教案吧 > 小学教案 > 五年级教案 >

五年级数学教案课件

时间: 新华 五年级教案

教案是指教学活动的计划和组织安排,包括教学目标、教学内容、教学方法、教学资源、评价方式等方面的设计。怎么写好五年级数学教案课件?小编给大家分享一些五年级数学教案课件,方便大家学习。

五年级数学教案课件篇1

一、创设情境,游戏导入。

1、游戏导入。考考你的眼力,看看谁能找到形状、大小完全一样的三角形。(黑板预先出示如下题目和三角形图)(学生找到的完全一样的三角形重叠给学生看后贴在黑板的左边。)

(1)找一找:出示几组完全一样的三角形,打乱顺序后让学生找。

(2)拼一拼:这些完全一样的两个三角形能拼成你学过的什么图形?

(把贴在左边的完全一样的几对三角形让学生上台来拼成几种学过的图形,如:长方形、正方形、平行四边形和两个直角三角形合起来的大三角形,分别贴在黑板的左边。)

3、引入新课:这些拼成的图形的面积你会计算吗?

二、动手操作,探索交流。

1、引导学生寻找思路:刚才我们这些图形都是由完全相等的两个三角形拼成的,那么这些三角形与拼成的图形有什么联系呢?三角形的面积有没有计算公式呢?能否从这些拼成的图形中把三角形的面积计算出来呢?

2、小组合作探究。

3、展示学生的探索过程,汇报交流。

师:哪个小组愿意将你们探索的结果与大家交流分享?

汇报的每一小组两人代表带着实验报告表上台来汇报实验情况,并把拼出的图形贴在黑板上。

两个完全一样的锐角三角形拼成一个平行四边形,平行四边形的底相当于三角形的底,平行四边形的高相当于三角形的高;每个三角形的面积是拼成的平行四边形面积的一半。

还有不同的拼法吗?

4、归纳并用字母表示公式。

(1)引导学生归纳三角形面积的计算公式。

师:根据刚才的分享交流,现在我们一起来归纳三角形的面积计算公式。拼成的平行四边形的面积会计算吗?那三角形的面积怎样计算呢

拼成的平行四边形的面积=底×高

一半

三角形的面积=底×高÷2

(2)用字母表示公式。

师:如果用字母S表示三角形的面积,a表示三角形的底,h表示三角形的高,那么三角形的面积计算公式用字母怎样表示?(板书:S=ah÷2)

三、实践运用,拓展创新。

1、学习P85的例1

师:你们真棒!把三角形的面积计算公式推导出来了,下面我们应用公式来解决一些实际问题。少先队员的标志是红领巾,你们知道自己每天佩戴的红领巾面积有多大吗?

这条红领巾的底长就是1米,老师把高也量出来了33CM(课件出示P85的例1),现在你们会计算了吗?

学生列式计算。教师巡视找来学生不同答案的练习本,展示学生的完成情况,让学生点评。

S=ahS=ah÷2

=100×33=100×33÷2

=3300(平方厘米)=1650(平方里米)

(生1)做错了,他那样做是求平行四边形的面积,不是求三角形的面积。

那求三角形的面积该怎么样?

S=ah÷2,不要忘记除以2。(强调÷2。)

2、认识交通警示牌,通过计算渗透安全教育。(课本第86页)

师:少先队员要模范遵守交通规则,交通警示牌能让我们更好的遵守交通规则。那你们认识这些警示牌吗?(逐个让学生认识)

……

__部门为了大家的安全,准备制作两块这样的警示牌,需要多少铁皮,同学们能帮忙算算吗?(课件出示题目和图)

3、课本第86页第3题:选择一个你自己喜欢的三角形量出有关的数据计算面积。

4、动脑筋。比较下面两个三角形的大小(小组讨论)练习题第5题。

结论:等底等高的两个三角形面积相等。

四、评价体验,总结延伸。

能谈谈这节课你有什么收获吗?能评评各小组或其他同学吗?

五年级数学教案课件篇2

学法指要

1.有一块三角形菜地,底为160米,它比高的2倍少20米。菜地面积是多少平方米?

思路分析:此题是求三角形面积的题目。求三角形的面积的关键是知道三角形的底和高。题目中底已经直接给出,而高没有直接给出。因此这题要想求出面积,必须先求出高。求高是求1倍量的,应先把160米补上20米后,正好对应2倍。因此高这样计算:(160+20)÷2=180÷2=90(米)。

再求三角形菜地的面积,直接应用公式计算就可以了。

解:(160+20)÷2

=180÷2

=90(米)

160×90÷2

=14400÷2

=7(平方米)

答:菜地的面积是7平方米。

2.有一块梯形田,上底6米,比下底的一半少0.4米,高比上底多2米,求梯形田的面积是多少平方米?

思路分析:这题的题目要求是求梯形的面积。求梯形的面积计算公式是S=(a+b)×h÷2,根据公式说明求梯形面积的关键是知道上底、下底和高的长度。

观察已知条件,我们发现这个梯形的下底和高都没有直接给出,因此应先求出下底和高,再求面积。

根据条件,求下底是求上底的一半少0.4的数是多少,列式是:

6÷2-0.4=3-0.4=2.6米。

根据条件,求高是求比上底多2的数是多少,列式是6+2=8(米)。

最后求出梯形面积,直接公式计算就可以了。

解:(1)6÷2-0.4=3-0.4=2.6(米)

(2)6+2=8(米)

(3)(6+2.6)×8÷2

=8.6×8÷2

=68.8÷2

=34.4(平方米)

答:梯形田的面积是34.4平方米。

3.如图:梯形的面积是24平方分米,求梯形的下底是多少厘米?

思路分析:这题已知梯形的面积和上底以及高,求下底的长度,是利用公式逆解的题。

我们可以看出,由于两个完全一样的梯形能够拼成一个平行四边形,要计算梯形的下底,必须先把梯形面积乘以2还原成拼得的平行四边形的面积,平行四边形的高等于梯形的高,平行四边形的底等于梯形的上底和下底之和。这样,我们用拼得的平行四边形面积除以高就得出了梯形上底和下底之和,再减去梯形的上底,就算出了下底的长度。

注意,这题中的高的单位名称、面积的单位名称与要求的下底单位不统一,应先统一单位,再计算。

解:24平方分米=2400平方厘米

4分米=40厘米

2400×2÷40-45

=4800÷40-45

=120-45

=75(厘米)

答:这个梯形的下底是75厘米。

4.一个三角形的底是6厘米,面积是12平方厘米,和它等高的平行四边形的底是三角形底的2.5倍,求平行四边形的面积。

思路分析:我们知道,求平行四边形的面积的关键是知道平行四边形的底和高,已知条件中指出,平行四边形的底是三角形底的2.5倍,而三角形的底题目中直接给出,用乘法就可直接求出平行四边形的底了。

题目中又告诉我们三角形和平行四边形等高,因此,只要求出三角形的高就可以了。而求三角形的高又是利用公式逆解的题,这与梯形给出面积利用公式逆解题思路一样,只要先还原成拼得的平行四边形的面积,再算高就可以了。

解:12×2÷6

=24÷6

=4(厘米)

6×2.5=15(厘米)

15×4=60(平方厘米)

答:平行四边形的面积是60平方厘米。

5.求组合图形的面积。

单位:厘米

思路分析:要求这个组合图形的面积,要先做一条辅助线(如图)。

这样就可以看出这个组合图形是一个梯形和一个长方形组合而成的。梯形的下底就是长方形的长,高就是45减35的差,只要利用梯形和长方形的面积公式就可以计算出这两个基本图形的面积,最后用加法就可求出组合图形的面积了。

解:(1)梯形面积:

(20+50)×(45-35)÷2

=70×10÷2

=350(平方厘米)

(2)长方形面积:

50×35=1750(平方厘米)

(3)组合图形面积:

350+1750=2100(平方厘米)

答:这个组合图形的面积是2100平方厘米。

6.小莉走一步的平均长度是55厘米。她从家走到新华书店的距离是1705米,要走多少步,才能走到?

