教案吧 > 小学教案 > 五年级教案 >

五年级下册数学的教案

时间: 新华 五年级教案

编写教案有助于更好地满足学生的学习需求,提高学生的学习效果。优秀的五年级下册数学的教案是什么样的?下面给大家带来五年级下册数学的教案,供大家参考。

五年级下册数学的教案篇1

教学目标:

1、能力目标:能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。

2、知识目标:学习整数乘以分数的计算方法,让学生亲自经历探究整数乘以分数的计算原理,学生能够熟练准确的计算整数乘以分数。

3、情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。

重点难点:

学生能够熟练的计算整数乘以分数

教学方法:

师生共同归纳和推理

教学准备:

教学参考书、教科书

教学过程:

一、复习导入

教师出示教学板书,请学生计算下列分数加减运算题。

教师:来回巡视学生的做题情况,并提问学生说说自己如何计算的?

学生寻找完毕,纷纷举手准备回答问题。

教师提问学生回答问题。(先通分,再进行分子与分子相加减;分母不变…)并注意更正学生的错误和表扬回答问题的同学。

二、讲授新课

同学们我们学习一种新的运算:分数乘法,让学生想一想什么是分数乘法?

学生同桌之间讨论,教师提问学生回答问题。

教师板书例题,让学生想一想如何计算?

学生列出算式3× =,学生同桌之间相互讨论,如何计算整数乘以分数?

教师提问学生说一说自己是怎样计算的?

(学生1:3× = = ;学生2:3× = = = = ……)

教师和学生总结整数乘以分数的计算方法,整数乘以分数,只把整数乘以分子,分母不变。)

三、巩固练习

做课本2页涂一涂,算一算,2个 的和是多少?

让学生熟练计算,教师及时纠正学生错误的计算方法。

做课本试一试1、2题。

四、课堂小结

同学们,这一节课你学到了哪些知识?(提问学生回答)

板书设计:

分数乘法

分数乘以整数的计算方法:整数乘以分数,只把整数乘以分子,分母不变。

五年级下册数学的教案篇2

教学目标

1、掌握整除、约数、倍数的概念.

2、知道约数和倍数以整除为前提及约数和倍数相互依存的关系.

教学重点

1、建立整除、约数、倍数的概念.

2、理解约数、倍数相互依存的关系.

3、应用概念正确作出判断.

教学难点

理解约数、倍数相互依存的关系.

教学步骤

一、铺垫孕伏(课件演示:数的整除下载)

1、口算

6÷515÷323÷7

1.2÷0.324÷231÷3

2、观察算式和结果并将算式分类.

除尽

除不尽

6÷5=1.215÷3=15

1.2÷0.3=424÷2=12

23÷7=3......2

31÷3=10......1

3、引导学生回忆:研究整数除法时,一个数除以另一个不为零的数,商是整数而没有余数,我们就说第一个数能被第二个数整除.

4、寻找具有整除关系的算式.

板书:15÷3=515能被3整除

5、分类除尽

除不尽

不能整除

整除

6÷5=1.2

1.2÷0.3=4

15÷3=15

24÷2=12

23÷7=3......2

31÷3=10......1

二、探究新知

(一)进一步理解”整除“的意义.

1、整除所需的条件.

(1)分析:24能被2整除,15能被3整除;

23不能被7整除,31不能被3整除;(商有余数)

6不能被5整除;(商是小数)

1.2不能被0.3整除;(被除数和除数都是小数)

(2)引导学生明确:第一个数能被第二个数整除必须满足三个条件:

a、被除数和除数(0除外)都是整数;

b、商是整数;

c、商后没有余数.

板书:整数整数整数(没有余数)

15÷3=5

2、用字母表示相除的两个数,理解整除的意义.

(1)讨论:如果用字母a和b表示两个数相除,那么必须满足几个条件才能说a能被b整除?

(板书:a÷b)

学生明确:a和b都是整数,除得的商正好是整数而没有余数,我们就说a能被b整除.

(板书:a能被b整除)

(2)继续讨论:在什么情况下才能说a能被b整除?(板书:b≠0)

学生明确:整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除(也可以说b能整除a).

3、反馈练习.

(1)下面的数,哪一组的第一个数能被第二个数整除?

29和336和121.2和0.4

(2)判断下面的说法是否正确,并说明理由.

a.36能被12整除.()

b.19能被3整除.()

c.3.2能被0.4整除.()

d.0能被5整除.()

e.29能整除29.()

4、”整除“与”除尽“的联系和区别.

讨论:综合以上所学知识讨论,”整除“和”除尽“有什么联系?又有什么区别?

(举例说明)

(二)约数、倍数的意义

1、类推约数、倍数的意义.

