的特点和学生的认知规律,在教学中我注重体现以学生为主体的新理念,努力为学生的探究发现提供足够的空间。

由于这是节概念课,因此有不少东西是由老师告知的,比如因数和倍数的概念。在认识了各类数之后,我创设有效了数学学习情境,让学生动手操作把12个小正方形摆成不同的长方形,再让学生写出不同的乘法算式,借助乘法算式直接告知因数和倍数的意义。这样在学生已有的知识基础上,从动手操作,直观感知,使概念的揭示突破了从具体到抽象,让学生自主体验数与形的结合,进而形成因数与倍数的意义,使学生初步建立了“因数与倍数”的概念。

为了突破本课的难点,我通过变式拓展,实践应用,促进了学生的智能内化。在理解因数和倍数中,我认为有两个关键性的问题是学生比较容易混淆的,第一就是因数和倍数的范围(非零自然数),我是这样处理的:通过一组算式让学生说谁的谁的因数,谁是谁的倍数,如3×5=156×8=489×4=3612×5=60等,学生越说越顺口,越说越有劲,我突然抛出了×6=9这个算式,结果有同学陷入了沉思(我认为这些同学感觉到了与刚刚的哪些算式有点不一样),但也有同学还是举手这样答道:和6是9的因数,9是和6的倍数,话一说完,就见那些沉思的同学有几个高高举起了手,迫不及待的说:我们说研究因数和倍数是在非零的自然数范围里,可这里的不是自然数,所以不可以说和6是9的因数,9是和6的倍数。我就趁热打铁,组织学生进行热烈的讨论,同学们统一了认识,真正认识到了因数和倍数的范围,从而为理解概念打好了坚实的基础。而第二个关键性的问题我认为就是因数和倍数的相互依存的关系,我采取了几个递进的环节进行处理:一开始我就直接告知,让学生鹦鹉学舌。如通过学生写的3×4=12这个算式,我就说,这时3和4是12的因数,12是3和4的倍数。通过一些类似的乘法算式让学生试着说,很快学生就有了第一感性认识;接着我用一个游戏让学生理解因数和倍数的相互依存,我举了三个数字卡片,分别是3、6和12,让学生很快说出谁是谁的因数,谁是谁的倍数?为什么?学生很快找到了3是6和12的因数,6也是12的因数;6和12都是3的倍数。我追问:那我说,6是因数,12是倍数可以吗?通过这个例子,学生认识到6相对于12是因数,而相对于3却是倍数;而12相对于6才是倍数,它相对于其他的数就说不定了,通过这个环节,学生很容易就理解了相互依存的含义,更好的理解了概念的内涵;最后我让同坐两人一组,一人说任意一个自然数,另一个同学则找出它是谁的因数,谁的倍数?并说出判断的依据。由于答案不,学生思考问题的空间很大,培养了学生的发散思维能力。

本节课,学生都沉浸在自己的角色体验中,享受到了数学思维的快乐,我想这才算是真正的“有效教学”。

五年级数学简单的教案篇14

教学内容:教材P2~3例1、例2及练习一第1、2、3题。

教学目标:

知识与技能:使学生理解并掌握小数乘以整数的计算方法及算理。

过程与方法:经历将小数乘整数转化为整数乘整数的过程,使学生认识到转化的方法是学习新知识的工具。

情感、态度与价值观:感受小数乘法在生活中的广泛应用。

教学重点:理解并掌握小数乘整数的算理,学会转化。

教学难点:能够运用算理进行小数乘整数的计算。

教学方法:迁移类推,引导发现,自主探索,合作交流。

教学准备:多媒体。

教学过程

一、情境导入

1.谈话:同学们都喜欢哪些运动呢?

(生回答自己喜欢的运动……)

2.导入:是啊,多参加户外运动,有利于身体健康。老师也经常参加户外运动,放风筝就是我的最爱。下课咱们一起去放风筝好吗?