思路分析:这题是知道平均步长和两地间的距离,求步数的题目。由于这题的单位名称不统一,只要先统一单位,就能直接用两地距离除以平均步长就可以了。

解法一:1750米=175000厘米

175000÷55=3100(步)

解法二:55厘米=0.55米

1750÷0.55=3100(步)

答:要走3100步才能走到。

思维体操

1.面积相等的两个三角形,第一个底长是40厘米,高是35厘米;第二个底长是70厘米,高是多少厘米?

思路分析:这道题是求三角形的高,是利用公式逆解的题。题目中给出了两个三角形的面积相等,又直接给出了第一个三角形的底和高,这样就求出了第一个三角形的面积,这也就等于知道了第二个三角形的面积,最后再利用三角形的面积公式逆解此题就可以了。

解:40×35÷2

=1400÷2

=700(平方厘米)

700×2÷70

=1400÷70

=20(厘米)

因为这两个三角形的面积相等,还原成平行四边形的面积也相等。所以还可以还可以这样列式计算:

40×35÷70

=1400÷70

=20(厘米)

答:第二个三角形的高是20厘米。

2.一个三角形和一个平行四边形的面积相等,底也相等,三角形的高是8厘米,平行四边形的高是多少厘米?

思路分析:题目中的三角形和平行四边形的面积相等,也就是,不仅面积相等,两个图形的底也相等,也就是a1=a2,要使面积相等,三角形的高必须是平行四边形的高的2倍,才能达到要求,所以三角形的高是这个平形四边形高的2倍。

解:8÷2=4(厘米)

答:平行四边形的高是4厘米。

3.一个三角形与一个长方形面积相等,已知长方形的周长是37厘米,长是16厘米。而三角形的底是长方形长的一半,高是多少?

思路分析:这道题的已知条件指出,三角形与长方形的面积相等,只要求出长方形的面积就等于知道了三角形的面积。

根据条件,已知长方形的周长和长,要先求出宽,才能求面积。我们用37÷2-16就可以算出宽了,再利用公式就求出面积了。

又根据条件,三角形的底是长方形长的一半,就有求出三角形的底,再利用公式逆解就能求出三角形的高了。

解:37÷2-16

=18.5-16

=2.5(厘米)

16×2.5=40(厘米)

40×2÷(16÷2)

=80÷8

=10(厘米)

答:这个三角形的高是10厘米。

评析:以上三题的解题思路相同,要抓住两个图形面积相等的这个已知条件去分析思考,因此这两题是“面积相等,图形状不同”的题目,求另一图形的底或高,都是利用公式逆解的题目。

要想很快找到解题方法,认真审题非常重要,求面积的公式也要相当熟练,要从题目的已知条件入手,利用公式,求出所求问题。这种思维方法,大家还应掌握。

4.一个正方形的边长增加5厘米,它的面积就会增加95平方厘米,原来的正方形的边长是多少厘米。

思路分析:这题要想求出所求问题,可以根据已知条件,画出一幅平面图,我们可以对照图来分析。

通过画图,我们可以看出,阴影部分的面积就是增加的95平方厘米的面积。而阴影部分是由两个由原正方形为长,5厘米为宽的长方形面积和以5厘米为边长的正方形面积组合而成的。我们只要从95平方厘米中减去5×5的积再除以2再除以5就算出原正方形的边长了。

解:5×5=25(平方厘米)

95-25=70(平方厘米)

70÷2=35(平方厘米)

35÷5=7(厘米)

答:原正方形的边长是7厘米。

注意,这题不能这样画图。

如果按照上图的画法,等于把正方形的每条边长增加了10厘米,题意理解错,肯定结果就错了。

5.一个平行四边形,若底增加2厘米,高不变,面积就增加4平方厘米。若高减少1厘米,底不变,面积就减少3平方厘米。求原平行四边形的面积。

思路分析:根据题意,我们也可画出这题的平面图。我们也可以对照图来分析。

通过观察图,明显看出,当底增加2厘米,高不变时,原来的平行四边形的面积增加了一个和原来的平行四边形相等的底是2厘米的平行四边形的面积,这样就求出了原来平行四边形的高。

我们还可以从图上看出,当高减少1厘米而底不变时,原来的平行四边形就减少了一个和原来的平行四边形等底、高是1厘米的平行四边形的面积,这样就可算出平行四边形的底了。最后根据条件,就可算出原平行四边形的面积了。

解:4÷2=2(厘米)

3÷1=3(厘米)

3×2=6(平方厘米)

答:这个平行四边形的面积是6平方厘米。

评析:以上两题是比较复杂的平面图形的有关计算题目。为了使条件和问题形象地展示出来,我们就可以通过图来解决。画图法也是解答数学难题的方法之一,它对于解答数量关系复杂的题目,有着很重要的作用。因此,大家不能忽视画图法的学习。

智能显示

心中有数

本单元学习的主要内容:

1.平行四边形面积计算公式的推导;平行四边形面积的计算公式;利用平行四边形面积的计算公式解决实际问题。

2.三角形面积计算公式的推导;三角形面积的计算公式;利用三角形面积的计算公式解决实际问题。

3.梯形面积计算公式的推导;梯形面积的计算公式;利用梯形的面积公式解决一些实际问题。

4.组合图形面积的计算方法以及计算。

5.用工具测地面的直线距离。

6.步测和目测的方法以及有关计算。

五年级数学教案课件篇3

信息社会已经到来,信息的获取、分析处理将成为现代人最基本的能力和素质的标志。本课正是基于这一理念,选择具有丰富现实背景的学习材料,学生了解了折线统计图的特点、作用后,在应用部分设置了分析数据、处理信息的练习题,以培养学生根据数据、图像分析事物并作出合理推断的能力。

1、了解折线统计图的特点和作用,初步学会折线统计图的绘制方法。

2、能分析折线统计图,培养学生利用数据、图像分析、判断、预测问题结果或趋势的能力。

3、让学生体验折线统计图在实际生活中应用的广泛性和重要性,培养正确的数学观,并通过相互交流、讨论,培养合作交流的能力。

一、引入:

1、出示:条形统计图

(1)某电影院上月各类影片观众人数统计图

(2)新芽书苑20__年3月第一星期故事书销售情况统计图

2、提问:你已知道了条形统计图的哪些知识?

3、现实生活中还有另一种统计图,你见过吗?出示:折线统计图。

(1)上虞电影院20__年(1~6)月观众人数统计图。

(2)百官镇一农户96~20__年人均收入统计图。

二、展开:

(一)折线统计图的特点和作用。

1、四人小组讨论;条形统计图和折线统计图有什么相同点和不同点?

(1)学生自由讨论交流。

(2)这两类统计图最大的区别是什么?

2、结合条形统计图的特点,归纳折线统计图的特点。

3、从折线统计图上我们能看出数量的多少吗?还能了解到什么?

4、结合课本进一步深入了解折线统计图的特点和作用。

(二)折线统计图的绘制。

1、你认为哪幅条形统计图用折线统计图来绘制更合适?