(1)教师讲解:15能被3整除,我们就说15是3的倍数,3是15的约数.

(2)学生口述:

24能被2整除,我们就说,24是2的倍数,2是24的约数.

10能被5整除,我们就说,10是5的倍数,5是10的约数.

a能被b整除,我们就说a是b的倍数,b是a的约数.

(3)讨论:如果用字母a和b表示两个整数,在什么情况下才可以说a是b的倍数,b是a的约数?(在数a能被数b整除的条件下)

(4)小结:如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数).

2、进一步理解约数、倍数的意义.

(1)整除是约数、倍数的前提.学生明确:约数和倍数必须以整除为前提,不能整除的两个数就没有的数和倍数的关系.

(2)约数和倍数相互依存的关系.

学生明确:约数和倍数是一对相互依存的概念,不能单独存在.

(3)反馈练习:

A、下面各组数中,有约数和倍数关系的有哪些?

16和2140和2045和15

33和64和2472和8

B、判断下面说法是否正确.

a、8是2的倍数,2是8的约数.()

b、6是倍数,3是约数.()

c、30是5的倍数.()

d、4是历的约数.()

e、5是约数.()

3、教师说明:以后在研究约数和倍数时,我们所说的数一般不包括零.

4、教学例2:12的约数有哪几个?

(1)引导学生合作学习,讨论分析.

(2)汇报、板书:

12的约数有:1、2、3、4、6、12

(3)练习:15的约数有哪几个?

(4)学生明确:

一个数的约数是有限的.其中最小的约数是1,的约数是它本身.

5、教学例3:2的倍数有哪些?

(1)引导学生合作学习,讨论、分析.

(2)汇报、板书:

2的倍数有:2、4、6、8、10......

(3)练习:2的倍数有哪些?

(4)学生明确:

一个数的倍数的个数是无限的,其中最小的倍数是它本身.

三、全课小结

这节课,我们在进一步研究整除的基础上又学到了什么?通过学习你知道了什么?

(板书课题:约数和倍数的意义)

四、随堂练习

1、下面的说法对吗?说出理由.

(1)因为36÷9=4,所以36是倍数,9是约数.

(2)57是3的倍数.

(3)1是1、2、3、4、5,...的约数.

2、下面的数,哪些是60的约数,哪些是6的倍数?

3412162460

教师说明:一个数可以是另一个数的约数,也可以是某个数的倍数.

3、下面的说法对吗?为什么?

(1)1.8能被0.2除尽.()1.8能被0.2整除.()

1.8是0.2的倍数.()1.8是0.2的9倍.()

(2)若a÷b=10,那么:

a一定是b的倍数.()a能被b整除.()

b可能是a的约数.()a能被b除尽.()

五、布置作业

1、先写出下面每个数的约数,再写出下面每个数的倍数(按照从小到大的顺序各写5个)

101336

2、在下面的圈里填上适当的数.

六、板书设计

约数和倍数的意义

探究活动

五年级下册数学的教案篇3

教学目标:

1.借助实际操作和图形语言,理解一个数除以分数的意义和基本算理。

2.掌握一个数除以分数的计算方法,并能正确计算。

3.培养学生解决简单实际问题的能力。

教学重难点:

1.掌握一个数除以分数的计算方法,并能正确计算。

2.整数除以分数的计算法则推导过程。

教学过程:

一、创设情景 激趣揭题

1.猜一猜:有4个苹果,每人得到2个,1个,1/2个,你知道这三 次分别是几个人分苹果吗?

2.引入并板书课题:分数除法(二)

设计意图:设疑激趣。 明确目标。

二、扶放结合 探究新知

1.分一分,引导感知一个数除以分数的意义。

2.画一画:引导完成27页的画一画,理解分数除以分数的计算方法。

3.引导完成28页的填一填,想一想,你发现了什么?

4.引导归纳计算方法。

设计意图: 理解一个数除以分数的意义。 总结归纳计算法则。

三、反馈矫正

出示P28的试一试。

1.统一分数除法的计算法则。

2.指导完成P28练一练的1~4题。

四、小结评价 布置预习

1.引导小结:通过这节课的学习,你有什么收获?