3.提问:但放风筝之前要先去买风筝,所以咱们就先去买几只风筝吧!(展示教材第2页例l情境图)从图中你知道了哪些信息?

引导学生观察并思考:图中小明他们想买3个元的风筝需要多少钱?你会列式吗?

指学生回答:×3,教师板书:×3。

4.探索:观察这一道算式,它与我们以前学过的乘法算式有什么不同?

生观察后回答:这道算式的因数有小数。

5.揭题:以前我们学习的乘法都是整数乘整数,今天的算式中却出现了小数,这就是今天我们要研究的小数乘整数。(板书课题:小数乘整数)

二、互动新授

1.初步探究竖式计算的方法。

(1)引导学生准确算出一共需要多少钱?学生独立计算,并在小组内交流自己的想法。(师走到学生中,了解学生参与讨论的情况。)

(2)让学生说说自己的想法。

指名汇报,教师根据学生叙述板书,学生可能想出下面几种不同的方法:

方法1:连加。展示:++=(元)

师:你是怎么想的?

生:×3就表示3个相加,所以可以用乘法计算。(师板书意义)

方法2:化成元、角、分计算,先算整元,再算整角,最后相加。3元×3=9元,5角×3=1元5角,9元+1元5角=10元5角,即×3=(元)。

方法3:把元看作35角,则35角×3=105角=元。

(3)追问:刚才同学们开动脑筋想出了这么多方法,真了不起。如果要用竖式计算,你会算吗?请同学们想一想,并与同桌讨论:如何列竖式计算×37

引导:出示(边说边演示):

强调:我们可以把元转化成35角,用35角乘3得105角,再把105角转化成元。注意在列竖式时因数的末尾要对齐。

2.自主探究,进一步理解算理,掌握计算方法。

(1)教师出示算式:×5。

师:同学们看不是钱数了,没有元、角、分这样的单位了,还能不能计算出结果呢?请同学们独立思考,然后在小组内交流计算方法。

(2)学生汇报演示。

可能有两种方法:加法和乘法。根据学生的汇报,展示这两种方法。

(3)比较:(见板书设计)

引导:请同学们比较一下这两种方法,你喜欢哪一种呢,为什么?

生:用乘法比较简便。

(4)追问:仔细观察乘法算式,谁给大家解释一下,你是怎样把乘数转化成整数的?

生:先把小数点向右移动2位转化成72×5=360,得出结果后再把积的小数点向左移动两位就是。

质疑:既然把所得积的小数点向左移动两位,那这个积就应该是一个两位小数,为什么现在只有一位呢?

生:小数的末尾添上或去掉0,小数的大小不变,所以积末尾的0可以直接去掉。

(5)注意:同学们在计算小数乘整数时,想到了用转化的方法把小数乘法转化成整数乘法计算。那么,谁能和大家说说小数乘整数应该怎样计算,计算时应注意什么呢?

指导学生归纳出:计算小数乘整数的乘法,要先把小数看作整数来乘,乘完以后,看因数扩大了多少倍,再把乘出的积缩小相同的倍数。当积的末尾有“O”时,应先点上小数点,再把“0”去掉。

师:(出示教材第2页情境图)我们通过解决买风筝的问题,认识并学会了小数乘整数的计算方法。我们看图中还有几种不同的风筝,如果买3个其他形状的,需要多少钱呢?能不能很快地算出来?

学生独立计算,汇报交流。

师:同学们顺利地买完了风筝,那就让我们就一起把风筝放飞吧!

三、巩固拓展

1.教材第3页做一做第1题

想一想:小数乘整数与整数乘整数有什么不同?

2.教材第3页做一做第2题

同桌之间相互谈谈是怎样点小数点的。

3.指名板演教材第3页做一做第3题

4.不用计算,你能直接说出下面算式的结果吗?