2、小组讨论:把这幅条形统计图绘制成折线统计图你有什么办法?

A、小组讨论B、汇报C、提问:绘制的关键是什么?

3、学生尝试绘制。

(1)出示“我们的调查资料”。

(2)想一想,哪几组数据用折线统计图绘制比较合适?

(3)请选择其中一组数据绘制。

(4)小组交流绘制情况,分析增减变化的情况,并推断发展趋势。

(5)大组交流绘制情况,并纠错。

三、应用

1、出示:李_(住院)的体温变化情况统计图,提问:看图后,你能推断出什么?

2、出示:百官镇一农户96~20__年人均收入统计图。

思考:A、看图后你有什么感受?

B、你能提出哪些数学问题?

3、对比练习:

(1)出示:“吉祥鞋店20__年凉鞋、棉鞋销售情况统计图”。

思考:A、两种鞋的销售趋势分别怎样?

B、你有什么建议?

(3)出示:两家游泳衣专卖店的销售情况统计图。

思考:A、比较这幅图,说说哪一幅比较符合我们的生活实际?

B、猜猜为什么乐乐专卖店会有这样的销售现象

四、总结

你又有什么新收获?你是用什么方法学会的?

五、课外作业

省略

五年级数学教案课件篇4

[教学内容]精打细算(第2-3页)

[教学目标]

1:理解小数除法的意义。

2:掌握小数除以整数(恰好除尽)的计算方法。

[教学重点]小数除法的意义,小数除以整数(恰好除尽)的计算方法。

[教学难点]商的小数点与被除数的小数点对齐。

[教学过程]

一、导入新课,创设情境,提出问题

1、淘气打算去买牛奶,你从图上得到了什么数学信息?

2、根据图上的数学信息,你能提出哪些数学问题?

3、教师根据学生提出的问题,引导学生列出算式:

11.5÷512.6÷6

引导学生观察这两个算式与以往我们学过的除法算式有什么不同。(被除数都是小数,除数都是整数)

师:我们今天就来研究小数除以整数的计算方法,看看淘气到底应该买哪个商店的牛奶。

二、探索新知,解决问题

1、师:两个商店牛奶的单价分别是多少呢?我们先算一算甲商店的牛奶单价。

引导学生结合自己的生活经验和已经掌握的知识先自己想一想,并且尝试计算,然后在小组内讨论交流一下想法。

2、学生交流讨论,老师巡视指导。

3、请小组选派代表汇报讨论结果,指名学生板演。

4、老师引导学生比较汇总的各种方法,认为哪个方法比较简便实用?学生可能会将11.5元转换为115角进行计算,老师应追问:为什么要化成115角进行计算?让学生进一步明确将小数转化成整数进行计算的思想和方法。也可能有学生直接运用竖式进行计算,老师应大胆放手让学生说出自己的想法,引导出“商的小数点与被除数的小数点对齐”。

5、理解算理:师生共同探究“商的小数点为什么要与被除数的小数点对齐”。先让学生说出自己的观点,再进行引导。将11.5元平均分成5份,先将11平均分成5份,每份是2元,还剩1元,再将1元看作10角,加上5角,一共15角,平均分成5份是3角,3的单位是角,写成以元为单位的小数时,3应该写在十分位上,因而小数点在3的前面,正好与被除数的小数点对齐;或个位上的1是10个十分之一,加上十分位上的5,总共是15个十分之一,平均分成5份,每份是3个十分之一,因而小数点应在3的前面。教师视学生回答角度进行引导阐释。

6、引导归纳总结,明确小数除法的计算方法:按照整数除法的计算方法;商的小数点与被除数的小数点对齐。

7、学生尝试计算乙商店牛奶价格,注意商的小数点与被除数的小数点对齐。

三、巩固练习,拓展延伸

1、完成教材第3页练一练第1题。

2、我是小小神算手。

20.4÷496.6÷4255.8÷31

引导学生通过对比发现小数除以两位数与除以一位数的,都要注意商的小数点要与被除数的小数点对齐。

3、完成教材第3页练一练第4题。

四、总结:今天你有什么收获呢?小数除法在竖式计算中有什么要注意的?

[板书设计]

精打细算

甲商店:11.5元=115角11.5÷5=2.3(元)

乙商店:12.9元÷6=2.15(元)

商的小数点要和被除数的小数点对齐。

五年级数学教案课件篇5

教学内容:教材第19页的内容

教学目标:

知识与技能:让学生了解在生活情景中确定物体位置的多种方法,能在具体情境中学会用“第几排第几座”、“第几层第几号”、“第几组第几个”等方式描述物体在平面中的相对位置,或根据平面位置确定物体。

过程与方法:知道可以在平面上用两上数据确定物体的位置,在确定位置的过程中培养学生的空间观念渗透平面坐标最基本的知识。

情感态度价值观:体会生活中处处有数学,产生对数学的亲切感。

教学重难点:

重点:学会用“第几排第几座”、“第几层第几号”、“第几组第几个”等方式描述物体在平面中的相对位置,或根据平面位置确定物体,并解决一些生活中的实际问题。

难点:学根据“第几排第几座”、“第几层第几号”、“第几组第几个”等方式描述物体在平面中的相对位置。

教学方法:直观演示法与自主探索、小组合作的方法。

教学准备:多媒体、投影仪等有关内容图片。

教学过程:

一、创设情境,引出新知。

1、 出示多媒体课件或图片:一位教师到图书馆借书,询问图书管理员工具书所在位置,然后图书员告诉他图书所在位置。

2、 学生观看多媒体课件或图片,听教师讲解,初次接触位置这个概念。

3、 引入本课学习并板书课题。

4、 学生在教师的引导下回忆某物体的位置,确定它们的位置,联系具体生活场景和经验,进入到下面的学习中。

设计意图:通过具体的直观演示以及具体的情景联系,充分调动学生对学习的兴趣,为学习新知奠定基础。

二、例题展示:

1、投影出示例1的内容。

(1)学生读题,了解已知信息。

教师引导学生可以根据自己在教室里的位置来思考这个问题。

(2)问:已知张亮同学是第二列、第三行的同学,你能指出谁是张亮同学吗?

学生联系实际的基础上根据图中张亮所在的列数的行数来确定张亮的位置,教师给予肯定。

(3)如果用(2,3)表示张亮同学的位置,你能表示王艳和赵强同学的位置吗?看一看有什么不同?