2.布置预习: P29 分数除法(三)

板书设计: 分数除法(二)

4÷1/2=4×2=8 ;4÷1/4=4×4=16

一个数除以分数的意义与整数除法的意义相同。 一个数除以分数,等于乘这个分数的倒数。

五年级下册数学的教案篇4

教学目标

1、使学生经历探索3的倍数的特征的过程,知道3的倍数的特征,能正确判断一个数是否是3的倍数。

2、使学生在探索3的倍数的特征的过程中,进一步培养观察、比较、分析、归纳以及数学表达的能力,感受数学思维的严谨性及数学结论的确定性,激发学生学习兴趣。

教学重难点

探索3的倍数的特征,使学生掌握3的倍数的特征,会判断一个数是否是3的倍数。

教学过程

一、创设情境

课件出示:

填一填:

1、个位上的数是_________________的自然数一定

是2的倍数,也叫_________。

2、个位上的数是________的自然数一定是5的倍数.

3、一个数,如果既是2的倍数,又是5的倍数,这个数

的个位上一定是_____。这个数最小是。

4、最小的偶数是,最小的奇数是,最大的偶数,最大的奇数。

2的倍数有:。

5的倍数有:。

既是2的倍数又是5的倍数有:

偶数有:。

奇数有:。

课件出示

师:用5、6、7三个数字组成一个三位数,使这个数是2的倍数?说说什么样的数一定是2的倍数?可以摆成5的倍数吗?说说怎样摆?什么样的数是5的倍数?

(生:口答)

师:可以摆成既是2的倍数也是5的倍数吗?为什么?

师:同学们,我们已经能正确判断一个数是不是2或5的倍数,只要观察这个数的个位。那么你能从个位上发现3的倍数的特征吗?今天我们一起来研究3的倍数的特征。

(揭示课题:3的倍数的特征)

[设计意图]创设问题情境,既可以巩固已学知识又可以引导学生积极主动地投入到3的倍数的特征的教学过程中来,有利于学生轻松、愉快的学习新知。

二、探究新知

1、课件出示:(学生填一填)

师:学生独立填在课本19页上,然后观察。

生:汇报结果

1、课件出示:(学生填一填)

师:学生独立填在课本19页上,然后观察。

生:汇报结果

1234567

五年级下册数学的教案篇5

教学目标:

1、理解分数除以整数的意义,掌握分数除以整数的计算方法,并能正确计算。

2、通过实践活动和自主探究,培养学生动手能力及发现问题、解决问题的能力。

3、通过一系列“自主探究----得出结论”的过程,体验其中的成就感,增强学生学习数学的自信心。

教学重点:

理解分数除法的意义,掌握分数除以整数的计算方法。

教学难点:

分数除以整数计算法则的推导过程。

教学准备:

多媒体课件、长方形纸等。

教学过程:

一、旧知复习,蕴伏铺垫

复习时我安排了两道练习,引发学生记忆的再现,为学生选择原有知识中的有效的信息做好铺垫。

1、展示问题:

(1)什么是倒数?

(2)你能举出几对倒数的例子吗?

(3)如何求一个数的倒数?

2、展示多媒体:笑笑和淘气去买白糖。

问题1:他们每人买了两袋白糖,一共买了多少袋白糖?

问题2:这些白糖一共重2千克,每袋白糖有多重?

问题3:如果笑笑家15天吃完一袋白糖,那么平均每天吃多少千克?

二、创设情境,理解意义

展示多媒体:把一张纸的4/7平均分成2份,每份是这张纸的几分之几?

1、利用准备好的纸,先把纸平均分成7份,再涂出其中的4份,然后再将这4份平均分成2份,将其中1份涂色,最后看看涂上色的这部分占整张纸的几分之几。

2、汇报

三、大胆猜想

学生通过操作,明白2/7是怎样得到的。那么到底应该怎样计算分数除法呢?让学生大胆猜想分数除法的计算方法。学生根据刚才的推理,很容易得出“分母不变,被除数的分子除以整数得到商的分子”的计算方法。

四、再次探究

1、学生很快发现有些算式是无法用以上结论计算出来的,如4/7÷3,分子4除以3是除不尽的。

2、让学生动手分一分、涂一涂,然后再让他们进行小组交流。

3、得出分数除法的计算方法:除以一个整数(零除外)等于乘这个整数的倒数。

板书: 分数除法(二)

除以一个整数(零除外)等于乘这个整数的倒数。

五年级下册数学的教案篇6

活动目标

通过发豆芽活动,了解生活中的相关知识,运用多种途径查询和收集相关资料,并能运用数学的方法记录和描述豆芽的生长情况,培养同学们动手实践、分析问题以及解决问题的能力。

活动准备

教师收集相关资料,并先做一次实验。学生分组准备黄豆、绿豆各50g,以及发豆芽的器皿。

活动过程

一、提出问题,揭示课题、

1、师:同学们,你们知道豆芽的生长过程吗?你自己发过豆芽吗、

2、学生根据查询的资料和咨询科学教师得到的知识进行交流。

3、根据学生的交流,提出:我们也来试一试发豆芽。

揭示课题:发豆芽。

二、讨论交流,得出活动步骤

1、提问:发豆芽要做哪些准备?怎样记录发豆芽的过程呢?对最后的记录如何分析呢?