148×23=3404

×23=()×23=()×23=()()×()=

四、课堂小结。同学们,这节课你们都学会了哪些知识?(学生自由发表想法)

作业:教材第4页练习练习一第1、2、3题。

五年级数学简单的教案篇15

教学目标

1、通过练习,使学生巩固对异分母分数加减法的理解,进一步提高计算能力,进一步增强数感。

2、通过练习练习,使学生能用分数加减法解决一些实际问题,进一步提高解决问题的能力,发展数学应用意识。

3、使学生在学习活动中进一步感受数学学习过程的探索性,获得成功的乐趣和体验。

重点

难点重点:巩固对异分母分数加减法的理解,进一步提高计算能力

难点:综合运用知识解决问题

教学准备

挂图

教学环节过程

基本练习

通过分子都为1且分母最大公因数只有1的异分母分数加减法的对比练习,巩固对异分母分数加,减计方法的理解,并启发学生发现一些计算规律,从而进一步提高计算异分母分数加减法的能力。

1、板书课题:异分母分数加减法

2、指导完成练习十四第5题。

(1)学生完成后展示学生作业,交流计算结果。

(2)指导探索规律

教师提问:这组题中的分数有什么共同特点?分母的最大公因数是1的两个数通分时的公分母有什么特征?每道题得数的分子与原来两个分数的分母又有什么关系?

教师指出:分母的最大公因数是1,分子都是1的分数相加,得数的分母是两个分母的积,分子是两个分子的和;分母的最大公因数是1,分子都是1的分数相减,得数的分母是两个分母的积,分子是两个分子的差。

(3)请学生举出几个类似的可以用这样的规律计算的算式。

学生独立完成左边两组题的计算。

学生进行观察,并在小组中说说自己的发现,再在全班进行汇报交流。

学生明确规律后根据规律直接写出右边两组题的结果。

学生举例,互相交流。

综合练习

课堂总结

板书设计通过第6,7题的练习提高学生估计及对计算结果的把握能力,进一步增强数感。

通过练习,提高学生综合运用数学知识解决实际问题的.能力。

通过观察实物图进行估计,再利用估计的数据解决相关问题,培养学生收集信息,选择信息去解决问题的能力。

通过课堂总结帮助学生对本节课要掌握的知识进行梳理。

1、完成练习十四第6题。

学生判断后教师组织汇报交流,让学生说说自己的想法。

教师帮助学生进行归纳:分数是否接近1/2,看分子是否接近分母的一半;分数是否接近0,看分子是否接近0;分数是否接近1看分子与分母是否很接近。

2、完成第7题。

教师组织汇报交流,追问:你是怎么想的?

让学生通过计算来验证自己的估算是否正确。

3、指导完成练习十四第8题。

(1)理解题意,明确两个量杯中各有多少毫升水。

(2)指导方法:400毫升和800毫升应该等于多少升呢?你是怎样想的?

4、指导完成练习十四第9题。

(1)理解题意。

(2)指导方法:估计一下每种蔬菜摆放的面积大约各占货架的几分之几?你是怎样想的?

(3)让学生独立完成(2)(3)题的计算,教师组织交流结果。

通过练习,你有什么收获?在解决问题时要注意什么?

作业:完成补充习题第41页

异分母分数加减法

1/2+1/3=(2+3)/(2x3)

1/2-1/3=(3-2)/(2x3)

接近0:1/10,2/25

接近1/2:4/7,9/20,7/15

接近1:8/9,11/13

学生在小组中进行判断,说说自己的想法。

学生在小组中先估计,然后汇报交流自己的想法。

学生独立完成计算,并与估算结果比较估算是否正确。

学生观察图片,先得出两个量杯中分别有2/5升,4/5升,再独立完成(1)(2)问题的解答。

学生在小组中进行讨论交流,指名上台指图说说自己的想法。

学生独立完成(2)(3)题的计算,并进行汇报。

学生自由发言。在分数大小比较的练习中可以渗透类似的题目,让学生用运用估算的方法比较大小,提高学生综合运用知识的能力。

31093