启发学生思考,引导学生用数对表示位置。

2、引导学生用刚才的方法小结:先从前往后确定第几行,再从左往右确定第几列,这样就能用第几行第几列确定同学们的位置。

设计意图:通过具体的实例引导学生认识第几行和第几列的判断方法,经历应用数学知识分析问题和解决问题的过程。

三、做一做,巩固确定位置的方法。

1、出示情景。组织学生观察情景,思考教师的提问。

2、引导学生利用在例题中学到的确定位置的方法来回答问题。

3、组织学生用一组数字来表示它们的位置。学生思考后可交流讨论,最后全班汇报。

四、反馈练习。

完成教材第19 页的做一做。

五、课堂小结。

六、作业:选用课时作业。

板书设计:

位置

竖排叫列   横排叫行

确定第几列一般从左往右数,确定第几行一般从前往后数。

课后小记与反思:

第二课时  位置(二)

课型:讲授课

教学内容:教材第20页及相关教学内容

教学目标:

知识与技能:知道在生活中如何根据示意图找到位置。

过程与方法:理解可以用一组数来确定位置关系,通过确立一个坐标图形来找准方位。

情感态度价值观:体会生活中处处有数学,产生数学的亲切感,把位置关系的学习与生活场景紧密联系起来。

教学重难点:

重点:能够通过示意图找到物体的具体位置。

难点:理解用一对数来确定位置的方法,并把它用于实践中。

教学方法:直观演示法和自主探究与小组合作的学习方式。

教学准备:多媒体课件或实物等。

教学时间:

教学过程

一、联系生活,引入新课。

1、谈话导入。

学生回顾在生活所见的示意图,回答教师问题,。

2、引入新课,板书课题。

设计意图:通过对前面知识的复习,以及具体的直观演示和具体的情景联系,充分调动学生对学习的兴趣,为学习新知奠定基础。

二、例题展示。

1、出示例2。

学生读题,明白示意图,初步了解题目中的每个位置是用一个坐标的形式来表示的,每一个游览区和一对数相对应。

2、学生可提问质疑,可小组讨论,可互相回答问题。全班交流。

交流时教师要引导学生认识示意图,知道它们是如何标示各区域所在位置的。

小结:横排和竖排所构成的区域就是整个动物园的范围。

每个小区域所对应的数值就是整个动物园这个大范围的一个坐标点。通过这些坐标点,我们就能够确定某个游览区的具体位置。

3、组织学生说说其他场馆的位置,同时教师板书。

4、引导学生进一步理解场馆位置与坐标中各点对应的关系。

5、练习:在图上标出这些场馆的位置。

6、小结:通过例题我们把一个区域的示意图用坐标的形式表示出来,通过对应的坐标位置就可以确定所要找的地方的位置。

三、做一做,巩固确定位置的知识。

出示练习,引导学生完成练习。

四、反馈练习。

五、课堂总结。

在练习中,要紧紧把握图形,从题目入手,寻找位置与坐标数值的对应关系,明确它们之间是一一对应的关系,可以互相判断对方。

六、作业:选用课时作业。

板书设计:

位置

第三课时 位置(练习课)

教学内容:人教版小学数学五年级教材P21——23练习五2、3、5、6、7、8题

教学目标:

1、通过练习,使学生进一步提高用数对表示、确定位置的能力。

2、通过练习,进一步提高学生抽象思维能力,发展学生的空间观念,体验数学与生活的联系。

教学重点:通过练习,使学生进一步提高用数对表示、确定位置的能力。

教学难点:发展学生的空间观念,体验数学与生活的联系。

教学过程:

一、 基础性练习

1、填一填,再回答

⑴、用数对表示平面图中的位置时,我们规定:竖排叫做( ),横排叫做( ),确定第几列一般从( )往( )数,确定第几行一般从( )往( )数。

⑵、○在第4列第5行,用数对表示是( , ); 用数对表示是(2,7),那么它在第( )列第( )行,(8,7)在图中表示第( )列第( )行的位置。 2、动物园的平面图。

①、动态生成方格图,渗透坐标思想

②、你能用数对表示出大门的位置吗?请生汇报,说理。

③、游戏:猜景点

任选你想去的一个景点,用数对表示它的位置。小组内同学看数对说地名,看看说得对吗?全班交流。 如果想去的景点是在( ,4),可能是哪里?

得出:一个数能准确说出一个地点的位置吗?数对中的两个数能帮助我们很快在平面图上找到某个具体的地点。

④鳄鱼潭在(2,4),请标出。图上(4,2)和(2,4)表示的位置相同吗?为什么? 得出:数对表示位置时不仅要用两个数,还要注意两个数的顺序。

⑤小强的位置在(3,1),他要去的地方位置在(6,5),你能沿着方格线画出他的行走路线吗? 过渡:数对能表示一个人的具体位置,平面图上一个地点,利用数对还能准确描述图形的具体位置。

二、巩固性练习:

书本第2、3、5、6、7、8题,学生先独立练习,老师再有选择、有重点地加以点评,指正(为节省课堂教学时间,这部分练习可以课前布置)。

三、发展性练习

1、移动图形

⑴、在格子图上画一个直角三角形ABC,并构建一个平面示意图,确定列和行,用数对表示这个直角三角形的三个顶点。

⑵、把三角形ABC向右平移5格再向上平移两格后的图形用A’、B’、C’标出对应的点,并用数对表示A’、B’、C’的位置。

⑶、把三角形ABC绕B点逆时针90°,得到的图形用A”、B”、C”标出对应的点,并用数对表示A”、B”、C”的位置。 2、五子棋

明明和小强下五子棋:

明明执黑子先下,小强执白子后下。 明明和小强的落子位置用数对表示是:

明明:1、(4,5) 2、(5,6) 3、(6,7) 4、(7,8) 5、(4,7) 6、(5,7)

小强:1、(5,5) 2、(6,6) 3、(3,4) 4、(8,9) 5、(4,4) 6、(7,7)

⑴、请你根据所给的信息,画出一个简单的棋盘,并在棋盘上画出黑子和白子。

⑵、你认为谁赢的可能性大?如果你是明明,你的下一步棋子准备放哪?请用数对表示。 3、涂色游戏

根据下面给出的数对给方格涂上相应的颜色,并说说涂出的图形是什么。

红色:(3,4),(4,5),(5,6),(6,7),(7,6),(8,5),(9,4),(4,4),(5,4),(6,4),(7,4),(8,4)。

蓝色:(4,1),(4,2),(4,3),(8,1),(8,2),(8,3)。 黄色:(8,6),(8,7)。

绿色:(7,10),(8,9),(8,11),(9,9),(9,11),(10,9),(10,11),(11,10)。

四、课堂总结:

用数对确定位置在生活中有着广泛的应用,同学们说说在哪些领域会用到这个知识?我们学好这个知识对于大家以后指导自己的生活,工作都有重要的作用。我们今天练习的这些内容?你觉得自己掌握的情况如何?有哪些地方还需要加强?

五年级数学教案课件篇6

学习目标:

1.复习面积的意义、常用的面积单位、长方形和正方形的面积计算公式,初步建立图形的等积变形思想。

2.体会转化、估计等解决问题的策略,为教学平行四边形等图形的面积计算作比较充分的知识准备和思想准备。

3.学习重难点:

对图形进行分解与组合、分割与移拼的转化方法

学具准备:

学具盒

学习过程:

一、分一分、数一数

1、下面两个图形的面积相等吗?

2、怎样数的?在小组里交流一下。

二、移一移、数一数

1、怎样移动右边图形中的一部分,能很快数出它的面积?

2、利用分割与平移,保持面积不变,把多边形转化为长方形,计算它的面积。

这个图形的面积是多少?

三、数一数、算一算

1、下面是牧场中一个池塘的平面图。先把池塘上面整格的和不满整格的分别涂上不同的颜色,数一数各有多少个,再算出池塘面积大约是多少平方米?(不满整格的,都按半格计算)。

2、你算出的面积大约是多少?

这样的算法合理吗?

在小组里说说自己的想法。

3、你能算出右边树叶的面积大约是多少平方厘米吗?

四、估一估、算一算

1、采集几片树叶,先估计他们的面积个是多少平方厘米,再把树叶描在第122页的方格纸上,用数方格的方法算促他们的面积。

2、你能用这样的方法算出自己手掌的面积吗?

五、小结:

今天我们进行面积是多少实践活动,怎样计算不规则图形的面积呢?