结合学生的交流,得出本次活动的主要步骤:调查与收集;发制与记录;整理与分析;推测与应用。

2、学生结合教材了解4个环节应该做什么,并在全班交流。

教师重点提问:发豆芽的统计图画什么好?为什么?如何计算发豆芽的盈利情况?

三、学生分组活动

1、教师演示发豆芽的过程。

2、教师提出要求:

(1)发豆芽活动要做的事情比较多,我们要分组进行,每组5个人。

(2)为了方便观察与记录,我们都将豆芽统一放在教室里进行观察,每天每个组在固定时间进行浇水。

3、各组学生进行发豆芽实验。

时间大约是6天。教师对各组实验的情况进行适时的指导,对各组的记录进行及时督促与检查。各组在发豆芽完成后,及时进行数据分析,制作好相应的统计图表,写好分析总结。

四、小组交流,感受价值

交流发豆芽的具体做法和注意事项。

五、观察、记录、分析

1、观察豆芽的生长情况。(大约6天时间)

2、记录豆芽的生长情况。(每天进行记录)

3、把豆芽的生长情况制成统计图表。

4、分析统计图表,写好总结。

六、总结反思

小组结合统计图汇报豆芽生长情况,说说在发豆芽活动中的收获。

五年级下册数学的教案篇7

教学目标

1.使学生能理解质数、合数的意义,会正确判断一个数是质数还是合数。

2.知道100以内的质数,熟悉20以内的质数。

3.培养学生自主探索、独立思考、合作交流的能力。

4.让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。

教学重难点

质数、合数的意义。

教学工具

多媒体课件

教学过程

【复习导入】

1.什么叫因数?

2.自然数分几类?(奇数和偶数)

教师:自然数还有一种新的分类方法,就是按一个数的因数个数来分,今天这节课我们就来学习这种分类方法。

【新课讲授】

1.学习质数、合数的概念。

(1)写出1~20各数的因数。(学生动手完成)

点四位学生上黑板板演,教师注意指导。

(2)根据写出的因数的个数进行分类。(填写下表)

(3)教学质数和合数概念。

针对表格提问:什么数只有两个因数,这两个因数一定是什么数?

教师:只有1和它本身两个因数,这样的数叫做质数(或素数)。

如果一个数,除了1和它本身还有别的因数,这样的数叫做合数。(板书)2.教学质数和合数的判断。

判断下列各数中哪些是质数,哪些是合数。

1722293537879396

教师引导学生应该怎样去判断一个数是质数还是合数(根据因数的个数来判断)

质数:172937

合数:2235879396

3.出示课本第14页例题1。

找出100以内的质数,做一个质数表。

(1)提问:如何很快地制作一张100以内的质数表?

(2)汇报:

①根据质数的概念逐个判断。

②用筛选法排除。

③注意1既不是质数,也不是合数。

【课堂作业】

完成教材第16页练习四的第1~3题。

课后小结

【课堂小结】

这节课,同学们又学到了什么新的本领?

学生畅谈所得。

课后习题

(1)所有的奇数都是质数。()

(2)所有的偶数都是合数。()

(3)在1,2,3,4,5,…中,除了质数以外都是合数。()

(4)两个质数的和是偶数。()

(5)在自然数中,除了质数以外都是合数。()

(6)1既不是质数,也不是合数。()

(7)在自然数中,有无限多个质数,没有最大的质数。()

板书

质数和合数(1)

一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。

一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。

五年级下册数学的教案篇8

教学目标:

1、学生掌握找一个数的因数,倍数的方法;

2、学生能了解一个数的因数是有限的,倍数是无限的;

3、能熟练地找一个数的因数和倍数;

4、培养学生的观察能力。

教学重点:

掌握找一个数的因数和倍数的方法。

教学难点:

能熟练地找一个数的因数和倍数。

教学过程:

一、引入新课。

1、出示主题图,让学生各列一道乘法算式。

2、师:看你能不能读懂下面的算式?

出示:因为2×6=12

所以2是12的因数,6也是12的因数;

12是2的倍数,12也是6的倍数。

3、师:你能不能用同样的方法说说另一道算式?

(指名生说一说)

师:你有没有明白因数和倍数的关系了?

那你还能找出12的其他因数吗?

4、你能不能写一个算式来考考同桌?学生写算式。

师:谁来出一个算式考考全班同学?

5、师:今天我们就来学习因数和倍数。(出示课题:因数 倍数)

齐读p12的注意。

二、新授

(一)找因数

1、出示例1:18的因数有哪几个?

从12的因数可以看得出,一个数的因数还不止一个,那我们一起找找看18的因数有哪些?

学生尝试完成:汇报

(18的因数有: 1,2,3,6,9,18)

师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)

师:18的因数中,最小的是几?的是几?我们在写的时候一般都是从小到大排列的。

2、用这样的方法,请你再找一找36的因数有那些?

汇报36的因数有: 1,2,3,4,6,9,12,18,36

师:你是怎么找的?

举错例(1,2,3,4,6,6,9,12,18,36)

师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)

仔细看看,36的因数中,最小的是几,的是几?

看来,任何一个数的因数,最小的一定是( ),而的一定是( )。

3、你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自己的练习本上写一写,然后汇报。

4、其实写一个数的因数除了这样写以外,还可以用集合表示:如

18的因数

1、2、3、6、9、18

小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?

从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。

(二)找倍数

1、我们一起找到了18的因数,那2的倍数你能找出来吗?

汇报:2、4、6、8、10、16、……

师:为什么找不完?

你是怎么找到这些倍数的? (生:只要用2去乘1、乘2、乘3、乘4、…)

那么2的倍数最小是几?的你能找到吗?

2、让学生完成做一做1、2小题:找3和5的倍数。

汇报 3的倍数有:3,6,9,12

师:这样写可以吗?为什么?应该怎么改呢?

改写成:3的倍数有:3,6,9,12,……

你是怎么找的?(用3分别乘以1,2,3,……倍)

5的倍数有:5,10,15,20,……

师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示

2的倍数 3的倍数 5的倍数

2、4、6、8…… 3、6、9…… 5、10、15……

师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?

(一个数的倍数的个数是无限的,最小的倍数是它本身,没有的倍数)

三、课堂小结

我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

四、独立作业

完成练习二1~4题

五年级下册数学的教案篇9

教学目标

1.理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按因数的个数进行分类。

2.通过自主探究、合作交流的方法,理解质数和合数的意义,经历概念的形成过程。

3.培养学生自主探索、独立思考、合作交流的能力,充分展示数学的魅力。

重点难点

重点:初步学会准确判断一个数是质数还是合数。

难点:区分奇数、质数、偶数、合数。

教具学具

投影仪。

教学过程

一、创设情境,激趣导入

师:“六一”快到了,老师给大家送来了礼物!(出示百宝箱)大家想要吗?可是这上面有锁,而且是一个密码锁,打不开,怎么办?

师:密码是一个三位数,它既是一个偶数,又是5的倍数;位上的数是9的因数;十位上的数是最小的质数。你能打开密码锁吗?

学生质疑:什么是质数。教师引入本节课内容,板书:质数和合数。

二、探究体验,经历过程

1.认识质数与合数。

师:找因数--找出1到20的各个数的因数,看一看它们的因数的个数有什么特点?

学生分组进行,找出之后进行分类。

生:老师,我发现这些数的因数有的只有1个,有的有2个,有的有3个,还有的有4个或更多。

师:很好,我们可以把它们分类,大家把分类结果填在表中。

投影展示学生的分类结果。

【设计意图:在学生独立思考的基础上,找出1~20的因数后总结出特点,为下文概念的出示做准备,使学生亲身经历概念的形成过程,印象深刻】

师:一个数,如果只有1和它本身两个因数,这样的数叫做质数。如2、3、5、7都是质数。一个数,除了1和它本身还有别的因数,这样的数叫做合数。如4、6、15、49都是合数。1既不是质数也不是合数。

师:再举出几个质数和合数的例子,举得完吗?说明了什么?(质数和合数都有无数个)

想一想:最小的质数(合数)是几?的呢?

师:所以按照因数个数的多少,自然数又可以分为哪几类呢?

课件出示:可以把非0自然数分为质数和合数以及1,共三类。

2.制作质数表。

投影出示例1。

师:怎样找出100以内的质数呢?

生1:可以把每个数都验证一下,看哪些是质数。

生2:先把2的倍数划去,但2除外,划掉的这些数都不是质数。然后划掉3的倍数,但3不划掉……

【设计意图:通过教师的引导,学生自主建构知识,完成100以内的质数表,使学生形成一个知识网络,进一步培养了学生的数感】

三、课末总结,梳理提升

这节课我们学习了质数和合数的概念,知道了1既不是质数也不是合数。在利用所学知识进行判断时,我们要抓住质数与合数的本质特点,从因数的个数入手进行判断。在对整数进行分类时,要明确分类标准,不能把质数和合数与奇数和偶数混淆。