五年级数学教案课件篇7

一、教学内容

1.因数和倍数

2.2、5、3的倍数的特征

3.质数和合数

二、教学目标

1.使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。

2.使学生通过自主探索,掌握2、5、3的倍数的特征。

3.逐步培养学生的数学抽象能力。

三、编排特点

1.精简概念,减轻学生记忆负担。

三方面的调整:

A.不再出现“整除”概念,直接从乘法算式引出因数和倍数的概念。

B.不再正式教学“分解质因数”,只作为阅读性材料进行介绍。

C.公因数、公因数、公倍数、最小公倍数移至“分数的意义和性质”单元,作为约分和通分的知识基础,更突出其应用性。

2.注意体现数学的抽象性。

数论知识本身具有抽象性。学生到了高年级也应注意培养其抽象思维。

四、具体编排

1.因数和倍数

因数和倍数的概念

过去:用÷=表示能被整除,÷=表示能被整除。

现在:用=直接引出因数和倍数的概念。

(1)用2×6=12给出因数和倍数的概念。

(2)用3×4=12进一步巩固上述概念。

(3)让学生利用因数和倍数的概念自主发现12的其他因数。

(4)可引导学生利用一般的乘法算式×=归纳出因数和倍数的概念。

(5)说明本单元的研究范围。

注意以下几点:

(1)虽然不出现“整除”一词,但本质上仍是以整除为基础,因此,乘法算式中的乘数和积都必须是整数。

(2)因数和倍数是一对相互依存的概念,不能单独存在。

(3)注意区分乘法各部分名称中的“因数”和本单元中的“因数”的联系和区别。

(4)注意区分“倍数”与前面学过的“倍”的联系与区别。

例1(一个数的因数的求法)

(1)可用不同的方法求出18的因数(列出积是18的乘法算式或列出被除数是18的除法算式),但应引导学生有序思考。

(2)用集合圈表示因数,为后面求两个数的公因数作铺垫。

一个数的因数的特点

(1)因数是其自身,最小因数是1。

(2)因数个数有限。

(3)此结论通过例1和“做一做”中的特例通过不完全归纳法得出,体现了从具体到一般的思路。

例2(一个数的倍数的求法)

(1)求法:用该数乘任一非0自然数所得的积都是该数的倍数。

(2)用集合圈表示倍数,为后面求两个数的公倍数作铺垫。

做一做

与例1结合起来,提供了2、3、5的倍数,为后面探讨2、3、5倍数的特征作准备。

一个数的倍数的特点

(1)最小倍数是其自身,没有的倍数。

(2)因数个数无限。

(3)此结论通过例1和“做一做”中的特例通过不完全归纳法得出,体现了从具体到一般的思路。

2.2、5、3的倍数的特征

因为2、5的倍数的特征在个位数上就体现出来了,而3的倍数涉及到各数位上的数字之和,较为复杂,因此后安排3的倍数的特征。本部分内容对于熟练掌握约分、通分、分数的四则运算有很重要的作用。

2的倍数的特征

(1)从生活情境“双号”引入。

(2)观察2的倍数的个位数,总结出2的倍数的特征。

(3)介绍奇数和偶数的概念。

(4)可让学生随意找一些数进行验证,但不要求严格的证明。

5的倍数的特征

(1)编排方式与2的倍数的特征类似。

(2)可进一步总结既是2的倍数又是5的倍数的特征,即10的倍数的特征。

3的倍数的特征

(1)强调自主探索,让学生经历观察――猜想――__猜想――再观察――再猜想――验证的过程。

(2)可任意选择一个数,用正面、反面的例子对结论进一步验证。

(3)也可对任一3的倍数的各位数调换位置,更深刻地理解3的倍数的特征。

3.质数和合数

质数和合数的概念

(1)根据20以内各数的因数个数把数分成三类:1、质数、合数。

(2)可任出一个数,让学生根据概念判断其为质数还是合数。

例1(找100以内的质数)

(1)方法多样。可以根据质数的概念逐个判断,也可用筛法。

(2)把握教学要求:知道100以内的质数,熟悉20以内的质数。

五、教学建议

1.加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。

从因数和倍数的含义去理解其他的相关概念。

2.要注意培养学生的抽象思维能力。

五年级数学教案课件篇8

教学内容:

北师大版数学五年级上册6—7页的内容。

教学目的:

1、通过观察、探究、交流等活动,让学生经历发现3的倍数特征的过程。

2、在理解的基础上,掌握3的倍数的特征,并能利用特征进行判断。

3、通过探究3的倍数的特征的活动过程,让学生获得积极的情感体验,激发学习数学的兴趣

教学重点:

理解3的倍数的特征。

教学难点:

探索活动中,发现规律,并归纳出3的倍数的特征。

教具准备:

实物投影仪、数字卡片等。

学具准备:

每人几张数字卡片。

教学过程:

一、谈话导入,揭示课题。

我们能不能通过观察个位上的数来确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们共同来研究。

板书课题:3的倍数的特征。

二、探索交流、获取新知。

(一)活动一:复习巩固。

1、前面我们研究了2和5的倍数的特征,能用你的话说一说他们的特征呢?

2、请你举例说明。(请学生说,教师把学生的举例板书在黑板上。)

3、说说能同时被2和5整除的数有什么特征?(观察特征。用自己的话说一说。)

(二)活动二:探索研究3的倍数的特征。

1、在书上第6页的表中,找出3的倍数,并做上记号。

(先独立完成,看谁找的快?)

2、观察3的倍数,你发现了什么?

教师参与到讨论学习中。

先独立思考,想出自己的想法。

然后与四人小组的同学说说你的发现。

生1:3的倍数个位上的数有0、1、2、3、4、5、6、7、8、9没什么规律。

生2:十位上的数也没有什么规律。

生3:将每个数的各个数字加起来试试看

3、你发现的规律对三位数成立吗?找几个数来检验一下。

(1) 自己先找几个数试一试。

(2)然后在小组内说说你验证的结论。

(三)活动三:试一试

在下面数中圈出3的倍数。

28   45   53   87   36   65

(先自己圈,然后说说你是怎样判断的?)

(四)活动四:练一练

1、请将编号是3的倍数的气球涂上颜色。

36   17   54   71   45   48

(自己独立完成,在小组内说说自己的想法。)

2、选出两个数字组成一个两位数,分别满足下面的条件。

3   0   4   5

(1)是3的倍数。

(2)同时是2和3的倍数。

(3)同时是3和5 的倍数。

(4)同时是2,3和5的倍数。

(独立完成,说说你的窍门和方法。)

(五)活动五:实践活动

在下表中找出9的倍数,并涂上颜色。

(可以在自主实践以后再交流。)

三、总结。

通过这节课的学习,你有什么收获?

板书设计:

课题:探索活动(二)3的倍数的特征

1、在下面数中圈出3的倍数。

28   45   53   87   36   65

2、选出两个数字组成一个两位数,分别满足下面的条件。

3   0   4   5

(1)是3的倍数。

(2)同时是2和3的倍数。

(3)同时是3和5 的倍数。

(4)同时是2,3和5的倍数。

五年级数学教案课件篇9

教学目标:

1.使学生在现实情境中了解负数产生的背景,初步认识负数,知道正数和负数的读写方法会用正,负数记载相反量。知道0既不足正数,也不足负数,负数都小于0。

2.使学生初步体验数学与日常生活的密切联系,进一步激发学习数学的兴趣。

3.在联想、概括,推演中,体会数学的丰富、联系以及其生活中的应用价值,渗透进行对立统一、联系发展等最朴素的哲学思想教育。

教学重点:理解负数的意义,初步建立负数的概念。

教学难点:理解,正数、负数和0之间的关系。

教学过程:

一、从“生活事例”引入——了解负数的来源

1.同学们,不知不觉就到了金秋时节了(课件呈现美丽的秋景图片),大家觉得我们苏州这两天的天气怎么样?(学生回答后,课件呈现苏州天气预报、温度计图)这个温度计上显示的是昨天的最高气温,你能看出昨天的最高气温是多少吗?