五年级下册数学的教案篇10

教学内容

教科书第1~2页的例1以及相关的练习。

教学目标

1、理解分数的意义和单位“1”的含义,知道分母、分子的含义和分数各部分的名称,知道生活中分数的广泛用途,会用分数解决生活中的简单问题。

2、培养学生的分析能力和归纳概括能力。

3、通过学生的主动探索,培养学生的成功体验,坚定学生学好数学的信心。

教具准备

多媒体课件和视频展示台。

教学过程

一、复习引入

师:中秋节到了,小华家买了很多月饼,分月饼的任务当然就落到小华的身上了。你看,小华一会儿就把这几块月饼分好了。你能用分数分别表示这些月饼的阴影部分占一个月饼的几分之几吗?多媒体课件展示:

等学生完成后,抽学生的作业在视频展示台上展示,集体订正。

二、教学新课

1、教学例1,理解单位“1”

师:第二天,小华的爸爸又买回一盒月饼共8个,并且提出了一个新的分月饼的要求。课件演示:爸爸对小华说:小华,你把这8个月饼平均分给4个人吧。

师:同学们,你们能用小圆代替月饼,帮小华分一分吗?

等学生分好后,抽一个学生分的小圆在视频展示台上展示。

师:这时,小华的爸爸又提出了问题。

课件演示:爸爸对小华说:每个人得的月饼是这8个月饼的几分之几呢?

引导学生理解把8个月饼平均分成了4份,每份是这8个月饼的14。

师:老师也有个问题,刚才小华分出了1个月饼的1/4,这儿又分出了8个月饼的1/4,同学们看一看,这两个1/4表示的月饼数量一样吗?

多媒体课件演示下面的月饼图:

引导学生理解两个1/4代表的数量不一样。

师:为什么会出现这种现象呢?

引导学生说出前一个1/4是1个月饼的1/4,而后一个1/4是8个月饼的1/4。课件中随学生的回答在图形下出现相应的文字。

师:对。前一个1/4是以1个月饼为一个整体来平均分的,而后一个1/4是以8个月饼为一个整体来平均分的。平均分的整体不一样,对分出来的每份数量有影响吗?

让学生意识到,整体“1”的变化对每份的数量是有影响的。以1个月饼为整体“1”,每份就是1/4个月饼;以8个月饼为整体“1”,每份就是2个月饼。

师:像这样把许多物体组成的一个整体来平均分的分数还很多,请同学们看一看下面这幅图。课件出示第2页的熊猫图。

师:这里是把多少只熊猫看作一个整体?平均分成了几份?每份是这个整体的几分之几?

请分一分,并填空。

课件出示单元主题图,要求学生说一说图中的每个分数分别是以什么作为一个整体来平均分的。师:通过上面的研究,同学们有什么发现?

引导学生说出这些分数都是以许多物体组成的一个整体来平均分的。

师:像这样由一个物体或许多物体组成的一个整体,通常我们把它叫做单位“1”。

板书单位“1”的含义。

师:把12个学生看作一个整体,其中的6个学生是这个整体的几分之几?这里是把谁看作一个整体?教师再举两个例子,深化学生对单位“1”的理解。

2、理解并归纳分数的意义

师:请同学们拿出一些小棒,把它们平均分成5份或6份,想一想,其中的1份是全部小棒的几分之几?其中的2份呢?其中的3份呢?

学生操作后回答,如:我拿了10根小棒,把它平均分成了5份,每份有2根小棒,这2根小棒是10根小棒的1/5。2份有4根小棒,这4根小棒是10根小棒的2/5

师:想想自己操作的过程,你能说一说什么是分数吗?

学生讨论后可能这样表述:把单位“1”平均分成几份,表示其中1份或几份的数叫做分数。

师:同学们归纳得很好,但是这句话中出现了两个“几份”,所以我们一般把前一个“几份”说成是若干份。

归纳并板书分数的意义,板书课题。

试一试:涂色部分占整个图形的几分之几?

师:看看最后(五星图)这个分数,请同学们说说这个分数的意义。

生:这个分数表示把15颗五角星平均分成5份,其中的3份占这个图形的35。

师:把15颗五角星平均分成了5份,其中的1份占这个图形的几分之几?(生:1/5)其中的3份呢?(生:3/5)35是由多少个15组成的?(生:3个)所以,35的分数单位是1/5,35/里面有3个这样的分数单位。说一说:3/7的分数单位是多少?它有多少个这样的分数单位?5/6,9/10呢?

3、说生活中的分数

师:分数在我们生活中应用得非常广泛,书上第3页课堂活动中的两个小朋友正在说生活中的分数,你们能像他们这样说一说生活中的分数吗?

学生说生活中的分数。

三、课堂小结

(略)

四、课堂作业

1、第4页课堂活动第2题。

2、练习一第1,2,3,4题。

分数的意义

师:在三年级的时候,我们初步认识了分数,你能在下面的括号里填上适当的分数吗?

课件出示如下的题目:

把一个月饼平均分成4份,其中的1份是这个月饼的();

五年级下册数学的教案篇11

教学目标:

1.知识与技能:理解公倍数和最小公倍数的含义。

2.过程与方法:经历探索找公倍数的方法,会利用列举法等方法找出两个数的公倍数和最小公倍数。

3.情感态度与价值观:结合生活实际,激发学生学习数学的愿望,培养学生学习数学的乐趣。

教学重点:

理解公倍数和最小公倍数的含义。

教学难点:

掌握找最小公倍数的方法。

教学用具:

课件

教学过程:

一、 复习导入

说出2的倍数有哪些,3的倍数有哪些?

二、 教学公倍数和最小公倍数的含义

(一)探索公倍数

1.观察刚才同学们说的2的倍数和3的倍数,你有什么发现?

2.师生共同观察分析得出公倍数的含义。

(二)探索最小公倍数,引出课题。

三、探索找两个数最小公倍数的方法

(一)找两个数最小公倍数的一般方法

1.列举法

2.分解质因数法

3.短除法

(二)找两个数最小公倍数的特殊方法

1.找出下面几组数的最小公倍数。

7和14   8和24   9和18

5和6   2和7   9和4

2.观察每横数据和结果,你有什么发现?为什么

3.师生共同观察分析得出特殊情况下的特殊方法。

四、巩固练习

课件出示习题。

五、小结:今天你有什么收获?

板书设计:

找最小公倍数

4的倍数有:4、8、12、16、20、24、28… …

6的倍数有:6、12、18、24、30、… …

4和6公倍数有:12、24、… …

最小公倍数: 12

五年级下册数学的教案篇12

教学内容:人教版五年级下册第四单元第一课时《分数的产生和意义》。

学情分析:在学习这部分内容之前学生在三年级上学期的学习中,已经借助操作、直观,初步认识了分数,知道了分数的各部分的名称,会读、写简单的分数,会比较分数大小还会简单的同分母分数加、减法。

教学设想:本节课的教学,单位“1”和分数单位这两个概念非常重要,应从直观到抽象,由个别到一般,用利操作、讨论、交流等形式展开小组学习,适当展开概念的形成过程,帮助学生在过程中获得者得感悟,自己构建这些概念的意义。

教学目标:

1、在学生原有分数知识基础上,使学生知道分数的产生,理解分数的意义,知道分子、分母和分数单位的含义。

2、经历认识分数意义的过程,培养学生的抽象、概括能力。

3、利用操作、讨论、交流等形式展开小组学习,培养学生的合作探究能力,培养质疑和验证科学知识的能力。

教学重点:明确分数和分数单位的意义,理解单位“1”的含义。

教学难点:对单位“1”的理解。

教具和学具:卷尺、四张长方形白纸、四条一米长的绳子、若干个小立方体和一捆绘画笔。

教学过程:

一、创设情景,温故引新。

1、师:我们已经初步认识了分数。(板书:分数)谁来说几个分数?(板书:如1/4)你知道分数各部分的名称吗?(板书):师:那你们知道分数是怎样产生的吗?

二、教学分数的产生。

2、能根据成语说出下面的分数吗?

一分为二( ) 七上八下( ) 百里挑一( ) 十拿九稳( )

1、请一个学生用米尺测量黑板的长,说一说,用“米”做单位,看看测量的结果能不能用整数表示。那剩下的不足一米怎么记?

2、在古代,人们就已经遇到了这样的问题。(师用一根打了结的绳子演示古人测量的情况)。课件呈现情境图,介绍分数的起源和发展历史。

3、总结:在测量、分物的时候,可能得不到整数的结果,需要用一种新的数表示——分数表示。所以分数是人类为了适用实际需要而产生的。

4、在我们的日常生活中,为了平均分配一些东西,也常常会遇到不能用整数表示的情况。比如两个小朋友平分一个橘子、一块月饼、一块饼干等,每人分到的能用整数表示吗?用什么分数表示?

三、教学分数的意义。

师:下面老师要先考考大家,你能举例说明1/4的含义吗?(投影出示题目,学生口答)

出示一个1/4的正方形的阴影部分。

师:阴影部分可以用什么分数表示?它表示什么意思?

2、师:下列图中的阴影部分能用1/4表示吗?为什么?