(学生汇报过程小,引导学生了解温度计上一般有左右两行刻度以及左右两边刻度名称,左边代表摄氏度,通常用字母℃表示,一大格表示两度)

2.据科学研究,气温在18—24℃时,人体感觉最舒服。昨天达到28℃,我们就感觉热了。猜想:从现在往后,温度计上的红色酒精柱会怎样变化呢?

(设计意图:气温变化是学生生活中每天都会面对和感觉到的自然话题,将此作为课堂教学的开始,自然,贴切,能够吸引学生的广泛参与、考虑到学生对温度计的认识井不是非常熟悉,先单独安排一个看温度计的插曲,为后面新知教学做好了铺垫)

二、由“相反关系”展开——理解负数的意义

(一)教学例l,初步认识负数。

1.老师也是一个非常关注大气变化的人,几乎每天都要看中央电视台的天气预报。有一次我记录了三个城市的最低气温。第一个是东方大都市上海(出示温度计图),你能从温度计上面看出当天上海的最低气温吗?

2.第二个城市是(出示温度计图),你能从温度计上面看出南京的最低气温吗?这个温度比上海的气温怎样?

3.第三个城市是我们伟大祖国的首都北京。根据你的生活经验,北京的气温通常要比上海和南京怎样?学生提出猜想后,出示温度汁图,让学牛说出北京气温”零下4℃”。

4.刚才二个城市的最低气温中,非常巧,南京正好是0摄氏度。而上海超过了0摄氏度,是零上4摄氏度;北京却低于0摄氏度,是零下4摄氏度。这是一组相反的量。大家能想出巧妙的方法来记录这两个相反的气温吗?

5.学生讨论交流自己的设想,老师选择性板书:+4℃或4℃,-4℃等,并讲解负号,正号以及它们的读写。

6.巩固练习。

(1)选择合适的数表示各地的气温:

当天我还记下了几个城市和地区的最低气温,(分别出示西宁、哈尔滨、香港等城市温度计图)你能用这样的方法分别写出它们的最低气温吗?

(2)小小气象记录员。

我们一起来当气象记录员,一边听天气预报,一边记录气温。课件演示:赤道零上40摄氏度,北极零下26摄氏度,南极零下40摄氏度。

(设计意图:在引入负数这一环节,顺接着课始“看温度计读气温”这一问题情景,从祖国三大城市的气温由高渐低相继展开,教学流畅,衔接自然。而“零上4摄氏度”和“零下4摄氏度”这两个生活中常见的相反温度用怎样的数可以表达并区分?这一问题不仅让学生感受到过去所学的数在表达相反意义的量时的局限性,产生学习新数的需求,而且促使他们借助生活经验联想到在“4”这个数前添加不同的符号表达相反意义的量的方法)

(二)教学例2,深入理解负数。

1.(显示珠穆朗玛峰图)谁知道它有多高吗?(8844米)这个高度是从哪儿到上顶的距离呢?

(学生回答后,在添加8844米前面添加”海拔”,并在图上添加一条海平面的水平虚线)

2.世界上也不是每个地方都比海平面高的,比如,我国的第五大盆地——吐鲁番盆地,就低于海平面155米(接在珠穆朗玛峰图旁边出示盆地图)。

大家能从刚才表示气温的方法受到启发,也用—种比较科学的方法来表示这两个海拔高度呢?(板书:+8844米-155米)

3.模仿练习。

课本第6页“练习一”第1,2题。

4.小结:通过刚才的研究,我们看到,在表示气温时,以0℃为界,高于0℃时用正数表示,低于0℃时用负数表示;在表示海拔高度时,以海平面为界,高于海平面用正数表示,低于海平面用负数表示。

(设计意图:用正负数来表示海拔高度,是学生对相反的量的再一次感知。由于前面有对气温认识的基础,所以本环节力求利用前面学习中获得的用正负数表示气温的经验和范式,在突出“以海平面为界”这一基准后,就让学生尝试解决。学生在先前经验的作用下,容易想到“高于海平面为正、低于海平面为负”的计数规则。在深层次上把握了负数产生的背景和计数的要领与方法)

三、以“比较反思”提升——深化概念的内涵

1.我们用这些数分别表示零上和零下的温度以及海平面以上和海平面以下的高度。(课件同时呈现:温度计和海拔高度图,其中0℃和海平面用红色线标出)

2.观察这些数(课件出示),你能把它们分类?按什么分?分成几类?小组讨论。小结:像+4,40、+8844这样的数都是正数,像-4,-7,-11,-155这样的数都是负数。

3.讨论:0属于正数或负数呢?(指导学生借助网络在设置的讨论区内发表意见)

引导学生辨析:从温度计上观察,0摄氏度以上的数都是正数,0摄氏度以下的数都是负数。海平面以上的数都是正数,海平面以下的数都是负数。

教师借助课件观察画有箭头的轩线(即数轴),认识到:0是下数和负数的分界线,0既不是正数也不是负数。正数大于0,负数小于0。

4.练习-完成第3页“练…—练”第l题(在原题中增加0)。

提问:

(1)0为什么不写?(0既不是正数,也不是负数)

(2)观察这些正数,你发现了什么?

(我们以前学过的除0以外的数都是正数)

5.出示“你知道吗?——中国是最早使用负数的国家”。(学生自由浏览网上资源)

(设计意图:本课是学生初次认识负数,为了让学生对负数的内涵与外延有完整的认识,这里将温度计、海拔高度图同时出示,让学生直观地感受零度刻度线、海平面是分界点。让学生很好地借助直观情景来理解接纳正数,负数与0三者间的关系。同时在习题中注意让学生体会过去已学过的数(除0外)都是正数,以帮助学生沟通新旧知识的内在联系)

四、用“多层练习”巩固——拓展负数的的外延

1.基本练习。

每人写出5个正数和5个负数,并进行交流:读出所写的数,并判断写的是否正确。

2.对比练习。

选择合适的结果填在括号内:

2007年,我国发射成功的嫦娥卫星在太空中向阳面的温度为()以上,而背阳面却低于(),但通过隔热和控制,卫星舱内的温度始终保持在(),保证了卫星能够正常开展探测工作。

①21℃②100℃③-100℃

3.应用练习。

(1)“生活中的负数”信息发布会。

说一说:生活中还有哪些情况也可以用正数或负数来表示?

随后课件配合出示有关图片。

(2)小结:像零摄氏度以上与零摄氏度以下,海平面以上和海平面以下,地面以上和地面以下,存入和取出,比赛的得分和失分,股票的上涨和下跌等等都是相反意义的量,都可以用正负数来表示。

4.拓展延伸。

调查自己家一个月的收入、支出情况,并作好记录,记录后对数据进行分析,把自己的感受与家人说一说,用数学日记记下自己的感受及开支建议。

五年级数学教案课件篇10

课题:简单的土石方计算

教学目标:

1、结合具体事例,经历认识“方”并解决土石方计算问题的过程。

2、了解“方”的具体含义,能够灵活运用体积计算公式解决一些简单的现实问题。

3、在综合运用所学知识解决现实问题的过程中,感受数学在生活中的广泛应用,培养数学应用意识。

教学重点:

熟练运用长方体和正方体的体积计算公式解决实际问题。

教学难点:

长方体和正方体的体积计算公式演变成“横截面的面积乘长”。

教学过程:

一、巧设情境,激趣引思。

同学们,前面几节课我们学习了体积的有关内容,请大家思考以下问题。

(1)什么是体积?体积的单位有哪些?它们之间的进率是多少?