如生说可以,则问:你为什么觉得可以用1/4表示呢?生说理由。

(强调一定要平均分)(板书:平均分)

3、动手操作,探索新知。

(1)操作。

师:现在我给每一个小组都提供了四种材料,一张长方形纸、一条一米长的绳子、6个小立方体,4根绘画笔。下面请每组根据这四种一样的材料,通过折一折、画一画、分一分等方法,创造出几个不同的分数。

学生动手操作,教师巡视。

(2)交流

师:谁愿意上来说一说,你得到了哪些分数?这个分数是怎样得到的?

小组交流。

(3)认识单位“1”。

师:利用这四种材料,同学们创造出了好多分数。刚才在表示这些分数时,我们都是把哪些东西来平均分的?

生:一张长方形纸、一米长的绳子、6个小立方体、4根绘画笔平均分。

师:象把一张长方形纸平均分,我们可以称之为把一个物体平均分

(课件显示:一个物体)

把一米长的绳子平均分,我们可以称之为把一个计量单位平均分。(课件显示:一个计量单位)

把6个小方块、4根绘画笔平均分,我们又可以称之为把一些物体平均分。(课件显示:一些物体)

师小结:一个物体、一些物体等都可以看做一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。(课件显示)

师:(投影出示):我们可以把这3只象看作一个整体吗?

我们可以把这6颗草莓看作一个整体吗?这4只老虎呢?

我们还可以把哪些物体也看成一个整体呢?(学生举例。)

师:象这样的一个物体、一个计量单位、一个整体,我们可以用自然数“1”来表示,通常把它叫做单位“1”,( 课件显示)强调说明:①单位“1”不仅可以指一个物体、一个计量单位,也可以是很多物体组成的一个整体。如:一个苹果、一枝铅笔、一个计量单位、一堆煤、一仓库粮食等等,把什么平均分,就应把什么看做单位“1”。②单位“1”和自然数“1”的区别:自然数1是一个数,只表示一个具体事物。如:一个人、一本书、一间房子……它是自然数的计数单位。而单位“1”不仅可以表示某一个具体事物,还可以表示一堆、一群……它表示被平均分的整体。

概括分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

(4)理解分子分母的意义。

师:通过刚才的学习,大家知道了分数的意义,请同学们想一下,这个“若干份”是分数中的什么?(分母,表示平均分的份数)“这样的一份或几份”是分数中的什么?(分子,表示取的份数)

(5)师:接下来我想出几道题来考考大家,你们愿不愿意接受挑战?

①把这个文具盒里的所有铅笔平均分给2个同学,每个同学得到这盒铅笔的几分之几?

生:1/2

②师:为什么可以用1/2来表示?

③师:如果把这盒铅笔平均分给5个同学,每个同学得到这盒铅笔的几分之几呢?

如果把这盒铅笔平均分给10个同学,每个同学得到这盒铅笔的几分之几呢?

如果把这盒铅笔平均分给50个同学,每个同学得到这盒铅笔的几分之几呢?2个同学得到这盒铅笔的几分之几?

如果把这盒铅笔平均分给100个同学,每个同学得到这盒铅笔的几分之几呢?10个同学得到这盒铅笔的几分之几呢?

④师:现在这个文具盒里有6支铅笔,把它平均分给2个同学,每个同学得到的铅笔能用1/2表示吗?是几支铅笔?

⑤如果我再增加2支铅笔,把8支铅笔平均分给2个同学,每个同学得到的铅笔还能用1/2表示吗?是几支铅笔?为什么同样是1/2,铅笔的支数不一样?

师:因为一个整体表示的具体数量不同,所以同样是1/2,铅笔的支数不一样。

四、教学分数单位。

师:整灵敏有计数单位个、十、百、千、万……分数是否也有计数单位呢?它的计数单位又是怎样规定的?

显示:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。

师:也就是说分数单位是由一个分数的分母决定的,分母是几,它的分数单位就是几分之一。(师举例说明后,并说出几个分数让学生回答,后再让学生自己举例说明)

加强练习,深化概念。

练习:

1、35 表示把( )平均分成( )份,表示这样的( )份,它的分母是( ),表示( );分子是( ),表示( )。

2、67 的分数单位是( ),有( )个这样的分数单位。

3、说出每个分数的意义。

(1)五(1)班的三好生人数占全班的29 。

(2)一节课的时间是23 小时。

4、课本练习十一第9题。

5、判断(对的打“√”,错的要“×”)。

(1)一堆苹果分成4份,每份占这堆苹果的14 ( )

(2)把5米长的绳子平均分成7段,每段占全长的57 ( )

(3)14个19 是914 ( )

(4)自然数1和单位“1”相同。( )

五、小结。

今天这节课我们学习了?你有哪些收获?

9751