(2)怎样求长方体的体积?正方体的体积,长方体和正方体体积计算的统一公式是什么?

(3)学生分组讨论,指名回答问题。

这节课我们运用体积的有关知识,解决实际生活中的问题

二、自主互动,探究新知。

课件出示例题1:让学生读题,讨论:挖出的土与地窖的体积有什么关系?让学生尝试解决问题交流计算的结果。

教师介绍“方”,让学生用方描述挖出的土。

课件出示例题及拦河坝的和示意图。

让学生观察,问:你知道了哪些信息?师帮助学生理解题意。

怎样计算拦河坝的体积?为什么这样计算?使学生知道:拦河坝的体积=底面积×高。

让学生尝试解决问题,并交流计算的方法和结果。

三、应用拓展,反思交流。

1、应用:

(1)试一试帮助学生弄清图意,然后鼓励学生提出问题,师生合作解决。

(2)练一练第1、2题,帮助学生理解题中的事物和信息,再独立完成。

第3、4题,让学生先说一说,要解决问题,先要求出什么?

2、拓展:

练一练5板书设计:

简单的土石方计算2×1.6×1.5=4.8(立方米)拦河坝的体积=横截面面积×长答:要挖出4.8立方米的土。

横截面的面积:(8+3)×4÷2=22(平方米)土石体积:22×50=1100(立方米)答:修这个拦河坝一共需要土石1100立方米。

五年级数学教案课件篇11

教学目的:

本游戏活动以摸球作为载体。通过此数学游戏,目的是让学生在活动中经历实验、猜想与验证的过程。

教学过程:

1、师向学生交代清楚活动的操作顺序:两人一组,然后记录颜色,再放回。记录摸出的红球、白球次数可用画“正”字的方法。

2、组织活动:

(师给每组口袋内准备的白球与红球数的比例应相同。)

学生两人一组,一人摸球,一人记录。

活动过程中,教师要及时进行巡视,以纠正学生可能出现的不当操作。

3、汇报交流并猜想:

每组学生操作完毕后,组织全班进行汇报交流。并将汇报结果记录在黑板上,以便学生进行猜想。也要请他们说说猜想的根据。

4、验证猜想:

请学生打开各小组的口袋,验证猜想的结果与实际结果是否相符。

5、小组讨论:

投影出示讨论的题目包括表格。然后出示问题。

注意:学生在具体讨论时,也会出现各种各样的猜想与推选的方法,对此,要让学生说说自己的理由,特别要指导学生应考虑比赛外的各种因素。

6、课堂练习:

89页第3题。

提示学生:由于任选的随机性,故可能出现特例。对此,在解答时,不要求学生作统一的回答。

五年级数学教案课件篇12

一、学习目标

(一)学习内容

“正方体的认识”是《义务教育教科书数学》(人教版)五年级下册第三单元第20页例3以及课后做一做。本节内容是在学生已经直观的认识了长方体、正方体等立体图形的基础上进行教学的。学生能通过实物或模型辨认正方体,知道正方体有6个面,每个面都是正方形。在教学正方体时,应激活经验,回顾特点,对比长方体特点,感知“正方体是特殊的长方体”。

(二)核心能力

能运用迁移类推的学习方法,通过观察、操作,认识正方体,建立空间观念,提高分析对比,抽象概括的能力。

(三)学习目标

1.在认识长方体的基础上,通过观察正方体、动手操作折正方体,自主探究正方体关于面、棱、顶点的特征,建立空间观念。

2.通过对比分析长方体和正方体的特征,抽象概括出长方体和正方体之间的关系。

(四)学习重点

掌握正方体的特征,理解长方体和正方体的关系。

(五)学习难点

建立空间观念,形成立体图形的初步印象。

(六)配套资源

实施资源:《正方体的认识》名师教学课件,各种正方体实物,长方体模型,剪好书本第123页的正方体展开图。

二、学习设计

(一)课前设计

(1)长方体的特征有哪些?我们是从几方面来认识它的?请自己整理出来。

(2)请找找生活中的正方体物品,并思考:关于正方体你都知道了哪些知识?

(二)课堂设计

1.谈话导入

师:课前让同学们寻找生活中的正方体物品,谁来和大家分享一下你找到了什么?

师:生活中有许多物体的形状是正方体,正方体也叫立方体,这节课我们一起来认识它。板书课题。

【设计意图:结合生活实际,学生对正方体已有一定的认识,因此通过分享学生在生活中找到的正方体,使学生对正方体有了初步的了解,激发了进一步学习正方体的兴趣。】

2.问题探究

(1)观察模型,探究特征

师:长方体和正方体都属于立体图形,回想一下,我们是从几方面来认识长方体的?

(面、棱、顶点,长宽高)

师:对于正方体,你们准备从几方面来认识?

生自由发言。

师:现在请你们借助手中的正方体物品来观察研究,看看正方体都有哪些特征?

同桌合作,自主探求正方体的特征。

交流汇报。(汇报时重在交流探究的过程和方法)

预设:

①正方体有6个面,每个面都是正方形并且6个面都相等;

②正方体有12条棱,每条棱都相等;

③正方体有8个顶点。

小结:同学们从棱、面、顶点三方面进行研究,得出了“正方体是有6个完全相同的正方形围成的立体图形,12条棱长度相等”的结论。

(2)制作模型,加深认识特征

师:认识了正方体的特征,现在请你们动手制作一个正方体,制作完后,量出它的棱长是多少厘米,并向同桌介绍你制作的正方体的特征。

用剪好的书本第123页的正方体展开图做一个正方体。

展示学生作品分享制作感想。

【设计意图:学完长方体后,学生已明确了面、棱、顶点的概念,知道了从哪些方面探究图形特征,因此放手让学生自主探究,充分经历自主探究的过程,通过观察、动手,学生亲身感知正方体这个立体图形。考查目标1】

(3)对比观察,探究长方体和正方体的关系

师:我们都是从面、棱、顶点来认识长方体和正方体,它们之间有什么相同点和不同点呢?请4人小组,用你们喜欢的方式整理出来。

交流汇报后,教师用表格的形式进行整理。

引导归纳长方体和正方体的关系:正方体可以看成是长、宽、高都相等的长方体。

3.巩固练习

(1)第20页的做一做。用棱长为1cm的小正方体搭一搭。

①搭一个稍大一些的正方体,至少需要多少个小正方体?动手试一试。

②用12个小正方体搭一个长方体,可以有几种不同的搭法?记录搭的长方体的长、宽、高。

③搭一个四个面是正方形的长方体,其余两个面有什么特点

4.课堂总结

师:通过这节课的学习,你有什么收获?

小结:从面、棱、顶点三方面认识了正方体,有6个面,都相等,12条棱也都相等,有8个顶点,正方体是特殊的长方体。

五年级数学教案课件篇13

教学内容:

九年义务教育六年制小学数学第十册“异分母分数加减法”(121页)。

教学目标:

1、理解异分母分数加减法的算理,掌握异分母分数加减法的算法,并能正确进行计算和验算。

2、渗透转化的数学思想和方法。

3、培养学生的合作、探索的精神及迁移推理和概括的能力。

教学重点:

异分母分数加减法的计算法则。

教学难点:

运用通分解决异分母分数不能直接相加减的问题。

教具准备:

课件、实物投影、练习题纸

教学过程

一、激趣导入

1、谈话:同学们,今天这节课我们继续和分数做朋友。能告诉老师你喜欢和哪个分数做朋友吗?(学生举例,师板书分数,在8个左右)

2、现在请你任选其中两个分数,组成一个加法或减法算式。比一比:谁写的又快又多

交流汇报,板书算式

你愿意给它们分分类吗?同桌合作,并说说你分类的依据。

根据学生回答,把板书圈成左右两块。

左边这一组题有什么共同特点?怎样计算同分母分数加、减法?你能找一个与“同”意思相反的词吗?(异),请同学们猜一猜:这节课我们将学习什么?

3、揭题:今天这节课我们一起探究异分母分数加减法

二、合作探究、学习新课

1、巡视导学、自学尝试:

有勇气向它挑战吗?我们就以+为例,请你用自己的智慧攻克这座新的堡垒。

学生自主尝试。师巡视,吸取信息,选择不同算法的学生板演。学生的算法可能有:+=+==1;+=等。

2、思考质疑:

对这些算法你有什么想法?为什么第一种算法是不对的?(得出结论,只有分数单位相同才能直接相加减)

3归纳小结:

你认为异分母分数的加法计算应怎样进行?

板书:先通分,然后按照同分母分数加法进行计算。

4、尝试巩固

任选黑板上一加法算式计算,同桌交换批改。

5、挑战减法

通过刚才的学习我们已经掌握了异分母分数的加法,请你猜一猜:异分母分数的减法应怎样计算?(学生主动猜测)

我们的猜想到底对不对,我想请大家自己来证明,好吗?

提出要求:以四人小组为单位,选择算式进行计算,然后归纳方法,并再次进行尝试。

异分母分数加减法由收集及整理,小组交流。交流渗透验算的`方法。

6、小结

谁来说说我们这节课学了什么?你能用一句话概括它的方法吗?(补充板书)

三、课堂百草园

1.知识窗

1)异分母分数相加减,先(),然后按照()法则进行计算。

2)分数的分母不同,就是()不相同,不能直接相加减,要先()化成()分数再加减。

3)分数加减法的验算方法与整数加减法的验算方法()。

4)+=+=

-=+=

+=+==()

2.比一比:小小神算手

+=-=

-=+=

3.填一填:说说为什么这样填,应怎样验算

(1).()+=(2)()-=

4.小小观察手:先计算,后观察,再总结.

+=+=+=

+=+=

学生计算,相互校对。说说你有什么发现?把你的发现告诉你的同桌。

师生交流:分子为1,分母互质的两分数相加,和的分母是加数分母的乘积,分子等于加数分子之和。

你能用字母表示你的结论吗?+=(a、b>0,且互质)

如果中间是减号呢?有规律吗?这个问题留待课后同学们自己去探索。

5.海阔天空:(括号中是两个异分母的最简分数,它们可以是……..)

+=

(说明,由于分数没有录入,请老师们根据自已需要适当修改)

五年级数学教案课件篇14

教学内容

人教版课标实验教材五年级下册第60——64页。

教学目标

1、知道分数的产生,理解分数的意义,掌握分数单位。

2、在具体的生活情境中感悟分数的意义,理解单位“1”的含义,体会部分与整体的关系,培养学生的抽象概括能力。

3、通过合作学习使学生获得成功、兴趣、愉悦、兴奋这些丰富的情感体验,并感受到生活中处处有分数。

教学重点

自主探究分数的意义。

教学难点

建立单位“1”的概念。

教学过程

一、导入新课

师出示分数3/7 6/8 1/4 认识吗?读一读。这些数都是我们曾经学过的分数。

师:你们知道分数是怎样产生的吗?想知道吗?从古至今,我们在进行测量、分物的时候往往不能得到整数的结果,就用分数来表示。(课件演示)

二、探究新知

1、动手操作,理解1/4

师:今天我们就进一步来认识分数,了解分数的意义.(板书课题) 为了让大家更好的理解分数的意义,今天老师为大家准备了一个正方形、4支笔、8颗糖。

活动要求:现在我们以1/4为例,请同学们4人一组,,通过折一折、分一分、涂一涂的办法表示出它的1/4。

2、小组合作,交流方法

师:分好的同学就与同组的小伙伴交流一下,说说1/4是怎么得到的?1/4的含义是什么?

组1:我们选的是正方形。我们把正方形平均分成了4份,每一份是这个正方形的1/4。

组2:我们选的是4支笔。把4只笔平均分成了4份,其中一份是这些笔的1/4。

组3:我们选的是8颗糖。把8个糖平均分成了4份,其中一份是8个糖的1/4。

3、建立单位“1”的概念

师:仔细观察这3幅图,它们有什么相同的地方?

生1:都是平均分成了4份,都表示了各自的1/4。

生2:被分的东西不一样,每一份也不一样。

师:对,大家都发现原来是因为被分的东西不一样,有的'是一个物体、有的是一些物体。像这样的一个物体或一些物体,我们都可以把它看作是一个整体。(板书“整体”)一个整体可以用自然数1来表示,我们通常把它叫做单位“1”。(板书单位“1”)

4、归纳分数的意义

师:谁来说说什么是分数?

生:把单位“1”平均分成一份或几份,就可以用分数表示。

师:一个整体用什么表示?平均分是什么意思?若干份是什么意思?(生:很多份)

5、练习:

四、认识分数单位

自学课本,学生汇报什么是分数单位。

生:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。

师:你能个举例子来说明吗?

生:2/3的分数单位是1/3。(板书2/3)

师:他有几个这样的分数单位?(2个)

师:3/4的分数单位是多少?11/23呢?17/120呢?你们找分数单位怎么又准又快呀?有什么简便的好方法?”

生:分数的分母是几,它的分数单位就是几分之一,分子是几,就有几个这样的分数单位。

五、巩固练习

六、全课小结

师:今天这节课你有什么收获?对自己学习情况进行简单评价。有收获的同学占全班人数的几分之几?(百分之百)在学习评价的时候也用到了分数,分数真是无处不在,希望大家课后到生活中去寻找分数,进一步去了解分数。

五年级数学教案课件篇15

教学目标和要求

1.理解百分数的意义,正确地读写百分数能运用百分数表示事物。

2.会解决有关百分数的简单实问题

教学重点

解决有关百分数的简单实问题

教学难点

体会百分数与现实生活的密切联系

教学准备

组织学生收集生活中的分数、百分数

教学时数

1课时

教学过程

备注栏

一、复习旧知

让学生说说百分数的含义

二、指导练习

1.教科书第73页第3题

要求学生自己独立完成,最后全班讲评

2.教科书第75页第8题

先让学生理解题意,明白“成活率”指的是成活的棵数与所有植树总棵树的百分几。

独立完成后,全班讲评

3.教科书第75页第10题

先让学生明白“优秀率”的含义,鼓励学生找出等量关系,列方程解答。

4.教科书第75页第11题

先看表,弄清题意,然后独立完成。

学生汇报全班讲评

5.教学“实践活动”

先组织学生在课堂上交流,体会百分数、分数之间的联系。

然后鼓励学生分别总结生活中使用百分数和分数的例子,结合具体事例谈谈自己的体会。

31586